|  | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2006 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * Portions of the attached software ("Contribution") are developed by | 
|  | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
|  | * | 
|  | * The Contribution is licensed pursuant to the Eric Young open source | 
|  | * license provided above. | 
|  | * | 
|  | * The binary polynomial arithmetic software is originally written by | 
|  | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
|  | * Laboratories. */ | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_BN_H | 
|  | #define OPENSSL_HEADER_BN_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  | #include <openssl/thread.h> | 
|  |  | 
|  | #include <inttypes.h>  // for PRIu64 and friends | 
|  | #include <stdio.h>  // for FILE* | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // BN provides support for working with arbitrary sized integers. For example, | 
|  | // although the largest integer supported by the compiler might be 64 bits, BN | 
|  | // will allow you to work with much larger numbers. | 
|  | // | 
|  | // This library is developed for use inside BoringSSL, and uses implementation | 
|  | // strategies that may not be ideal for other applications. Non-cryptographic | 
|  | // uses should use a more general-purpose integer library, especially if | 
|  | // performance-sensitive. | 
|  | // | 
|  | // Many functions in BN scale quadratically or higher in the bit length of their | 
|  | // input. Callers at this layer are assumed to have capped input sizes within | 
|  | // their performance tolerances. | 
|  |  | 
|  |  | 
|  | // BN_ULONG is the native word size when working with big integers. | 
|  | // | 
|  | // Note: on some platforms, inttypes.h does not define print format macros in | 
|  | // C++ unless |__STDC_FORMAT_MACROS| defined. This is due to text in C99 which | 
|  | // was never adopted in any C++ standard and explicitly overruled in C++11. As | 
|  | // this is a public header, bn.h does not define |__STDC_FORMAT_MACROS| itself. | 
|  | // Projects which use |BN_*_FMT*| with outdated C headers may need to define it | 
|  | // externally. | 
|  | #if defined(OPENSSL_64_BIT) | 
|  | typedef uint64_t BN_ULONG; | 
|  | #define BN_BITS2 64 | 
|  | #define BN_DEC_FMT1 "%" PRIu64 | 
|  | #define BN_HEX_FMT1 "%" PRIx64 | 
|  | #define BN_HEX_FMT2 "%016" PRIx64 | 
|  | #elif defined(OPENSSL_32_BIT) | 
|  | typedef uint32_t BN_ULONG; | 
|  | #define BN_BITS2 32 | 
|  | #define BN_DEC_FMT1 "%" PRIu32 | 
|  | #define BN_HEX_FMT1 "%" PRIx32 | 
|  | #define BN_HEX_FMT2 "%08" PRIx32 | 
|  | #else | 
|  | #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | // Allocation and freeing. | 
|  |  | 
|  | // BN_new creates a new, allocated BIGNUM and initialises it. | 
|  | OPENSSL_EXPORT BIGNUM *BN_new(void); | 
|  |  | 
|  | // BN_init initialises a stack allocated |BIGNUM|. | 
|  | OPENSSL_EXPORT void BN_init(BIGNUM *bn); | 
|  |  | 
|  | // BN_free frees the data referenced by |bn| and, if |bn| was originally | 
|  | // allocated on the heap, frees |bn| also. | 
|  | OPENSSL_EXPORT void BN_free(BIGNUM *bn); | 
|  |  | 
|  | // BN_clear_free erases and frees the data referenced by |bn| and, if |bn| was | 
|  | // originally allocated on the heap, frees |bn| also. | 
|  | OPENSSL_EXPORT void BN_clear_free(BIGNUM *bn); | 
|  |  | 
|  | // BN_dup allocates a new BIGNUM and sets it equal to |src|. It returns the | 
|  | // allocated BIGNUM on success or NULL otherwise. | 
