| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| */ |
| |
| #include <openssl/evp.h> |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| OPENSSL_MSVC_PRAGMA(warning(push)) |
| OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) |
| |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/digest.h> |
| #include <openssl/dsa.h> |
| #include <openssl/err.h> |
| #include <openssl/rsa.h> |
| |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| #include "../test/wycheproof_util.h" |
| |
| |
| // evp_test dispatches between multiple test types. PrivateKey tests take a key |
| // name parameter and single block, decode it as a PEM private key, and save it |
| // under that key name. Decrypt, Sign, and Verify tests take a previously |
| // imported key name as parameter and test their respective operations. |
| |
| static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { |
| if (name == "MD5") { |
| return EVP_md5(); |
| } else if (name == "SHA1") { |
| return EVP_sha1(); |
| } else if (name == "SHA224") { |
| return EVP_sha224(); |
| } else if (name == "SHA256") { |
| return EVP_sha256(); |
| } else if (name == "SHA384") { |
| return EVP_sha384(); |
| } else if (name == "SHA512") { |
| return EVP_sha512(); |
| } |
| ADD_FAILURE() << "Unknown digest: " << name; |
| return nullptr; |
| } |
| |
| static int GetKeyType(FileTest *t, const std::string &name) { |
| if (name == "RSA") { |
| return EVP_PKEY_RSA; |
| } |
| if (name == "EC") { |
| return EVP_PKEY_EC; |
| } |
| if (name == "DSA") { |
| return EVP_PKEY_DSA; |
| } |
| if (name == "Ed25519") { |
| return EVP_PKEY_ED25519; |
| } |
| if (name == "X25519") { |
| return EVP_PKEY_X25519; |
| } |
| ADD_FAILURE() << "Unknown key type: " << name; |
| return EVP_PKEY_NONE; |
| } |
| |
| static int GetRSAPadding(FileTest *t, int *out, const std::string &name) { |
| if (name == "PKCS1") { |
| *out = RSA_PKCS1_PADDING; |
| return true; |
| } |
| if (name == "PSS") { |
| *out = RSA_PKCS1_PSS_PADDING; |
| return true; |
| } |
| if (name == "OAEP") { |
| *out = RSA_PKCS1_OAEP_PADDING; |
| return true; |
| } |
| ADD_FAILURE() << "Unknown RSA padding mode: " << name; |
| return false; |
| } |
| |
| using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>; |
| |
| static bool ImportKey(FileTest *t, KeyMap *key_map, |
| EVP_PKEY *(*parse_func)(CBS *cbs), |
| int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { |
| std::vector<uint8_t> input; |
| if (!t->GetBytes(&input, "Input")) { |
| return false; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, input.data(), input.size()); |
| bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs)); |
| if (!pkey) { |
| return false; |
| } |
| |
| std::string key_type; |
| if (!t->GetAttribute(&key_type, "Type")) { |
| return false; |
| } |
| EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get())); |
| |
| // The key must re-encode correctly. |
| bssl::ScopedCBB cbb; |
| uint8_t *der; |
| size_t der_len; |
| if (!CBB_init(cbb.get(), 0) || |
| !marshal_func(cbb.get(), pkey.get()) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> free_der(der); |
| |
| std::vector<uint8_t> output = input; |
| if (t->HasAttribute("Output") && |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| EXPECT_EQ(Bytes(output), Bytes(der, der_len)) |
| << "Re-encoding the key did not match."; |
| |
| if (t->HasAttribute("ExpectNoRawPrivate")) { |
| size_t len; |
| EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)); |
| } else if (t->HasAttribute("ExpectRawPrivate")) { |
| std::vector<uint8_t> expected; |
| if (!t->GetBytes(&expected, "ExpectRawPrivate")) { |
| return false; |
| } |
| |
| std::vector<uint8_t> raw; |
| size_t len; |
| if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) { |
| return false; |
| } |
| raw.resize(len); |
| if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) { |
| return false; |
| } |
| raw.resize(len); |
| EXPECT_EQ(Bytes(raw), Bytes(expected)); |
| |
| // Short buffers should be rejected. |
| raw.resize(len - 1); |
| len = raw.size(); |
| EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)); |
| } |
| |
| if (t->HasAttribute("ExpectNoRawPublic")) { |
| size_t len; |
| EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)); |
| } else if (t->HasAttribute("ExpectRawPublic")) { |
| std::vector<uint8_t> expected; |
| if (!t->GetBytes(&expected, "ExpectRawPublic")) { |
| return false; |
| } |
| |
| std::vector<uint8_t> raw; |
| size_t len; |
| if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) { |
| return false; |
| } |
| raw.resize(len); |
| if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) { |
| return false; |
| } |
| raw.resize(len); |
| EXPECT_EQ(Bytes(raw), Bytes(expected)); |
| |
| // Short buffers should be rejected. |
| raw.resize(len - 1); |
| len = raw.size(); |
| EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)); |
| } |
| |
| // Save the key for future tests. |
| const std::string &key_name = t->GetParameter(); |
| EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; |
| (*key_map)[key_name] = std::move(pkey); |
| return true; |
| } |
| |
| // SetupContext configures |ctx| based on attributes in |t|, with the exception |
| // of the signing digest which must be configured externally. |
| static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) { |
| if (t->HasAttribute("RSAPadding")) { |
| int padding; |
| if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || |
| !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("PSSSaltLength") && |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { |
| return false; |
| } |
| if (t->HasAttribute("MGF1Digest")) { |
| const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPDigest")) { |
| const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPLabel")) { |
| std::vector<uint8_t> label; |
| if (!t->GetBytes(&label, "OAEPLabel")) { |
| return false; |
| } |
| // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be |
| // take ownership of the input. |
| bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>( |
| OPENSSL_memdup(label.data(), label.size()))); |
| if (!buf || |
| !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { |
| return false; |
| } |
| buf.release(); |
| } |
| if (t->HasAttribute("DerivePeer")) { |
| std::string derive_peer = t->GetAttributeOrDie("DerivePeer"); |
| if (key_map->count(derive_peer) == 0) { |
| ADD_FAILURE() << "Could not find key " << derive_peer; |
| return false; |
| } |
| EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get(); |
| if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) { |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !EVP_PKEY_derive_init(ctx.get()) || |
| !SetupContext(t, key_map, ctx.get())) { |
| return false; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); |
| if (!copy) { |
| return false; |
| } |
| |
| for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { |
| size_t len; |
| std::vector<uint8_t> actual, output; |
| if (!EVP_PKEY_derive(pctx, nullptr, &len)) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| |
| // Defer looking up the attribute so Error works properly. |
| if (!t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| |
| // Test when the buffer is too large. |
| actual.resize(len + 1); |
| len = actual.size(); |
| if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| |
| // Test when the buffer is too small. |
| actual.resize(len - 1); |
| len = actual.size(); |
| if (t->HasAttribute("SmallBufferTruncates")) { |
| if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output.data(), len), Bytes(actual)); |
| } else { |
| EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len)); |
| ERR_clear_error(); |
| } |
| } |
| return true; |
| } |
| |
| static bool TestEVP(FileTest *t, KeyMap *key_map) { |
| if (t->GetType() == "PrivateKey") { |
| return ImportKey(t, key_map, EVP_parse_private_key, |
| EVP_marshal_private_key); |
| } |
| |
| if (t->GetType() == "PublicKey") { |
| return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); |
| } |
| |
| // Load the key. |
| const std::string &key_name = t->GetParameter(); |
| if (key_map->count(key_name) == 0) { |
| ADD_FAILURE() << "Could not find key " << key_name; |
| return false; |
| } |
| EVP_PKEY *key = (*key_map)[key_name].get(); |
| |
| int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; |
| int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, |
| const uint8_t *in, size_t in_len) = nullptr; |
| int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, |
| ENGINE *e, EVP_PKEY *pkey) = nullptr; |
| bool is_verify = false; |
| if (t->GetType() == "Decrypt") { |
| key_op_init = EVP_PKEY_decrypt_init; |
| key_op = EVP_PKEY_decrypt; |
| } else if (t->GetType() == "Sign") { |
| key_op_init = EVP_PKEY_sign_init; |
| key_op = EVP_PKEY_sign; |
| } else if (t->GetType() == "Verify") { |
| key_op_init = EVP_PKEY_verify_init; |
| is_verify = true; |
| } else if (t->GetType() == "SignMessage") { |
| md_op_init = EVP_DigestSignInit; |
| } else if (t->GetType() == "VerifyMessage") { |
| md_op_init = EVP_DigestVerifyInit; |
| is_verify = true; |
| } else if (t->GetType() == "Encrypt") { |
| key_op_init = EVP_PKEY_encrypt_init; |
| key_op = EVP_PKEY_encrypt; |
| } else if (t->GetType() == "Derive") { |
| return TestDerive(t, key_map, key); |
| } else { |
| ADD_FAILURE() << "Unknown test " << t->GetType(); |
| return false; |
| } |
| |
| const EVP_MD *digest = nullptr; |
| if (t->HasAttribute("Digest")) { |
| digest = GetDigest(t, t->GetAttributeOrDie("Digest")); |
| if (digest == nullptr) { |
| return false; |
| } |
| } |
| |
| // For verify tests, the "output" is the signature. Read it now so that, for |
| // tests which expect a failure in SetupContext, the attribute is still |
| // consumed. |
| std::vector<uint8_t> input, actual, output; |
| if (!t->GetBytes(&input, "Input") || |
| (is_verify && !t->GetBytes(&output, "Output"))) { |
| return false; |
| } |
| |
