| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.]. */ |
| |
| #include <openssl/cast.h> |
| #include <openssl/cipher.h> |
| #include <openssl/obj.h> |
| |
| #if defined(OPENSSL_WINDOWS) |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <intrin.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #endif |
| |
| #include "../../crypto/internal.h" |
| #include "internal.h" |
| #include "../macros.h" |
| |
| |
| void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks, |
| int enc) { |
| uint32_t d[2]; |
| |
| n2l(in, d[0]); |
| n2l(in, d[1]); |
| if (enc) { |
| CAST_encrypt(d, ks); |
| } else { |
| CAST_decrypt(d, ks); |
| } |
| l2n(d[0], out); |
| l2n(d[1], out); |
| } |
| |
| #define E_CAST(n, key, L, R, OP1, OP2, OP3) \ |
| { \ |
| uint32_t a, b, c, d; \ |
| t = (key[n * 2] OP1 R) & 0xffffffff; \ |
| t = CRYPTO_rotl_u32(t, (key[n * 2 + 1])); \ |
| a = CAST_S_table0[(t >> 8) & 0xff]; \ |
| b = CAST_S_table1[(t)&0xff]; \ |
| c = CAST_S_table2[(t >> 24) & 0xff]; \ |
| d = CAST_S_table3[(t >> 16) & 0xff]; \ |
| L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL) OP1 d) & 0xffffffffL; \ |
| } |
| |
| void CAST_encrypt(uint32_t *data, const CAST_KEY *key) { |
| uint32_t l, r, t; |
| const uint32_t *k; |
| |
| k = &key->data[0]; |
| l = data[0]; |
| r = data[1]; |
| |
| E_CAST(0, k, l, r, +, ^, -); |
| E_CAST(1, k, r, l, ^, -, +); |
| E_CAST(2, k, l, r, -, +, ^); |
| E_CAST(3, k, r, l, +, ^, -); |
| E_CAST(4, k, l, r, ^, -, +); |
| E_CAST(5, k, r, l, -, +, ^); |
| E_CAST(6, k, l, r, +, ^, -); |
| E_CAST(7, k, r, l, ^, -, +); |
| E_CAST(8, k, l, r, -, +, ^); |
| E_CAST(9, k, r, l, +, ^, -); |
| E_CAST(10, k, l, r, ^, -, +); |
| E_CAST(11, k, r, l, -, +, ^); |
| |
| if (!key->short_key) { |
| E_CAST(12, k, l, r, +, ^, -); |
| E_CAST(13, k, r, l, ^, -, +); |
| E_CAST(14, k, l, r, -, +, ^); |
| E_CAST(15, k, r, l, +, ^, -); |
| } |
| |
| data[1] = l & 0xffffffffL; |
| data[0] = r & 0xffffffffL; |
| } |
| |
| void CAST_decrypt(uint32_t *data, const CAST_KEY *key) { |
| uint32_t l, r, t; |
| const uint32_t *k; |
| |
| k = &key->data[0]; |
| l = data[0]; |
| r = data[1]; |
| |
| if (!key->short_key) { |
| E_CAST(15, k, l, r, +, ^, -); |
| E_CAST(14, k, r, l, -, +, ^); |
| E_CAST(13, k, l, r, ^, -, +); |
| E_CAST(12, k, r, l, +, ^, -); |
| } |
| |
| E_CAST(11, k, l, r, -, +, ^); |
| E_CAST(10, k, r, l, ^, -, +); |
| E_CAST(9, k, l, r, +, ^, -); |
| E_CAST(8, k, r, l, -, +, ^); |
| E_CAST(7, k, l, r, ^, -, +); |
| E_CAST(6, k, r, l, +, ^, -); |
| E_CAST(5, k, l, r, -, +, ^); |
| E_CAST(4, k, r, l, ^, -, +); |
| E_CAST(3, k, l, r, +, ^, -); |
| E_CAST(2, k, r, l, -, +, ^); |
| E_CAST(1, k, l, r, ^, -, +); |
| E_CAST(0, k, r, l, +, ^, -); |
| |
| data[1] = l & 0xffffffffL; |
| data[0] = r & 0xffffffffL; |
| } |
| |
| void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const CAST_KEY *ks, uint8_t *iv, int enc) { |
| uint32_t tin0, tin1; |
| uint32_t tout0, tout1, xor0, xor1; |
| size_t l = length; |
| uint32_t tin[2]; |
| |
| if (enc) { |
| n2l(iv, tout0); |
| n2l(iv, tout1); |
| iv -= 8; |
| while (l >= 8) { |
| n2l(in, tin0); |
| n2l(in, tin1); |
| tin0 ^= tout0; |
| tin1 ^= tout1; |
| tin[0] = tin0; |
| tin[1] = tin1; |
| CAST_encrypt(tin, ks); |
| tout0 = tin[0]; |
| tout1 = tin[1]; |
| l2n(tout0, out); |
| l2n(tout1, out); |
| l -= 8; |
| } |
| if (l != 0) { |
| n2ln(in, tin0, tin1, l); |
| tin0 ^= tout0; |
| tin1 ^= tout1; |
| tin[0] = tin0; |
| tin[1] = tin1; |
| CAST_encrypt(tin, ks); |
| tout0 = tin[0]; |
| tout1 = tin[1]; |
| l2n(tout0, out); |
| l2n(tout1, out); |
| } |
| l2n(tout0, iv); |