|  | OPENSSL_EXPORT BIGNUM *BN_dup(const BIGNUM *src); | 
|  |  | 
|  | // BN_copy sets |dest| equal to |src| and returns |dest| or NULL on allocation | 
|  | // failure. | 
|  | OPENSSL_EXPORT BIGNUM *BN_copy(BIGNUM *dest, const BIGNUM *src); | 
|  |  | 
|  | // BN_clear sets |bn| to zero and erases the old data. | 
|  | OPENSSL_EXPORT void BN_clear(BIGNUM *bn); | 
|  |  | 
|  | // BN_value_one returns a static BIGNUM with value 1. | 
|  | OPENSSL_EXPORT const BIGNUM *BN_value_one(void); | 
|  |  | 
|  |  | 
|  | // Basic functions. | 
|  |  | 
|  | // BN_num_bits returns the minimum number of bits needed to represent the | 
|  | // absolute value of |bn|. | 
|  | OPENSSL_EXPORT unsigned BN_num_bits(const BIGNUM *bn); | 
|  |  | 
|  | // BN_num_bytes returns the minimum number of bytes needed to represent the | 
|  | // absolute value of |bn|. | 
|  | // | 
|  | // While |size_t| is the preferred type for byte counts, callers can assume that | 
|  | // |BIGNUM|s are bounded such that this value, and its corresponding bit count, | 
|  | // will always fit in |int|. | 
|  | OPENSSL_EXPORT unsigned BN_num_bytes(const BIGNUM *bn); | 
|  |  | 
|  | // BN_zero sets |bn| to zero. | 
|  | OPENSSL_EXPORT void BN_zero(BIGNUM *bn); | 
|  |  | 
|  | // BN_one sets |bn| to one. It returns one on success or zero on allocation | 
|  | // failure. | 
|  | OPENSSL_EXPORT int BN_one(BIGNUM *bn); | 
|  |  | 
|  | // BN_set_word sets |bn| to |value|. It returns one on success or zero on | 
|  | // allocation failure. | 
|  | OPENSSL_EXPORT int BN_set_word(BIGNUM *bn, BN_ULONG value); | 
|  |  | 
|  | // BN_set_u64 sets |bn| to |value|. It returns one on success or zero on | 
|  | // allocation failure. | 
|  | OPENSSL_EXPORT int BN_set_u64(BIGNUM *bn, uint64_t value); | 
|  |  | 
|  | // BN_set_negative sets the sign of |bn|. | 
|  | OPENSSL_EXPORT void BN_set_negative(BIGNUM *bn, int sign); | 
|  |  | 
|  | // BN_is_negative returns one if |bn| is negative and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_is_negative(const BIGNUM *bn); | 
|  |  | 
|  |  | 
|  | // Conversion functions. | 
|  |  | 
|  | // BN_bin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as | 
|  | // a big-endian number, and returns |ret|. If |ret| is NULL then a fresh | 
|  | // |BIGNUM| is allocated and returned. It returns NULL on allocation | 
|  | // failure. | 
|  | OPENSSL_EXPORT BIGNUM *BN_bin2bn(const uint8_t *in, size_t len, BIGNUM *ret); | 
|  |  | 
|  | // BN_bn2bin serialises the absolute value of |in| to |out| as a big-endian | 
|  | // integer, which must have |BN_num_bytes| of space available. It returns the | 
|  | // number of bytes written. Note this function leaks the magnitude of |in|. If | 
|  | // |in| is secret, use |BN_bn2bin_padded| instead. | 
|  | OPENSSL_EXPORT size_t BN_bn2bin(const BIGNUM *in, uint8_t *out); | 
|  |  | 
|  | // BN_lebin2bn sets |*ret| to the value of |len| bytes from |in|, interpreted as | 
|  | // a little-endian number, and returns |ret|. If |ret| is NULL then a fresh | 
|  | // |BIGNUM| is allocated and returned. It returns NULL on allocation | 
|  | // failure. | 
|  | OPENSSL_EXPORT BIGNUM *BN_lebin2bn(const uint8_t *in, size_t len, BIGNUM *ret); | 
|  |  | 
|  | // BN_bn2le_padded serialises the absolute value of |in| to |out| as a | 
|  | // little-endian integer, which must have |len| of space available, padding | 
|  | // out the remainder of out with zeros. If |len| is smaller than |BN_num_bytes|, | 
|  | // the function fails and returns 0. Otherwise, it returns 1. | 
