| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| // This implementation of poly1305 is by Andrew Moon |
| // (https://github.com/floodyberry/poly1305-donna) and released as public |
| // domain. It implements SIMD vectorization based on the algorithm described in |
| // http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte |
| // block size |
| |
| #include <openssl/poly1305.h> |
| |
| #include "../internal.h" |
| |
| |
| #if defined(BORINGSSL_HAS_UINT128) && defined(OPENSSL_X86_64) |
| |
| #include <emmintrin.h> |
| |
| typedef __m128i xmmi; |
| |
| static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = { |
| (1 << 26) - 1, 0, (1 << 26) - 1, 0}; |
| static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0}; |
| static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = { |
| (1 << 24), 0, (1 << 24), 0}; |
| |
| static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; } |
| |
| static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; } |
| |
| static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) { |
| return (uint128_t)a * b; |
| } |
| |
| static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; } |
| |
| static inline uint64_t shr128(uint128_t v, const int shift) { |
| return (uint64_t)(v >> shift); |
| } |
| |
| static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) { |
| return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift); |
| } |
| |
| typedef struct poly1305_power_t { |
| union { |
| xmmi v; |
| uint64_t u[2]; |
| uint32_t d[4]; |
| } R20, R21, R22, R23, R24, S21, S22, S23, S24; |
| } poly1305_power; |
| |
| typedef struct poly1305_state_internal_t { |
| poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144 |
| bytes of free storage */ |
| union { |
| xmmi H[5]; // 80 bytes |
| uint64_t HH[10]; |
| }; |
| // uint64_t r0,r1,r2; [24 bytes] |
| // uint64_t pad0,pad1; [16 bytes] |
| uint64_t started; // 8 bytes |
| uint64_t leftover; // 8 bytes |
| uint8_t buffer[64]; // 64 bytes |
| } poly1305_state_internal; /* 448 bytes total + 63 bytes for |
| alignment = 511 bytes raw */ |
| |
| OPENSSL_STATIC_ASSERT( |
| sizeof(struct poly1305_state_internal_t) + 63 <= sizeof(poly1305_state), |
| "poly1305_state isn't large enough to hold aligned poly1305_state_internal_t"); |
| |
| static inline poly1305_state_internal *poly1305_aligned_state( |
| poly1305_state *state) { |
| return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63); |
| } |
| |
| static inline size_t poly1305_min(size_t a, size_t b) { |
| return (a < b) ? a : b; |
| } |
| |
| void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) { |
| poly1305_state_internal *st = poly1305_aligned_state(state); |
| poly1305_power *p; |
| uint64_t r0, r1, r2; |
| uint64_t t0, t1; |
| |
| // clamp key |
| t0 = CRYPTO_load_u64_le(key + 0); |
| t1 = CRYPTO_load_u64_le(key + 8); |
| r0 = t0 & 0xffc0fffffff; |
| t0 >>= 44; |
| t0 |= t1 << 20; |
| r1 = t0 & 0xfffffc0ffff; |
| t1 >>= 24; |
| r2 = t1 & 0x00ffffffc0f; |
| |
| // store r in un-used space of st->P[1] |
| p = &st->P[1]; |
| p->R20.d[1] = (uint32_t)(r0); |
| p->R20.d[3] = (uint32_t)(r0 >> 32); |
| p->R21.d[1] = (uint32_t)(r1); |
| p->R21.d[3] = (uint32_t)(r1 >> 32); |
| p->R22.d[1] = (uint32_t)(r2); |
| p->R22.d[3] = (uint32_t)(r2 >> 32); |
| |
| // store pad |
| p->R23.d[1] = CRYPTO_load_u32_le(key + 16); |
| p->R23.d[3] = CRYPTO_load_u32_le(key + 20); |
| p->R24.d[1] = CRYPTO_load_u32_le(key + 24); |