| l2n(tout1, iv); |
| } else { |
| n2l(iv, xor0); |
| n2l(iv, xor1); |
| iv -= 8; |
| while (l >= 8) { |
| n2l(in, tin0); |
| n2l(in, tin1); |
| tin[0] = tin0; |
| tin[1] = tin1; |
| CAST_decrypt(tin, ks); |
| tout0 = tin[0] ^ xor0; |
| tout1 = tin[1] ^ xor1; |
| l2n(tout0, out); |
| l2n(tout1, out); |
| xor0 = tin0; |
| xor1 = tin1; |
| l -= 8; |
| } |
| if (l != 0) { |
| n2l(in, tin0); |
| n2l(in, tin1); |
| tin[0] = tin0; |
| tin[1] = tin1; |
| CAST_decrypt(tin, ks); |
| tout0 = tin[0] ^ xor0; |
| tout1 = tin[1] ^ xor1; |
| l2nn(tout0, tout1, out, l); |
| xor0 = tin0; |
| xor1 = tin1; |
| } |
| l2n(xor0, iv); |
| l2n(xor1, iv); |
| } |
| tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0; |
| tin[0] = tin[1] = 0; |
| } |
| |
| #define CAST_exp(l, A, a, n) \ |
| A[n / 4] = l; \ |
| a[n + 3] = (l)&0xff; \ |
| a[n + 2] = (l >> 8) & 0xff; \ |
| a[n + 1] = (l >> 16) & 0xff; \ |
| a[n + 0] = (l >> 24) & 0xff; |
| #define S4 CAST_S_table4 |
| #define S5 CAST_S_table5 |
| #define S6 CAST_S_table6 |
| #define S7 CAST_S_table7 |
| |
| void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) { |
| uint32_t x[16]; |
| uint32_t z[16]; |
| uint32_t k[32]; |
| uint32_t X[4], Z[4]; |
| uint32_t l, *K; |
| size_t i; |
| |
| for (i = 0; i < 16; i++) { |
| x[i] = 0; |
| } |
| |
| if (len > 16) { |
| len = 16; |
| } |
| |
| for (i = 0; i < len; i++) { |
| x[i] = data[i]; |
| } |
| |
| if (len <= 10) { |
| key->short_key = 1; |
| } else { |
| key->short_key = 0; |
| } |
| |
| K = &k[0]; |
| X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL; |
| X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL; |
| X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL; |
| X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL; |
| |
| for (;;) { |
| l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; |
| CAST_exp(l, Z, z, 0); |
| l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; |
| CAST_exp(l, Z, z, 4); |
| l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; |
| CAST_exp(l, Z, z, 8); |
| l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; |
| CAST_exp(l, Z, z, 12); |
| |
| K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]]; |
| K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]]; |
| K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]]; |
| K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]]; |
| |
| l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; |
| CAST_exp(l, X, x, 0); |
| l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; |
| CAST_exp(l, X, x, 4); |
| l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; |
| CAST_exp(l, X, x, 8); |
| l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; |
| CAST_exp(l, X, x, 12); |
| |
| K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]]; |
| K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]]; |
| K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]]; |
| K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]]; |
| |
| l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]]; |
| CAST_exp(l, Z, z, 0); |
| l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]]; |
| CAST_exp(l, Z, z, 4); |
| l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]]; |
| CAST_exp(l, Z, z, 8); |
| l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]]; |
| CAST_exp(l, Z, z, 12); |
| |
| K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]]; |
| K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]]; |
| K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]]; |
| K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]]; |
| |