|  | OPENSSL_EXPORT int BN_bn2le_padded(uint8_t *out, size_t len, const BIGNUM *in); | 
|  |  | 
|  | // BN_bn2bin_padded serialises the absolute value of |in| to |out| as a | 
|  | // big-endian integer. The integer is padded with leading zeros up to size | 
|  | // |len|. If |len| is smaller than |BN_num_bytes|, the function fails and | 
|  | // returns 0. Otherwise, it returns 1. | 
|  | OPENSSL_EXPORT int BN_bn2bin_padded(uint8_t *out, size_t len, const BIGNUM *in); | 
|  |  | 
|  | // BN_bn2cbb_padded behaves like |BN_bn2bin_padded| but writes to a |CBB|. | 
|  | OPENSSL_EXPORT int BN_bn2cbb_padded(CBB *out, size_t len, const BIGNUM *in); | 
|  |  | 
|  | // BN_bn2hex returns an allocated string that contains a NUL-terminated, hex | 
|  | // representation of |bn|. If |bn| is negative, the first char in the resulting | 
|  | // string will be '-'. Returns NULL on allocation failure. | 
|  | OPENSSL_EXPORT char *BN_bn2hex(const BIGNUM *bn); | 
|  |  | 
|  | // BN_hex2bn parses the leading hex number from |in|, which may be proceeded by | 
|  | // a '-' to indicate a negative number and may contain trailing, non-hex data. | 
|  | // If |outp| is not NULL, it constructs a BIGNUM equal to the hex number and | 
|  | // stores it in |*outp|. If |*outp| is NULL then it allocates a new BIGNUM and | 
|  | // updates |*outp|. It returns the number of bytes of |in| processed or zero on | 
|  | // error. | 
|  | OPENSSL_EXPORT int BN_hex2bn(BIGNUM **outp, const char *in); | 
|  |  | 
|  | // BN_bn2dec returns an allocated string that contains a NUL-terminated, | 
|  | // decimal representation of |bn|. If |bn| is negative, the first char in the | 
|  | // resulting string will be '-'. Returns NULL on allocation failure. | 
|  | // | 
|  | // Converting an arbitrarily large integer to decimal is quadratic in the bit | 
|  | // length of |a|. This function assumes the caller has capped the input within | 
|  | // performance tolerances. | 
|  | OPENSSL_EXPORT char *BN_bn2dec(const BIGNUM *a); | 
|  |  | 
|  | // BN_dec2bn parses the leading decimal number from |in|, which may be | 
|  | // proceeded by a '-' to indicate a negative number and may contain trailing, | 
|  | // non-decimal data. If |outp| is not NULL, it constructs a BIGNUM equal to the | 
|  | // decimal number and stores it in |*outp|. If |*outp| is NULL then it | 
|  | // allocates a new BIGNUM and updates |*outp|. It returns the number of bytes | 
|  | // of |in| processed or zero on error. | 
|  | // | 
|  | // Converting an arbitrarily large integer to decimal is quadratic in the bit | 
|  | // length of |a|. This function assumes the caller has capped the input within | 
|  | // performance tolerances. | 
|  | OPENSSL_EXPORT int BN_dec2bn(BIGNUM **outp, const char *in); | 
|  |  | 
|  | // BN_asc2bn acts like |BN_dec2bn| or |BN_hex2bn| depending on whether |in| | 
|  | // begins with "0X" or "0x" (indicating hex) or not (indicating decimal). A | 
|  | // leading '-' is still permitted and comes before the optional 0X/0x. It | 
|  | // returns one on success or zero on error. | 
|  | OPENSSL_EXPORT int BN_asc2bn(BIGNUM **outp, const char *in); | 
|  |  | 
|  | // BN_print writes a hex encoding of |a| to |bio|. It returns one on success | 
|  | // and zero on error. | 
|  | OPENSSL_EXPORT int BN_print(BIO *bio, const BIGNUM *a); | 
|  |  | 
|  | // BN_print_fp acts like |BIO_print|, but wraps |fp| in a |BIO| first. | 
|  | OPENSSL_EXPORT int BN_print_fp(FILE *fp, const BIGNUM *a); | 
|  |  | 