| p->R24.d[3] = CRYPTO_load_u32_le(key + 28); |
| |
| // H = 0 |
| st->H[0] = _mm_setzero_si128(); |
| st->H[1] = _mm_setzero_si128(); |
| st->H[2] = _mm_setzero_si128(); |
| st->H[3] = _mm_setzero_si128(); |
| st->H[4] = _mm_setzero_si128(); |
| |
| st->started = 0; |
| st->leftover = 0; |
| } |
| |
| static void poly1305_first_block(poly1305_state_internal *st, |
| const uint8_t *m) { |
| const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
| const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
| const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
| xmmi T5, T6; |
| poly1305_power *p; |
| uint128_t d[3]; |
| uint64_t r0, r1, r2; |
| uint64_t r20, r21, r22, s22; |
| uint64_t pad0, pad1; |
| uint64_t c; |
| uint64_t i; |
| |
| // pull out stored info |
| p = &st->P[1]; |
| |
| r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
| r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
| r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
| pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
| pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
| |
| // compute powers r^2,r^4 |
| r20 = r0; |
| r21 = r1; |
| r22 = r2; |
| for (i = 0; i < 2; i++) { |
| s22 = r22 * (5 << 2); |
| |
| d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22)); |
| d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21)); |
| d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20)); |
| |
| r20 = lo128(d[0]) & 0xfffffffffff; |
| c = shr128(d[0], 44); |
| d[1] = add128_64(d[1], c); |
| r21 = lo128(d[1]) & 0xfffffffffff; |
| c = shr128(d[1], 44); |
| d[2] = add128_64(d[2], c); |
| r22 = lo128(d[2]) & 0x3ffffffffff; |
| c = shr128(d[2], 42); |
| r20 += c * 5; |
| c = (r20 >> 44); |
| r20 = r20 & 0xfffffffffff; |
| r21 += c; |
| |
| p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| p->R21.v = _mm_shuffle_epi32( |
| _mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| p->R22.v = |
| _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| p->R23.v = _mm_shuffle_epi32( |
| _mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))), |
| _MM_SHUFFLE(1, 0, 1, 0)); |
| p->S21.v = _mm_mul_epu32(p->R21.v, FIVE); |
| p->S22.v = _mm_mul_epu32(p->R22.v, FIVE); |
| p->S23.v = _mm_mul_epu32(p->R23.v, FIVE); |
| p->S24.v = _mm_mul_epu32(p->R24.v, FIVE); |
| p--; |
| } |
| |
| // put saved info back |
| p = &st->P[1]; |
| p->R20.d[1] = (uint32_t)(r0); |
| p->R20.d[3] = (uint32_t)(r0 >> 32); |
| p->R21.d[1] = (uint32_t)(r1); |
| p->R21.d[3] = (uint32_t)(r1 >> 32); |
| p->R22.d[1] = (uint32_t)(r2); |
| p->R22.d[3] = (uint32_t)(r2 >> 32); |
| p->R23.d[1] = (uint32_t)(pad0); |
| p->R23.d[3] = (uint32_t)(pad0 >> 32); |
| p->R24.d[1] = (uint32_t)(pad1); |
| p->R24.d[3] = (uint32_t)(pad1 >> 32); |
| |
| // H = [Mx,My] |
| T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
| _mm_loadl_epi64((const xmmi *)(m + 16))); |
| T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
| _mm_loadl_epi64((const xmmi *)(m + 24))); |
| st->H[0] = _mm_and_si128(MMASK, T5); |
| st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
| st->H[2] = _mm_and_si128(MMASK, T5); |
| st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
| } |
| |
| static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m, |
| size_t bytes) { |
| const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
| const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
| const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