| if (md_op_init) { |
| bssl::ScopedEVP_MD_CTX ctx, copy; |
| EVP_PKEY_CTX *pctx; |
| if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) || |
| !SetupContext(t, key_map, pctx) || |
| !EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return EVP_DigestVerify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()) && |
| EVP_DigestVerify(copy.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| size_t len; |
| if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), |
| input.size()) || |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| |
| // Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated |
| // everything. |
| if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(), |
| input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(), |
| input.size()) || |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| return true; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !key_op_init(ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
| !SetupContext(t, key_map, ctx.get())) { |
| return false; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); |
| if (!copy) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return EVP_PKEY_verify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()) && |
| EVP_PKEY_verify(copy.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { |
| size_t len; |
| if (!key_op(pctx, nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) { |
| return false; |
| } |
| |
| if (t->HasAttribute("CheckDecrypt")) { |
| // Encryption is non-deterministic, so we check by decrypting. |
| size_t plaintext_len; |
| bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!decrypt_ctx || |
| !EVP_PKEY_decrypt_init(decrypt_ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) || |
| !SetupContext(t, key_map, decrypt_ctx.get()) || |
| !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len, |
| actual.data(), actual.size())) { |
| return false; |
| } |
| output.resize(plaintext_len); |
| if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len, |
| actual.data(), actual.size())) { |
| ADD_FAILURE() << "Could not decrypt result."; |
| return false; |
| } |
| output.resize(plaintext_len); |
| EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; |
| } else if (t->HasAttribute("CheckVerify")) { |
| // Some signature schemes are non-deterministic, so we check by verifying. |
| bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!verify_ctx || |
| !EVP_PKEY_verify_init(verify_ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) || |
| !SetupContext(t, key_map, verify_ctx.get())) { |
| return false; |
| } |
| if (t->HasAttribute("VerifyPSSSaltLength")) { |
| if (!EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| verify_ctx.get(), |
| atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { |
| return false; |
| } |
| } |
| EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), |
| actual.size(), input.data(), input.size())) |
| << "Could not verify result."; |
| } else { |
| // By default, check by comparing the result against Output. |
| if (!t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| } |
| } |
| return true; |
| } |
| |
| TEST(EVPTest, TestVectors) { |
| KeyMap key_map; |
| FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) { |
| bool result = TestEVP(t, &key_map); |
| if (t->HasAttribute("Error")) { |
| ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; |
| uint32_t err = ERR_peek_error(); |
| EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); |
| } else if (!result) { |
| ADD_FAILURE() << "Operation unexpectedly failed."; |
| } |
| }); |
| } |
| |
| static void RunWycheproofVerifyTest(const char *path) { |
| SCOPED_TRACE(path); |
| FileTestGTest(path, [](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> der; |
| ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); |
| CBS cbs; |
| CBS_init(&cbs, der.data(), der.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| const EVP_MD *md = nullptr; |
| if (t->HasInstruction("sha")) { |
| md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| } |
| |
| bool is_pss = t->HasInstruction("mgf"); |
| const EVP_MD *mgf1_md = nullptr; |
| int pss_salt_len = -1; |
| if (is_pss) { |
| ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf")); |
| mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
| |
| std::string s_len; |
| ASSERT_TRUE(t->GetInstruction(&s_len, "sLen")); |
| pss_salt_len = atoi(s_len.c_str()); |
| } |
| |
| std::vector<uint8_t> msg; |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| std::vector<uint8_t> sig; |
| ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { |
| // DSA is deprecated and is not usable via EVP. |
| DSA *dsa = EVP_PKEY_get0_DSA(key.get()); |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned digest_len; |
| ASSERT_TRUE( |
| EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); |
| int valid; |
| bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), |
| sig.size(), dsa) && |
| valid; |
