| /* |
| * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * Copyright (c) 2014, Intel Corporation. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| * |
| * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1) |
| * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
| * (2) University of Haifa, Israel |
| * |
| * Reference: |
| * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with |
| * 256 Bit Primes" |
| */ |
| |
| #include <openssl/ec.h> |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/cpu.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| |
| #include "../bn/internal.h" |
| #include "../delocate.h" |
| #include "../../internal.h" |
| #include "internal.h" |
| #include "p256-x86_64.h" |
| |
| |
| #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
| !defined(OPENSSL_SMALL) |
| |
| typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; |
| |
| // One converted into the Montgomery domain |
| static const BN_ULONG ONE[P256_LIMBS] = { |
| TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), |
| TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe), |
| }; |
| |
| // Precomputed tables for the default generator |
| #include "p256-x86_64-table.h" |
| |
| // Recode window to a signed digit, see util-64.c for details |
| static unsigned booth_recode_w5(unsigned in) { |
| unsigned s, d; |
| |
| s = ~((in >> 5) - 1); |
| d = (1 << 6) - in - 1; |
| d = (d & s) | (in & ~s); |
| d = (d >> 1) + (d & 1); |
| |
| return (d << 1) + (s & 1); |
| } |
| |
| static unsigned booth_recode_w7(unsigned in) { |
| unsigned s, d; |
| |
| s = ~((in >> 7) - 1); |
| d = (1 << 8) - in - 1; |
| d = (d & s) | (in & ~s); |
| d = (d >> 1) + (d & 1); |
| |
| return (d << 1) + (s & 1); |
| } |
| |
| // copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is |
| // if |move| is zero. |
| // |
| // WARNING: this breaks the usual convention of constant-time functions |
| // returning masks. |
| static void copy_conditional(BN_ULONG dst[P256_LIMBS], |
| const BN_ULONG src[P256_LIMBS], BN_ULONG move) { |
| BN_ULONG mask1 = ((BN_ULONG)0) - move; |
| BN_ULONG mask2 = ~mask1; |
| |
| dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); |
| dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); |
| dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); |
| dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); |
| if (P256_LIMBS == 8) { |
| dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); |
| dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); |
| dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); |
| dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); |
| } |
| } |
| |
| // is_not_zero returns one iff in != 0 and zero otherwise. |
| // |
| // WARNING: this breaks the usual convention of constant-time functions |
| // returning masks. |
| // |
| // (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64) |
| // (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f) |
| // ) |
| // |
| // (declare-fun x () (_ BitVec 64)) |
| // |
| // (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001))) |
| // (check-sat) |
| // |
| // (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000))) |
| // (check-sat) |
| // |
| static BN_ULONG is_not_zero(BN_ULONG in) { |
| in |= (0 - in); |
| in >>= BN_BITS2 - 1; |
| return in; |
| } |
| |
| // ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p. |
| // That is, |r| is the modular inverse of |in| for input and output in the |
| // Montgomery domain. |
| static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS], |
| const BN_ULONG in[P256_LIMBS]) { |
| /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff |
| ffffffff |
| We use FLT and used poly-2 as exponent */ |
| BN_ULONG p2[P256_LIMBS]; |
| BN_ULONG p4[P256_LIMBS]; |
| BN_ULONG p8[P256_LIMBS]; |
| BN_ULONG p16[P256_LIMBS]; |
| BN_ULONG p32[P256_LIMBS]; |
| BN_ULONG res[P256_LIMBS]; |
| int i; |
| |
| ecp_nistz256_sqr_mont(res, in); |
| ecp_nistz256_mul_mont(p2, res, in); // 3*p |
| |