| |
| poly1305_power *p; |
| xmmi H0, H1, H2, H3, H4; |
| xmmi T0, T1, T2, T3, T4, T5, T6; |
| xmmi M0, M1, M2, M3, M4; |
| xmmi C1, C2; |
| |
| H0 = st->H[0]; |
| H1 = st->H[1]; |
| H2 = st->H[2]; |
| H3 = st->H[3]; |
| H4 = st->H[4]; |
| |
| while (bytes >= 64) { |
| // H *= [r^4,r^4] |
| p = &st->P[0]; |
| T0 = _mm_mul_epu32(H0, p->R20.v); |
| T1 = _mm_mul_epu32(H0, p->R21.v); |
| T2 = _mm_mul_epu32(H0, p->R22.v); |
| T3 = _mm_mul_epu32(H0, p->R23.v); |
| T4 = _mm_mul_epu32(H0, p->R24.v); |
| T5 = _mm_mul_epu32(H1, p->S24.v); |
| T6 = _mm_mul_epu32(H1, p->R20.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H2, p->S23.v); |
| T6 = _mm_mul_epu32(H2, p->S24.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H3, p->S22.v); |
| T6 = _mm_mul_epu32(H3, p->S23.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H4, p->S21.v); |
| T6 = _mm_mul_epu32(H4, p->S22.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H1, p->R21.v); |
| T6 = _mm_mul_epu32(H1, p->R22.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H2, p->R20.v); |
| T6 = _mm_mul_epu32(H2, p->R21.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H3, p->S24.v); |
| T6 = _mm_mul_epu32(H3, p->R20.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H4, p->S23.v); |
| T6 = _mm_mul_epu32(H4, p->S24.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H1, p->R23.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H2, p->R22.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H3, p->R21.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H4, p->R20.v); |
| T4 = _mm_add_epi64(T4, T5); |
| |
| // H += [Mx,My]*[r^2,r^2] |
| T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
| _mm_loadl_epi64((const xmmi *)(m + 16))); |
| T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
| _mm_loadl_epi64((const xmmi *)(m + 24))); |
| M0 = _mm_and_si128(MMASK, T5); |
| M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
| M2 = _mm_and_si128(MMASK, T5); |
| M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
| |
| p = &st->P[1]; |
| T5 = _mm_mul_epu32(M0, p->R20.v); |
| T6 = _mm_mul_epu32(M0, p->R21.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(M1, p->S24.v); |
| T6 = _mm_mul_epu32(M1, p->R20.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(M2, p->S23.v); |
| T6 = _mm_mul_epu32(M2, p->S24.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(M3, p->S22.v); |
| T6 = _mm_mul_epu32(M3, p->S23.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(M4, p->S21.v); |
| T6 = _mm_mul_epu32(M4, p->S22.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(M0, p->R22.v); |
| T6 = _mm_mul_epu32(M0, p->R23.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(M1, p->R21.v); |
| T6 = _mm_mul_epu32(M1, p->R22.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(M2, p->R20.v); |
| T6 = _mm_mul_epu32(M2, p->R21.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(M3, p->S24.v); |
| T6 = _mm_mul_epu32(M3, p->R20.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(M4, p->S23.v); |
| T6 = _mm_mul_epu32(M4, p->S24.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(M0, p->R24.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(M1, p->R23.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(M2, p->R22.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(M3, p->R21.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(M4, p->R20.v); |
| T4 = _mm_add_epi64(T4, T5); |
| |
| // H += [Mx,My] |