|  | // BN_get_word returns the absolute value of |bn| as a single word. If |bn| is | 
|  | // too large to be represented as a single word, the maximum possible value | 
|  | // will be returned. | 
|  | OPENSSL_EXPORT BN_ULONG BN_get_word(const BIGNUM *bn); | 
|  |  | 
|  | // BN_get_u64 sets |*out| to the absolute value of |bn| as a |uint64_t| and | 
|  | // returns one. If |bn| is too large to be represented as a |uint64_t|, it | 
|  | // returns zero. | 
|  | OPENSSL_EXPORT int BN_get_u64(const BIGNUM *bn, uint64_t *out); | 
|  |  | 
|  |  | 
|  | // ASN.1 functions. | 
|  |  | 
|  | // BN_parse_asn1_unsigned parses a non-negative DER INTEGER from |cbs| writes | 
|  | // the result to |ret|. It returns one on success and zero on failure. | 
|  | OPENSSL_EXPORT int BN_parse_asn1_unsigned(CBS *cbs, BIGNUM *ret); | 
|  |  | 
|  | // BN_marshal_asn1 marshals |bn| as a non-negative DER INTEGER and appends the | 
|  | // result to |cbb|. It returns one on success and zero on failure. | 
|  | OPENSSL_EXPORT int BN_marshal_asn1(CBB *cbb, const BIGNUM *bn); | 
|  |  | 
|  |  | 
|  | // BIGNUM pools. | 
|  | // | 
|  | // Certain BIGNUM operations need to use many temporary variables and | 
|  | // allocating and freeing them can be quite slow. Thus such operations typically | 
|  | // take a |BN_CTX| parameter, which contains a pool of |BIGNUMs|. The |ctx| | 
|  | // argument to a public function may be NULL, in which case a local |BN_CTX| | 
|  | // will be created just for the lifetime of that call. | 
|  | // | 
|  | // A function must call |BN_CTX_start| first. Then, |BN_CTX_get| may be called | 
|  | // repeatedly to obtain temporary |BIGNUM|s. All |BN_CTX_get| calls must be made | 
|  | // before calling any other functions that use the |ctx| as an argument. | 
|  | // | 
|  | // Finally, |BN_CTX_end| must be called before returning from the function. | 
|  | // When |BN_CTX_end| is called, the |BIGNUM| pointers obtained from | 
|  | // |BN_CTX_get| become invalid. | 
|  |  | 
|  | // BN_CTX_new returns a new, empty BN_CTX or NULL on allocation failure. | 
|  | OPENSSL_EXPORT BN_CTX *BN_CTX_new(void); | 
|  |  | 
|  | // BN_CTX_free frees all BIGNUMs contained in |ctx| and then frees |ctx| | 
|  | // itself. | 
|  | OPENSSL_EXPORT void BN_CTX_free(BN_CTX *ctx); | 
|  |  | 
|  | // BN_CTX_start "pushes" a new entry onto the |ctx| stack and allows future | 
|  | // calls to |BN_CTX_get|. | 
|  | OPENSSL_EXPORT void BN_CTX_start(BN_CTX *ctx); | 
|  |  | 
|  | // BN_CTX_get returns a new |BIGNUM|, or NULL on allocation failure. Once | 
|  | // |BN_CTX_get| has returned NULL, all future calls will also return NULL until | 
|  | // |BN_CTX_end| is called. | 
|  | OPENSSL_EXPORT BIGNUM *BN_CTX_get(BN_CTX *ctx); | 
|  |  | 
|  | // BN_CTX_end invalidates all |BIGNUM|s returned from |BN_CTX_get| since the | 
|  | // matching |BN_CTX_start| call. | 
|  | OPENSSL_EXPORT void BN_CTX_end(BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Simple arithmetic | 
|  |  | 
|  | // BN_add sets |r| = |a| + |b|, where |r| may be the same pointer as either |a| | 
|  | // or |b|. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_uadd sets |r| = |a| + |b|, where |a| and |b| are non-negative and |r| may | 
|  | // be the same pointer as either |a| or |b|. It returns one on success and zero | 
|  | // on allocation failure. | 
|  | OPENSSL_EXPORT int BN_uadd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_add_word adds |w| to |a|. It returns one on success and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_add_word(BIGNUM *a, BN_ULONG w); | 