| l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]]; |
| CAST_exp(l, X, x, 0); |
| l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]]; |
| CAST_exp(l, X, x, 4); |
| l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]]; |
| CAST_exp(l, X, x, 8); |
| l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]]; |
| CAST_exp(l, X, x, 12); |
| |
| K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]]; |
| K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]]; |
| K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]]; |
| K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]]; |
| if (K != k) { |
| break; |
| } |
| K += 16; |
| } |
| |
| for (i = 0; i < 16; i++) { |
| key->data[i * 2] = k[i]; |
| key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f; |
| } |
| } |
| |
| // The input and output encrypted as though 64bit cfb mode is being used. The |
| // extra state information to record how much of the 64bit block we have used |
| // is contained in *num. |
| void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length, |
| const CAST_KEY *schedule, uint8_t *ivec, int *num, |
| int enc) { |
| uint32_t v0, v1, t; |
| int n = *num; |
| size_t l = length; |
| uint32_t ti[2]; |
| uint8_t *iv, c, cc; |
| |
| iv = ivec; |
| if (enc) { |
| while (l--) { |
| if (n == 0) { |
| n2l(iv, v0); |
| ti[0] = v0; |
| n2l(iv, v1); |
| ti[1] = v1; |
| CAST_encrypt((uint32_t *)ti, schedule); |
| iv = ivec; |
| t = ti[0]; |
| l2n(t, iv); |
| t = ti[1]; |
| l2n(t, iv); |
| iv = ivec; |
| } |
| c = *(in++) ^ iv[n]; |
| *(out++) = c; |
| iv[n] = c; |
| n = (n + 1) & 0x07; |
| } |
| } else { |
| while (l--) { |
| if (n == 0) { |
| n2l(iv, v0); |
| ti[0] = v0; |
| n2l(iv, v1); |
| ti[1] = v1; |
| CAST_encrypt((uint32_t *)ti, schedule); |
| iv = ivec; |
| t = ti[0]; |
| l2n(t, iv); |
| t = ti[1]; |
| l2n(t, iv); |
| iv = ivec; |
| } |
| cc = *(in++); |
| c = iv[n]; |
| iv[n] = cc; |
| *(out++) = c ^ cc; |
| n = (n + 1) & 0x07; |
| } |
| } |
| v0 = v1 = ti[0] = ti[1] = t = c = cc = 0; |
| *num = n; |
| } |
| |
| static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, |
| const uint8_t *iv, int enc) { |
| CAST_KEY *cast_key = ctx->cipher_data; |
| CAST_set_key(cast_key, ctx->key_len, key); |
| return 1; |
| } |
| |
| static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| CAST_KEY *cast_key = ctx->cipher_data; |
| |
| while (len >= CAST_BLOCK) { |
| CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt); |
| in += CAST_BLOCK; |
| out += CAST_BLOCK; |
| len -= CAST_BLOCK; |
| } |
| assert(len == 0); |
| |
| return 1; |
| } |
| |
| static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, |
| size_t len) { |
| CAST_KEY *cast_key = ctx->cipher_data; |
| CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt); |
| return 1; |
| } |
| |
| static const EVP_CIPHER cast5_ecb = { |
| NID_cast5_ecb, CAST_BLOCK, |
| CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */, |
| sizeof(CAST_KEY), EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH, |
| NULL /* app_data */, cast_init_key, |
| cast_ecb_cipher, NULL /* cleanup */, |
| NULL /* ctrl */, |
| }; |
| |
| static const EVP_CIPHER cast5_cbc = { |
| NID_cast5_cbc, CAST_BLOCK, |
| CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */, |
| sizeof(CAST_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH, |
| NULL /* app_data */, cast_init_key, |
| cast_cbc_cipher, NULL /* cleanup */, |
| NULL /* ctrl */, |
| }; |
| |
| const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; } |
| |
| const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; } |