| T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)), |
| _mm_loadl_epi64((const xmmi *)(m + 48))); |
| T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)), |
| _mm_loadl_epi64((const xmmi *)(m + 56))); |
| M0 = _mm_and_si128(MMASK, T5); |
| M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
| M2 = _mm_and_si128(MMASK, T5); |
| M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
| |
| T0 = _mm_add_epi64(T0, M0); |
| T1 = _mm_add_epi64(T1, M1); |
| T2 = _mm_add_epi64(T2, M2); |
| T3 = _mm_add_epi64(T3, M3); |
| T4 = _mm_add_epi64(T4, M4); |
| |
| // reduce |
| C1 = _mm_srli_epi64(T0, 26); |
| C2 = _mm_srli_epi64(T3, 26); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_and_si128(T3, MMASK); |
| T1 = _mm_add_epi64(T1, C1); |
| T4 = _mm_add_epi64(T4, C2); |
| C1 = _mm_srli_epi64(T1, 26); |
| C2 = _mm_srli_epi64(T4, 26); |
| T1 = _mm_and_si128(T1, MMASK); |
| T4 = _mm_and_si128(T4, MMASK); |
| T2 = _mm_add_epi64(T2, C1); |
| T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
| C1 = _mm_srli_epi64(T2, 26); |
| C2 = _mm_srli_epi64(T0, 26); |
| T2 = _mm_and_si128(T2, MMASK); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_add_epi64(T3, C1); |
| T1 = _mm_add_epi64(T1, C2); |
| C1 = _mm_srli_epi64(T3, 26); |
| T3 = _mm_and_si128(T3, MMASK); |
| T4 = _mm_add_epi64(T4, C1); |
| |
| // H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My]) |
| H0 = T0; |
| H1 = T1; |
| H2 = T2; |
| H3 = T3; |
| H4 = T4; |
| |
| m += 64; |
| bytes -= 64; |
| } |
| |
| st->H[0] = H0; |
| st->H[1] = H1; |
| st->H[2] = H2; |
| st->H[3] = H3; |
| st->H[4] = H4; |
| } |
| |
| static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m, |
| size_t bytes) { |
| const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask); |
| const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128); |
| const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5); |
| |
| poly1305_power *p; |
| xmmi H0, H1, H2, H3, H4; |
| xmmi M0, M1, M2, M3, M4; |
| xmmi T0, T1, T2, T3, T4, T5, T6; |
| xmmi C1, C2; |
| |
| uint64_t r0, r1, r2; |
| uint64_t t0, t1, t2, t3, t4; |
| uint64_t c; |
| size_t consumed = 0; |
| |
| H0 = st->H[0]; |
| H1 = st->H[1]; |
| H2 = st->H[2]; |
| H3 = st->H[3]; |
| H4 = st->H[4]; |
| |
| // p = [r^2,r^2] |
| p = &st->P[1]; |
| |
| if (bytes >= 32) { |
| // H *= [r^2,r^2] |
| T0 = _mm_mul_epu32(H0, p->R20.v); |
| T1 = _mm_mul_epu32(H0, p->R21.v); |
| T2 = _mm_mul_epu32(H0, p->R22.v); |
| T3 = _mm_mul_epu32(H0, p->R23.v); |
| T4 = _mm_mul_epu32(H0, p->R24.v); |
| T5 = _mm_mul_epu32(H1, p->S24.v); |
| T6 = _mm_mul_epu32(H1, p->R20.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H2, p->S23.v); |
| T6 = _mm_mul_epu32(H2, p->S24.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H3, p->S22.v); |
| T6 = _mm_mul_epu32(H3, p->S23.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H4, p->S21.v); |
| T6 = _mm_mul_epu32(H4, p->S22.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H1, p->R21.v); |
| T6 = _mm_mul_epu32(H1, p->R22.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H2, p->R20.v); |
| T6 = _mm_mul_epu32(H2, p->R21.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H3, p->S24.v); |
| T6 = _mm_mul_epu32(H3, p->R20.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H4, p->S23.v); |
| T6 = _mm_mul_epu32(H4, p->S24.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H1, p->R23.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H2, p->R22.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H3, p->R21.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H4, p->R20.v); |