|  |  | 
|  | // BN_sub sets |r| = |a| - |b|, where |r| may be the same pointer as either |a| | 
|  | // or |b|. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_usub sets |r| = |a| - |b|, where |a| and |b| are non-negative integers, | 
|  | // |b| < |a| and |r| may be the same pointer as either |a| or |b|. It returns | 
|  | // one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_usub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_sub_word subtracts |w| from |a|. It returns one on success and zero on | 
|  | // allocation failure. | 
|  | OPENSSL_EXPORT int BN_sub_word(BIGNUM *a, BN_ULONG w); | 
|  |  | 
|  | // BN_mul sets |r| = |a| * |b|, where |r| may be the same pointer as |a| or | 
|  | // |b|. Returns one on success and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_mul_word sets |bn| = |bn| * |w|. It returns one on success or zero on | 
|  | // allocation failure. | 
|  | OPENSSL_EXPORT int BN_mul_word(BIGNUM *bn, BN_ULONG w); | 
|  |  | 
|  | // BN_sqr sets |r| = |a|^2 (i.e. squares), where |r| may be the same pointer as | 
|  | // |a|. Returns one on success and zero otherwise. This is more efficient than | 
|  | // BN_mul(r, a, a, ctx). | 
|  | OPENSSL_EXPORT int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx); | 
|  |  | 
|  | // BN_div divides |numerator| by |divisor| and places the result in |quotient| | 
|  | // and the remainder in |rem|. Either of |quotient| or |rem| may be NULL, in | 
|  | // which case the respective value is not returned. It returns one on success or | 
|  | // zero on error. It is an error condition if |divisor| is zero. | 
|  | // | 
|  | // The outputs will be such that |quotient| * |divisor| + |rem| = |numerator|, | 
|  | // with the quotient rounded towards zero. Thus, if |numerator| is negative, | 
|  | // |rem| will be zero or negative. If |divisor| is negative, the sign of | 
|  | // |quotient| will be flipped to compensate but otherwise rounding will be as if | 
|  | // |divisor| were its absolute value. | 
|  | OPENSSL_EXPORT int BN_div(BIGNUM *quotient, BIGNUM *rem, | 
|  | const BIGNUM *numerator, const BIGNUM *divisor, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_div_word sets |numerator| = |numerator|/|divisor| and returns the | 
|  | // remainder or (BN_ULONG)-1 on error. | 
|  | OPENSSL_EXPORT BN_ULONG BN_div_word(BIGNUM *numerator, BN_ULONG divisor); | 
|  |  | 
|  | // BN_sqrt sets |*out_sqrt| (which may be the same |BIGNUM| as |in|) to the | 
|  | // square root of |in|, using |ctx|. It returns one on success or zero on | 
|  | // error. Negative numbers and non-square numbers will result in an error with | 
|  | // appropriate errors on the error queue. | 
|  | OPENSSL_EXPORT int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Comparison functions | 
|  |  | 
|  | // BN_cmp returns a value less than, equal to or greater than zero if |a| is | 
|  | // less than, equal to or greater than |b|, respectively. | 
|  | OPENSSL_EXPORT int BN_cmp(const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_cmp_word is like |BN_cmp| except it takes its second argument as a | 
|  | // |BN_ULONG| instead of a |BIGNUM|. | 
|  | OPENSSL_EXPORT int BN_cmp_word(const BIGNUM *a, BN_ULONG b); | 
|  |  | 
|  | // BN_ucmp returns a value less than, equal to or greater than zero if the | 
|  | // absolute value of |a| is less than, equal to or greater than the absolute | 
|  | // value of |b|, respectively. | 