| ecp_nistz256_sqr_mont(res, p2); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_mul_mont(p4, res, p2); // f*p |
| |
| ecp_nistz256_sqr_mont(res, p4); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_mul_mont(p8, res, p4); // ff*p |
| |
| ecp_nistz256_sqr_mont(res, p8); |
| for (i = 0; i < 7; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(p16, res, p8); // ffff*p |
| |
| ecp_nistz256_sqr_mont(res, p16); |
| for (i = 0; i < 15; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(p32, res, p16); // ffffffff*p |
| |
| ecp_nistz256_sqr_mont(res, p32); |
| for (i = 0; i < 31; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(res, res, in); |
| |
| for (i = 0; i < 32 * 4; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(res, res, p32); |
| |
| for (i = 0; i < 32; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(res, res, p32); |
| |
| for (i = 0; i < 16; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(res, res, p16); |
| |
| for (i = 0; i < 8; i++) { |
| ecp_nistz256_sqr_mont(res, res); |
| } |
| ecp_nistz256_mul_mont(res, res, p8); |
| |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_mul_mont(res, res, p4); |
| |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_mul_mont(res, res, p2); |
| |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_sqr_mont(res, res); |
| ecp_nistz256_mul_mont(r, res, in); |
| } |
| |
| // r = p * p_scalar |
| static void ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r, |
| const EC_RAW_POINT *p, |
| const EC_SCALAR *p_scalar) { |
| assert(p != NULL); |
| assert(p_scalar != NULL); |
| assert(group->field.width == P256_LIMBS); |
| |
| static const unsigned kWindowSize = 5; |
| static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1; |
| |
| // A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should |
| // add no more than 63 bytes of overhead. Thus, |table| should require |
| // ~1599 ((96 * 16) + 63) bytes of stack space. |
| alignas(64) P256_POINT table[16]; |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, p_scalar->bytes, 32); |
| p_str[32] = 0; |
| |
| // table[0] is implicitly (0,0,0) (the point at infinity), therefore it is |
| // not stored. All other values are actually stored with an offset of -1 in |
| // table. |
| P256_POINT *row = table; |
| assert(group->field.width == P256_LIMBS); |
| OPENSSL_memcpy(row[1 - 1].X, p->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(row[1 - 1].Y, p->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(row[1 - 1].Z, p->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| |
| ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]); |
| ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]); |
| ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]); |
| ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]); |
| ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]); |
| ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]); |
| ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]); |
| ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]); |
| ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]); |
| |
| BN_ULONG tmp[P256_LIMBS]; |
| alignas(32) P256_POINT h; |
| unsigned index = 255; |
| unsigned wvalue = p_str[(index - 1) / 8]; |
| wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| |
| ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1); |
| |
| while (index >= 5) { |
| if (index != 255) { |
| unsigned off = (index - 1) / 8; |
| |
| wvalue = p_str[off] | p_str[off + 1] << 8; |
| wvalue = (wvalue >> ((index - 1) % 8)) & kMask; |
| |
| wvalue = booth_recode_w5(wvalue); |
| |
| ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| |
| ecp_nistz256_neg(tmp, h.Y); |
| copy_conditional(h.Y, tmp, (wvalue & 1)); |
| |
| ecp_nistz256_point_add(r, r, &h); |
| } |
| |
| index -= kWindowSize; |
| |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| ecp_nistz256_point_double(r, r); |
| } |
| |
| // Final window |
| wvalue = p_str[0]; |
| wvalue = (wvalue << 1) & kMask; |
| |