| T4 = _mm_add_epi64(T4, T5); |
| |
| // H += [Mx,My] |
| T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)), |
| _mm_loadl_epi64((const xmmi *)(m + 16))); |
| T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)), |
| _mm_loadl_epi64((const xmmi *)(m + 24))); |
| M0 = _mm_and_si128(MMASK, T5); |
| M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12)); |
| M2 = _mm_and_si128(MMASK, T5); |
| M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26)); |
| M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT); |
| |
| T0 = _mm_add_epi64(T0, M0); |
| T1 = _mm_add_epi64(T1, M1); |
| T2 = _mm_add_epi64(T2, M2); |
| T3 = _mm_add_epi64(T3, M3); |
| T4 = _mm_add_epi64(T4, M4); |
| |
| // reduce |
| C1 = _mm_srli_epi64(T0, 26); |
| C2 = _mm_srli_epi64(T3, 26); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_and_si128(T3, MMASK); |
| T1 = _mm_add_epi64(T1, C1); |
| T4 = _mm_add_epi64(T4, C2); |
| C1 = _mm_srli_epi64(T1, 26); |
| C2 = _mm_srli_epi64(T4, 26); |
| T1 = _mm_and_si128(T1, MMASK); |
| T4 = _mm_and_si128(T4, MMASK); |
| T2 = _mm_add_epi64(T2, C1); |
| T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
| C1 = _mm_srli_epi64(T2, 26); |
| C2 = _mm_srli_epi64(T0, 26); |
| T2 = _mm_and_si128(T2, MMASK); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_add_epi64(T3, C1); |
| T1 = _mm_add_epi64(T1, C2); |
| C1 = _mm_srli_epi64(T3, 26); |
| T3 = _mm_and_si128(T3, MMASK); |
| T4 = _mm_add_epi64(T4, C1); |
| |
| // H = (H*[r^2,r^2] + [Mx,My]) |
| H0 = T0; |
| H1 = T1; |
| H2 = T2; |
| H3 = T3; |
| H4 = T4; |
| |
| consumed = 32; |
| } |
| |
| // finalize, H *= [r^2,r] |
| r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
| r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
| r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
| |
| p->R20.d[2] = (uint32_t)(r0)&0x3ffffff; |
| p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff; |
| p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff; |
| p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff; |
| p->R24.d[2] = (uint32_t)((r2 >> 16)); |
| p->S21.d[2] = p->R21.d[2] * 5; |
| p->S22.d[2] = p->R22.d[2] * 5; |
| p->S23.d[2] = p->R23.d[2] * 5; |
| p->S24.d[2] = p->R24.d[2] * 5; |
| |
| // H *= [r^2,r] |
| T0 = _mm_mul_epu32(H0, p->R20.v); |
| T1 = _mm_mul_epu32(H0, p->R21.v); |
| T2 = _mm_mul_epu32(H0, p->R22.v); |
| T3 = _mm_mul_epu32(H0, p->R23.v); |
| T4 = _mm_mul_epu32(H0, p->R24.v); |
| T5 = _mm_mul_epu32(H1, p->S24.v); |
| T6 = _mm_mul_epu32(H1, p->R20.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H2, p->S23.v); |
| T6 = _mm_mul_epu32(H2, p->S24.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H3, p->S22.v); |
| T6 = _mm_mul_epu32(H3, p->S23.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H4, p->S21.v); |
| T6 = _mm_mul_epu32(H4, p->S22.v); |
| T0 = _mm_add_epi64(T0, T5); |
| T1 = _mm_add_epi64(T1, T6); |
| T5 = _mm_mul_epu32(H1, p->R21.v); |
| T6 = _mm_mul_epu32(H1, p->R22.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H2, p->R20.v); |
| T6 = _mm_mul_epu32(H2, p->R21.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H3, p->S24.v); |
| T6 = _mm_mul_epu32(H3, p->R20.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H4, p->S23.v); |
| T6 = _mm_mul_epu32(H4, p->S24.v); |
| T2 = _mm_add_epi64(T2, T5); |
| T3 = _mm_add_epi64(T3, T6); |