|  | OPENSSL_EXPORT int BN_ucmp(const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_equal_consttime returns one if |a| is equal to |b|, and zero otherwise. | 
|  | // It takes an amount of time dependent on the sizes of |a| and |b|, but | 
|  | // independent of the contents (including the signs) of |a| and |b|. | 
|  | OPENSSL_EXPORT int BN_equal_consttime(const BIGNUM *a, const BIGNUM *b); | 
|  |  | 
|  | // BN_abs_is_word returns one if the absolute value of |bn| equals |w| and zero | 
|  | // otherwise. | 
|  | OPENSSL_EXPORT int BN_abs_is_word(const BIGNUM *bn, BN_ULONG w); | 
|  |  | 
|  | // BN_is_zero returns one if |bn| is zero and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_is_zero(const BIGNUM *bn); | 
|  |  | 
|  | // BN_is_one returns one if |bn| equals one and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_is_one(const BIGNUM *bn); | 
|  |  | 
|  | // BN_is_word returns one if |bn| is exactly |w| and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_is_word(const BIGNUM *bn, BN_ULONG w); | 
|  |  | 
|  | // BN_is_odd returns one if |bn| is odd and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_is_odd(const BIGNUM *bn); | 
|  |  | 
|  | // BN_is_pow2 returns 1 if |a| is a power of two, and 0 otherwise. | 
|  | OPENSSL_EXPORT int BN_is_pow2(const BIGNUM *a); | 
|  |  | 
|  |  | 
|  | // Bitwise operations. | 
|  |  | 
|  | // BN_lshift sets |r| equal to |a| << n. The |a| and |r| arguments may be the | 
|  | // same |BIGNUM|. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_lshift(BIGNUM *r, const BIGNUM *a, int n); | 
|  |  | 
|  | // BN_lshift1 sets |r| equal to |a| << 1, where |r| and |a| may be the same | 
|  | // pointer. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_lshift1(BIGNUM *r, const BIGNUM *a); | 
|  |  | 
|  | // BN_rshift sets |r| equal to |a| >> n, where |r| and |a| may be the same | 
|  | // pointer. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_rshift(BIGNUM *r, const BIGNUM *a, int n); | 
|  |  | 
|  | // BN_rshift1 sets |r| equal to |a| >> 1, where |r| and |a| may be the same | 
|  | // pointer. It returns one on success and zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_rshift1(BIGNUM *r, const BIGNUM *a); | 
|  |  | 
|  | // BN_set_bit sets the |n|th, least-significant bit in |a|. For example, if |a| | 
|  | // is 2 then setting bit zero will make it 3. It returns one on success or zero | 
|  | // on allocation failure. | 
|  | OPENSSL_EXPORT int BN_set_bit(BIGNUM *a, int n); | 
|  |  | 
|  | // BN_clear_bit clears the |n|th, least-significant bit in |a|. For example, if | 
|  | // |a| is 3, clearing bit zero will make it two. It returns one on success or | 
|  | // zero on allocation failure. | 
|  | OPENSSL_EXPORT int BN_clear_bit(BIGNUM *a, int n); | 
|  |  | 
|  | // BN_is_bit_set returns one if the |n|th least-significant bit in |a| exists | 
|  | // and is set. Otherwise, it returns zero. | 
|  | OPENSSL_EXPORT int BN_is_bit_set(const BIGNUM *a, int n); | 
|  |  | 
|  | // BN_mask_bits truncates |a| so that it is only |n| bits long. It returns one | 
|  | // on success or zero if |n| is negative. | 
|  | // | 
|  | // This differs from OpenSSL which additionally returns zero if |a|'s word | 
|  | // length is less than or equal to |n|, rounded down to a number of words. Note | 
|  | // word size is platform-dependent, so this behavior is also difficult to rely | 
|  | // on in OpenSSL and not very useful. | 
|  | OPENSSL_EXPORT int BN_mask_bits(BIGNUM *a, int n); | 
|  |  | 