| EXPECT_EQ(sig_ok, result.IsValid()); |
| } else { |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| ASSERT_TRUE( |
| EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get())); |
| if (is_pss) { |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len)); |
| } |
| int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), |
| msg.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| EXPECT_EQ(ret, |
| result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}) |
| ? 1 |
| : 0); |
| } |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofDSA) { |
| RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP224) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP256) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP384) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP521) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofEdDSA) { |
| RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt"); |
| // TODO(davidben): Is this file redundant with the tests above? |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1Sign) { |
| FileTestGTest( |
| "third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt", |
| [](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> pkcs8; |
| ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
| CBS cbs; |
| CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| |
| std::vector<uint8_t> msg, sig; |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| ASSERT_TRUE( |
| EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get())); |
| std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
| size_t len = out.size(); |
| int ret = |
| EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| bool is_valid = |
| result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}); |
| EXPECT_EQ(ret, is_valid ? 1 : 0); |
| if (is_valid) { |
| out.resize(len); |
| EXPECT_EQ(Bytes(sig), Bytes(out)); |
| } |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPSS) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_2048_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_3072_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_4096_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_4096_sha512_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_misc_test.txt"); |
| } |
| |
| static void RunWycheproofDecryptTest( |
| const char *path, |
| std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) { |
| FileTestGTest(path, [&](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> pkcs8; |
| ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
| CBS cbs; |
| CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| std::vector<uint8_t> ct, msg; |
| ASSERT_TRUE(t->GetBytes(&ct, "ct")); |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr)); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get())); |
| ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get())); |
| std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
| size_t len = out.size(); |
| int ret = |
| EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| bool is_valid = result.IsValid({"SmallModulus"}); |
| EXPECT_EQ(ret, is_valid ? 1 : 0); |
| if (is_valid) { |
| out.resize(len); |
| EXPECT_EQ(Bytes(msg), Bytes(out)); |
| } |
| }); |
| } |
| |
| static void RunWycheproofOAEPTest(const char *path) { |
| RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
| const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
| ASSERT_TRUE(mgf1_md); |
| std::vector<uint8_t> label; |
| ASSERT_TRUE(t->GetBytes(&label, "label")); |
| |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md)); |
| bssl::UniquePtr<uint8_t> label_copy( |
| static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size()))); |
| ASSERT_TRUE(label_copy || label.empty()); |
| ASSERT_TRUE( |
| EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size())); |
| // |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success. |
| label_copy.release(); |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP2048) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha1_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha224_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha224_mgf1sha224_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha384_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha384_mgf1sha384_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP3072) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP4096) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEPMisc) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt"); |
| } |
| |
| static void RunWycheproofPKCS1DecryptTest(const char *path) { |
| RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
| // No setup needed. PKCS#1 is, sadly, the default. |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1Decrypt) { |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt"); |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt"); |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt"); |
| } |