| T5 = _mm_mul_epu32(H1, p->R23.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H2, p->R22.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H3, p->R21.v); |
| T4 = _mm_add_epi64(T4, T5); |
| T5 = _mm_mul_epu32(H4, p->R20.v); |
| T4 = _mm_add_epi64(T4, T5); |
| |
| C1 = _mm_srli_epi64(T0, 26); |
| C2 = _mm_srli_epi64(T3, 26); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_and_si128(T3, MMASK); |
| T1 = _mm_add_epi64(T1, C1); |
| T4 = _mm_add_epi64(T4, C2); |
| C1 = _mm_srli_epi64(T1, 26); |
| C2 = _mm_srli_epi64(T4, 26); |
| T1 = _mm_and_si128(T1, MMASK); |
| T4 = _mm_and_si128(T4, MMASK); |
| T2 = _mm_add_epi64(T2, C1); |
| T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE)); |
| C1 = _mm_srli_epi64(T2, 26); |
| C2 = _mm_srli_epi64(T0, 26); |
| T2 = _mm_and_si128(T2, MMASK); |
| T0 = _mm_and_si128(T0, MMASK); |
| T3 = _mm_add_epi64(T3, C1); |
| T1 = _mm_add_epi64(T1, C2); |
| C1 = _mm_srli_epi64(T3, 26); |
| T3 = _mm_and_si128(T3, MMASK); |
| T4 = _mm_add_epi64(T4, C1); |
| |
| // H = H[0]+H[1] |
| H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8)); |
| H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8)); |
| H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8)); |
| H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8)); |
| H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8)); |
| |
| t0 = _mm_cvtsi128_si32(H0); |
| c = (t0 >> 26); |
| t0 &= 0x3ffffff; |
| t1 = _mm_cvtsi128_si32(H1) + c; |
| c = (t1 >> 26); |
| t1 &= 0x3ffffff; |
| t2 = _mm_cvtsi128_si32(H2) + c; |
| c = (t2 >> 26); |
| t2 &= 0x3ffffff; |
| t3 = _mm_cvtsi128_si32(H3) + c; |
| c = (t3 >> 26); |
| t3 &= 0x3ffffff; |
| t4 = _mm_cvtsi128_si32(H4) + c; |
| c = (t4 >> 26); |
| t4 &= 0x3ffffff; |
| t0 = t0 + (c * 5); |
| c = (t0 >> 26); |
| t0 &= 0x3ffffff; |
| t1 = t1 + c; |
| |
| st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff); |
| st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff); |
| st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff); |
| |
| return consumed; |
| } |
| |
| void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m, |
| size_t bytes) { |
| poly1305_state_internal *st = poly1305_aligned_state(state); |
| size_t want; |
| |
| // Work around a C language bug. See https://crbug.com/1019588. |
| if (bytes == 0) { |
| return; |
| } |
| |
| // need at least 32 initial bytes to start the accelerated branch |
| if (!st->started) { |
| if ((st->leftover == 0) && (bytes > 32)) { |
| poly1305_first_block(st, m); |
| m += 32; |
| bytes -= 32; |
| } else { |
| want = poly1305_min(32 - st->leftover, bytes); |
| OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
| bytes -= want; |
| m += want; |
| st->leftover += want; |
| if ((st->leftover < 32) || (bytes == 0)) { |
| return; |
| } |
| poly1305_first_block(st, st->buffer); |
| st->leftover = 0; |
| } |
| st->started = 1; |
| } |
| |
| // handle leftover |
| if (st->leftover) { |
| want = poly1305_min(64 - st->leftover, bytes); |
| OPENSSL_memcpy(st->buffer + st->leftover, m, want); |
| bytes -= want; |
| m += want; |
| st->leftover += want; |
| if (st->leftover < 64) { |
| return; |
| } |
| poly1305_blocks(st, st->buffer, 64); |
| st->leftover = 0; |
| } |
| |
| // process 64 byte blocks |
| if (bytes >= 64) { |
| want = (bytes & ~63); |
| poly1305_blocks(st, m, want); |
| m += want; |
| bytes -= want; |
| } |
| |
| if (bytes) { |
| OPENSSL_memcpy(st->buffer + st->leftover, m, bytes); |