| wvalue = booth_recode_w5(wvalue); |
| |
| ecp_nistz256_select_w5(&h, table, wvalue >> 1); |
| |
| ecp_nistz256_neg(tmp, h.Y); |
| copy_conditional(h.Y, tmp, wvalue & 1); |
| |
| ecp_nistz256_point_add(r, r, &h); |
| } |
| |
| typedef union { |
| P256_POINT p; |
| P256_POINT_AFFINE a; |
| } p256_point_union_t; |
| |
| static unsigned calc_first_wvalue(unsigned *index, const uint8_t p_str[33]) { |
| static const unsigned kWindowSize = 7; |
| static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| *index = kWindowSize; |
| |
| unsigned wvalue = (p_str[0] << 1) & kMask; |
| return booth_recode_w7(wvalue); |
| } |
| |
| static unsigned calc_wvalue(unsigned *index, const uint8_t p_str[33]) { |
| static const unsigned kWindowSize = 7; |
| static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1; |
| |
| const unsigned off = (*index - 1) / 8; |
| unsigned wvalue = p_str[off] | p_str[off + 1] << 8; |
| wvalue = (wvalue >> ((*index - 1) % 8)) & kMask; |
| *index += kWindowSize; |
| |
| return booth_recode_w7(wvalue); |
| } |
| |
| static void mul_p_add_and_store(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_SCALAR *g_scalar, |
| const EC_RAW_POINT *p_, |
| const EC_SCALAR *p_scalar, |
| p256_point_union_t *t, p256_point_union_t *p) { |
| const int p_is_infinity = g_scalar == NULL; |
| if (p_scalar != NULL) { |
| P256_POINT *out = &t->p; |
| if (p_is_infinity) { |
| out = &p->p; |
| } |
| |
| ecp_nistz256_windowed_mul(group, out, p_, p_scalar); |
| if (!p_is_infinity) { |
| ecp_nistz256_point_add(&p->p, &p->p, out); |
| } |
| } |
| |
| assert(group->field.width == P256_LIMBS); |
| OPENSSL_memcpy(r->X.words, p->p.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, p->p.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, p->p.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_points_mul(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_SCALAR *g_scalar, |
| const EC_RAW_POINT *p_, |
| const EC_SCALAR *p_scalar) { |
| assert((p_ != NULL) == (p_scalar != NULL)); |
| |
| alignas(32) p256_point_union_t t, p; |
| |
| if (g_scalar != NULL) { |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, g_scalar->bytes, 32); |
| p_str[32] = 0; |
| |
| // First window |
| unsigned index = 0; |
| unsigned wvalue = calc_first_wvalue(&index, p_str); |
| |
| const PRECOMP256_ROW *const precomputed_table = |
| (const PRECOMP256_ROW *)ecp_nistz256_precomputed; |
| ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1); |
| |
| ecp_nistz256_neg(p.p.Z, p.p.Y); |
| copy_conditional(p.p.Y, p.p.Z, wvalue & 1); |
| |
| // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
| // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
| // is infinity iff |wvalue >> 1| is zero. |
| OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
| copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1)); |
| |
| for (int i = 1; i < 37; i++) { |
| wvalue = calc_wvalue(&index, p_str); |
| |
| ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1); |
| |
| ecp_nistz256_neg(t.p.Z, t.a.Y); |
| copy_conditional(t.a.Y, t.p.Z, wvalue & 1); |
| |
| ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
| } |
| } |
| |
| mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p); |
| } |
| |
| static void ecp_nistz256_points_mul_public(const EC_GROUP *group, |
| EC_RAW_POINT *r, |
| const EC_SCALAR *g_scalar, |
| const EC_RAW_POINT *p_, |
| const EC_SCALAR *p_scalar) { |
| assert(p_ != NULL && p_scalar != NULL && g_scalar != NULL); |
| |
| alignas(32) p256_point_union_t t, p; |
| uint8_t p_str[33]; |
| OPENSSL_memcpy(p_str, g_scalar->bytes, 32); |
| p_str[32] = 0; |
| |
| // First window |
| unsigned index = 0; |
| unsigned wvalue = calc_first_wvalue(&index, p_str); |
| |
| const PRECOMP256_ROW *const precomputed_table = |
| (const PRECOMP256_ROW *)ecp_nistz256_precomputed; |
| |
| // Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p| |
| // is infinity and |ONE| otherwise. |p| was computed from the table, so it |
| // is infinity iff |wvalue >> 1| is zero. |