|  | // BN_count_low_zero_bits returns the number of low-order zero bits in |bn|, or | 
|  | // the number of factors of two which divide it. It returns zero if |bn| is | 
|  | // zero. | 
|  | OPENSSL_EXPORT int BN_count_low_zero_bits(const BIGNUM *bn); | 
|  |  | 
|  |  | 
|  | // Modulo arithmetic. | 
|  |  | 
|  | // BN_mod_word returns |a| mod |w| or (BN_ULONG)-1 on error. | 
|  | OPENSSL_EXPORT BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w); | 
|  |  | 
|  | // BN_mod_pow2 sets |r| = |a| mod 2^|e|. It returns 1 on success and | 
|  | // 0 on error. | 
|  | OPENSSL_EXPORT int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); | 
|  |  | 
|  | // BN_nnmod_pow2 sets |r| = |a| mod 2^|e| where |r| is always positive. | 
|  | // It returns 1 on success and 0 on error. | 
|  | OPENSSL_EXPORT int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e); | 
|  |  | 
|  | // BN_mod is a helper macro that calls |BN_div| and discards the quotient. | 
|  | #define BN_mod(rem, numerator, divisor, ctx) \ | 
|  | BN_div(NULL, (rem), (numerator), (divisor), (ctx)) | 
|  |  | 
|  | // BN_nnmod is a non-negative modulo function. It acts like |BN_mod|, but 0 <= | 
|  | // |rem| < |divisor| is always true. It returns one on success and zero on | 
|  | // error. | 
|  | OPENSSL_EXPORT int BN_nnmod(BIGNUM *rem, const BIGNUM *numerator, | 
|  | const BIGNUM *divisor, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_add sets |r| = |a| + |b| mod |m|. It returns one on success and zero | 
|  | // on error. | 
|  | OPENSSL_EXPORT int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_add_quick acts like |BN_mod_add| but requires that |a| and |b| be | 
|  | // non-negative and less than |m|. | 
|  | OPENSSL_EXPORT int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m); | 
|  |  | 
|  | // BN_mod_sub sets |r| = |a| - |b| mod |m|. It returns one on success and zero | 
|  | // on error. | 
|  | OPENSSL_EXPORT int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_sub_quick acts like |BN_mod_sub| but requires that |a| and |b| be | 
|  | // non-negative and less than |m|. | 
|  | OPENSSL_EXPORT int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m); | 
|  |  | 
|  | // BN_mod_mul sets |r| = |a|*|b| mod |m|. It returns one on success and zero | 
|  | // on error. | 
|  | OPENSSL_EXPORT int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_sqr sets |r| = |a|^2 mod |m|. It returns one on success and zero | 
|  | // on error. | 
|  | OPENSSL_EXPORT int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_lshift sets |r| = (|a| << n) mod |m|, where |r| and |a| may be the | 
|  | // same pointer. It returns one on success and zero on error. | 
|  | OPENSSL_EXPORT int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_lshift_quick acts like |BN_mod_lshift| but requires that |a| be | 
|  | // non-negative and less than |m|. | 
|  | OPENSSL_EXPORT int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, | 
|  | const BIGNUM *m); | 
|  |  | 
|  | // BN_mod_lshift1 sets |r| = (|a| << 1) mod |m|, where |r| and |a| may be the | 
|  | // same pointer. It returns one on success and zero on error. | 
|  | OPENSSL_EXPORT int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_lshift1_quick acts like |BN_mod_lshift1| but requires that |a| be | 
|  | // non-negative and less than |m|. | 
|  | OPENSSL_EXPORT int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, | 
|  | const BIGNUM *m); | 
|  |  | 
|  | // BN_mod_sqrt returns a newly-allocated |BIGNUM|, r, such that | 