| st->leftover += bytes; |
| } |
| } |
| |
| void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) { |
| poly1305_state_internal *st = poly1305_aligned_state(state); |
| size_t leftover = st->leftover; |
| uint8_t *m = st->buffer; |
| uint128_t d[3]; |
| uint64_t h0, h1, h2; |
| uint64_t t0, t1; |
| uint64_t g0, g1, g2, c, nc; |
| uint64_t r0, r1, r2, s1, s2; |
| poly1305_power *p; |
| |
| if (st->started) { |
| size_t consumed = poly1305_combine(st, m, leftover); |
| leftover -= consumed; |
| m += consumed; |
| } |
| |
| // st->HH will either be 0 or have the combined result |
| h0 = st->HH[0]; |
| h1 = st->HH[1]; |
| h2 = st->HH[2]; |
| |
| p = &st->P[1]; |
| r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1]; |
| r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1]; |
| r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1]; |
| s1 = r1 * (5 << 2); |
| s2 = r2 * (5 << 2); |
| |
| if (leftover < 16) { |
| goto poly1305_donna_atmost15bytes; |
| } |
| |
| poly1305_donna_atleast16bytes: |
| t0 = CRYPTO_load_u64_le(m + 0); |
| t1 = CRYPTO_load_u64_le(m + 8); |
| h0 += t0 & 0xfffffffffff; |
| t0 = shr128_pair(t1, t0, 44); |
| h1 += t0 & 0xfffffffffff; |
| h2 += (t1 >> 24) | ((uint64_t)1 << 40); |
| |
| poly1305_donna_mul: |
| d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)), |
| mul64x64_128(h2, s1)); |
| d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)), |
| mul64x64_128(h2, s2)); |
| d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)), |
| mul64x64_128(h2, r0)); |
| h0 = lo128(d[0]) & 0xfffffffffff; |
| c = shr128(d[0], 44); |
| d[1] = add128_64(d[1], c); |
| h1 = lo128(d[1]) & 0xfffffffffff; |
| c = shr128(d[1], 44); |
| d[2] = add128_64(d[2], c); |
| h2 = lo128(d[2]) & 0x3ffffffffff; |
| c = shr128(d[2], 42); |
| h0 += c * 5; |
| |
| m += 16; |
| leftover -= 16; |
| if (leftover >= 16) { |
| goto poly1305_donna_atleast16bytes; |
| } |
| |
| // final bytes |
| poly1305_donna_atmost15bytes: |
| if (!leftover) { |
| goto poly1305_donna_finish; |
| } |
| |
| m[leftover++] = 1; |
| OPENSSL_memset(m + leftover, 0, 16 - leftover); |
| leftover = 16; |
| |
| t0 = CRYPTO_load_u64_le(m + 0); |
| t1 = CRYPTO_load_u64_le(m + 8); |
| h0 += t0 & 0xfffffffffff; |
| t0 = shr128_pair(t1, t0, 44); |
| h1 += t0 & 0xfffffffffff; |
| h2 += (t1 >> 24); |
| |
| goto poly1305_donna_mul; |
| |
| poly1305_donna_finish: |
| c = (h0 >> 44); |
| h0 &= 0xfffffffffff; |
| h1 += c; |
| c = (h1 >> 44); |
| h1 &= 0xfffffffffff; |
| h2 += c; |
| c = (h2 >> 42); |
| h2 &= 0x3ffffffffff; |
| h0 += c * 5; |
| |
| g0 = h0 + 5; |
| c = (g0 >> 44); |
| g0 &= 0xfffffffffff; |
| g1 = h1 + c; |
| c = (g1 >> 44); |
| g1 &= 0xfffffffffff; |
| g2 = h2 + c - ((uint64_t)1 << 42); |
| |
| c = (g2 >> 63) - 1; |
| nc = ~c; |
| h0 = (h0 & nc) | (g0 & c); |
| h1 = (h1 & nc) | (g1 & c); |
| h2 = (h2 & nc) | (g2 & c); |
| |
| // pad |
| t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1]; |
| t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1]; |
| h0 += (t0 & 0xfffffffffff); |
| c = (h0 >> 44); |
| h0 &= 0xfffffffffff; |
| t0 = shr128_pair(t1, t0, 44); |
| h1 += (t0 & 0xfffffffffff) + c; |
| c = (h1 >> 44); |
| h1 &= 0xfffffffffff; |
| t1 = (t1 >> 24); |
| h2 += (t1)+c; |
| |
| CRYPTO_store_u64_le(mac + 0, ((h0) | (h1 << 44))); |
| CRYPTO_store_u64_le(mac + 8, ((h1 >> 20) | (h2 << 24))); |
| } |
| |
| #endif // BORINGSSL_HAS_UINT128 && OPENSSL_X86_64 |