| if ((wvalue >> 1) != 0) { |
| OPENSSL_memcpy(&p.a, &precomputed_table[0][(wvalue >> 1) - 1], sizeof(p.a)); |
| OPENSSL_memcpy(&p.p.Z, ONE, sizeof(p.p.Z)); |
| } else { |
| OPENSSL_memset(&p.a, 0, sizeof(p.a)); |
| OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z)); |
| } |
| |
| if ((wvalue & 1) == 1) { |
| ecp_nistz256_neg(p.p.Y, p.p.Y); |
| } |
| |
| for (int i = 1; i < 37; i++) { |
| wvalue = calc_wvalue(&index, p_str); |
| |
| if ((wvalue >> 1) == 0) { |
| continue; |
| } |
| |
| OPENSSL_memcpy(&t.a, &precomputed_table[i][(wvalue >> 1) - 1], sizeof(p.a)); |
| |
| if ((wvalue & 1) == 1) { |
| ecp_nistz256_neg(t.a.Y, t.a.Y); |
| } |
| |
| ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
| } |
| |
| mul_p_add_and_store(group, r, g_scalar, p_, p_scalar, &t, &p); |
| } |
| |
| static int ecp_nistz256_get_affine(const EC_GROUP *group, |
| const EC_RAW_POINT *point, EC_FELEM *x, |
| EC_FELEM *y) { |
| if (ec_GFp_simple_is_at_infinity(group, point)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); |
| return 0; |
| } |
| |
| BN_ULONG z_inv2[P256_LIMBS]; |
| BN_ULONG z_inv3[P256_LIMBS]; |
| assert(group->field.width == P256_LIMBS); |
| ecp_nistz256_mod_inverse_mont(z_inv3, point->Z.words); |
| ecp_nistz256_sqr_mont(z_inv2, z_inv3); |
| |
| // Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate |
| // and then calling |ecp_nistz256_from_mont| again to convert the |y| |
| // coordinate below, convert the common factor |z_inv2| once now, saving one |
| // reduction. |
| ecp_nistz256_from_mont(z_inv2, z_inv2); |
| |
| if (x != NULL) { |
| ecp_nistz256_mul_mont(x->words, z_inv2, point->X.words); |
| } |
| |
| if (y != NULL) { |
| ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); |
| ecp_nistz256_mul_mont(y->words, z_inv3, point->Y.words); |
| } |
| |
| return 1; |
| } |
| |
| static void ecp_nistz256_add(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_RAW_POINT *a_, const EC_RAW_POINT *b_) { |
| P256_POINT a, b; |
| OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.X, b_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.Y, b_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(b.Z, b_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| ecp_nistz256_point_add(&a, &a, &b); |
| OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_dbl(const EC_GROUP *group, EC_RAW_POINT *r, |
| const EC_RAW_POINT *a_) { |
| P256_POINT a; |
| OPENSSL_memcpy(a.X, a_->X.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Y, a_->Y.words, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(a.Z, a_->Z.words, P256_LIMBS * sizeof(BN_ULONG)); |
| ecp_nistz256_point_double(&a, &a); |
| OPENSSL_memcpy(r->X.words, a.X, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Y.words, a.Y, P256_LIMBS * sizeof(BN_ULONG)); |
| OPENSSL_memcpy(r->Z.words, a.Z, P256_LIMBS * sizeof(BN_ULONG)); |
| } |
| |
| static void ecp_nistz256_inv_mod_ord(const EC_GROUP *group, EC_SCALAR *out, |
| const EC_SCALAR *in) { |
| // table[i] stores a power of |in| corresponding to the matching enum value. |
| enum { |
| // The following indices specify the power in binary. |
| i_1 = 0, |
| i_10, |
| i_11, |
| i_101, |
| i_111, |
| i_1010, |
| i_1111, |
| i_10101, |
| i_101010, |
| i_101111, |
| // The following indices specify 2^N-1, or N ones in a row. |
| i_x6, |
| i_x8, |
| i_x16, |
| i_x32 |
| }; |
| BN_ULONG table[15][P256_LIMBS]; |
| |
| // https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion |
| // |
| // Even though this code path spares 12 squarings, 4.5%, and 13 |
| // multiplications, 25%, the overall sign operation is not that much faster, |
| // not more that 2%. Most of the performance of this function comes from the |
| // scalar operations. |
| |
| // Pre-calculate powers. |
| OPENSSL_memcpy(table[i_1], in->words, P256_LIMBS * sizeof(BN_ULONG)); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); |
| ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); |
| |
| ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); |
| |
| ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); |
| ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); |
| ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); |
| |
| ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); |
| ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); |
| |
| // Compute |in| raised to the order-2. |
| ecp_nistz256_ord_sqr_mont(out->words, table[i_x32], 64); |
| ecp_nistz256_ord_mul_mont(out->words, out->words, table[i_x32]); |
| static const struct { |
| uint8_t p, i; |
| } kChain[27] = {{32, i_x32}, {6, i_101111}, {5, i_111}, {4, i_11}, |
| {5, i_1111}, {5, i_10101}, {4, i_101}, {3, i_101}, |
| {3, i_101}, {5, i_111}, {9, i_101111}, {6, i_1111}, |
| {2, i_1}, {5, i_1}, {6, i_1111}, {5, i_111}, |
| {4, i_111}, {5, i_111}, {5, i_101}, {3, i_11}, |
| {10, i_101111}, {2, i_11}, {5, i_11}, {5, i_11}, |
| {3, i_1}, {7, i_10101}, {6, i_1111}}; |
| for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kChain); i++) { |
| ecp_nistz256_ord_sqr_mont(out->words, out->words, kChain[i].p); |
| ecp_nistz256_ord_mul_mont(out->words, out->words, table[kChain[i].i]); |
| } |
| } |
| |
| static int ecp_nistz256_mont_inv_mod_ord_vartime(const EC_GROUP *group, |
| EC_SCALAR *out, |
| const EC_SCALAR *in) { |
| if ((OPENSSL_ia32cap_get()[1] & (1 << 28)) == 0) { |
| // No AVX support; fallback to generic code. |
| return ec_GFp_simple_mont_inv_mod_ord_vartime(group, out, in); |
| } |
| |
| assert(group->order.width == P256_LIMBS); |
| if (!beeu_mod_inverse_vartime(out->words, in->words, group->order.d)) { |
| return 0; |
| } |
| |
| // The result should be returned in the Montgomery domain. |
| ec_scalar_to_montgomery(group, out, out); |
| return 1; |
| } |
| |
| static int ecp_nistz256_cmp_x_coordinate(const EC_GROUP *group, |
| const EC_RAW_POINT *p, |
| const EC_SCALAR *r) { |
| if (ec_GFp_simple_is_at_infinity(group, p)) { |
| return 0; |
| } |
| |
| assert(group->order.width == P256_LIMBS); |
| assert(group->field.width == P256_LIMBS); |
| |
| // We wish to compare X/Z^2 with r. This is equivalent to comparing X with |
| // r*Z^2. Note that X and Z are represented in Montgomery form, while r is |
| // not. |
| BN_ULONG r_Z2[P256_LIMBS], Z2_mont[P256_LIMBS], X[P256_LIMBS]; |
| ecp_nistz256_mul_mont(Z2_mont, p->Z.words, p->Z.words); |
| ecp_nistz256_mul_mont(r_Z2, r->words, Z2_mont); |
| ecp_nistz256_from_mont(X, p->X.words); |
| |
| if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| return 1; |
| } |
| |
| // During signing the x coefficient is reduced modulo the group order. |
| // Therefore there is a small possibility, less than 1/2^128, that group_order |
| // < p.x < P. in that case we need not only to compare against |r| but also to |
| // compare against r+group_order. |
| if (bn_less_than_words(r->words, group->field_minus_order.words, |
| P256_LIMBS)) { |
| // We can ignore the carry because: r + group_order < p < 2^256. |
| bn_add_words(r_Z2, r->words, group->order.d, P256_LIMBS); |
| ecp_nistz256_mul_mont(r_Z2, r_Z2, Z2_mont); |
| if (OPENSSL_memcmp(r_Z2, X, sizeof(r_Z2)) == 0) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) { |
| out->group_init = ec_GFp_mont_group_init; |
| out->group_finish = ec_GFp_mont_group_finish; |
| out->group_set_curve = ec_GFp_mont_group_set_curve; |
| out->point_get_affine_coordinates = ecp_nistz256_get_affine; |
| out->add = ecp_nistz256_add; |
| out->dbl = ecp_nistz256_dbl; |
| out->mul = ecp_nistz256_points_mul; |
| out->mul_public = ecp_nistz256_points_mul_public; |
| out->felem_mul = ec_GFp_mont_felem_mul; |
| out->felem_sqr = ec_GFp_mont_felem_sqr; |
| out->bignum_to_felem = ec_GFp_mont_bignum_to_felem; |
| out->felem_to_bignum = ec_GFp_mont_felem_to_bignum; |
| out->scalar_inv_montgomery = ecp_nistz256_inv_mod_ord; |
| out->scalar_inv_montgomery_vartime = ecp_nistz256_mont_inv_mod_ord_vartime; |
| out->cmp_x_coordinate = ecp_nistz256_cmp_x_coordinate; |
| }; |
| |
| #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \ |
| !defined(OPENSSL_SMALL) */ |