|  | // r^2 == a (mod p). It returns NULL on error or if |a| is not a square mod |p|. | 
|  | // In the latter case, it will add |BN_R_NOT_A_SQUARE| to the error queue. | 
|  | // If |a| is a square and |p| > 2, there are two possible square roots. This | 
|  | // function may return either and may even select one non-deterministically. | 
|  | // | 
|  | // This function only works if |p| is a prime. If |p| is composite, it may fail | 
|  | // or return an arbitrary value. Callers should not pass attacker-controlled | 
|  | // values of |p|. | 
|  | OPENSSL_EXPORT BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Random and prime number generation. | 
|  |  | 
|  | // The following are values for the |top| parameter of |BN_rand|. | 
|  | #define BN_RAND_TOP_ANY    (-1) | 
|  | #define BN_RAND_TOP_ONE     0 | 
|  | #define BN_RAND_TOP_TWO     1 | 
|  |  | 
|  | // The following are values for the |bottom| parameter of |BN_rand|. | 
|  | #define BN_RAND_BOTTOM_ANY  0 | 
|  | #define BN_RAND_BOTTOM_ODD  1 | 
|  |  | 
|  | // BN_rand sets |rnd| to a random number of length |bits|. It returns one on | 
|  | // success and zero otherwise. | 
|  | // | 
|  | // |top| must be one of the |BN_RAND_TOP_*| values. If |BN_RAND_TOP_ONE|, the | 
|  | // most-significant bit, if any, will be set. If |BN_RAND_TOP_TWO|, the two | 
|  | // most significant bits, if any, will be set. If |BN_RAND_TOP_ANY|, no extra | 
|  | // action will be taken and |BN_num_bits(rnd)| may not equal |bits| if the most | 
|  | // significant bits randomly ended up as zeros. | 
|  | // | 
|  | // |bottom| must be one of the |BN_RAND_BOTTOM_*| values. If | 
|  | // |BN_RAND_BOTTOM_ODD|, the least-significant bit, if any, will be set. If | 
|  | // |BN_RAND_BOTTOM_ANY|, no extra action will be taken. | 
|  | OPENSSL_EXPORT int BN_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
|  |  | 
|  | // BN_pseudo_rand is an alias for |BN_rand|. | 
|  | OPENSSL_EXPORT int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom); | 
|  |  | 
|  | // BN_rand_range is equivalent to |BN_rand_range_ex| with |min_inclusive| set | 
|  | // to zero and |max_exclusive| set to |range|. | 
|  | OPENSSL_EXPORT int BN_rand_range(BIGNUM *rnd, const BIGNUM *range); | 
|  |  | 
|  | // BN_rand_range_ex sets |rnd| to a random value in | 
|  | // [min_inclusive..max_exclusive). It returns one on success and zero | 
|  | // otherwise. | 
|  | OPENSSL_EXPORT int BN_rand_range_ex(BIGNUM *r, BN_ULONG min_inclusive, | 
|  | const BIGNUM *max_exclusive); | 
|  |  | 
|  | // BN_pseudo_rand_range is an alias for BN_rand_range. | 
|  | OPENSSL_EXPORT int BN_pseudo_rand_range(BIGNUM *rnd, const BIGNUM *range); | 
|  |  | 
|  | #define BN_GENCB_GENERATED 0 | 
|  | #define BN_GENCB_PRIME_TEST 1 | 
|  |  | 
|  | // bn_gencb_st, or |BN_GENCB|, holds a callback function that is used by | 
|  | // generation functions that can take a very long time to complete. Use | 
|  | // |BN_GENCB_set| to initialise a |BN_GENCB| structure. | 
|  | // | 
|  | // The callback receives the address of that |BN_GENCB| structure as its last | 
|  | // argument and the user is free to put an arbitrary pointer in |arg|. The other | 
|  | // arguments are set as follows: | 
|  | // - event=BN_GENCB_GENERATED, n=i:   after generating the i'th possible prime | 
|  | //                                    number. | 
|  | // - event=BN_GENCB_PRIME_TEST, n=-1: when finished trial division primality | 
|  | //                                    checks. | 
|  | // - event=BN_GENCB_PRIME_TEST, n=i:  when the i'th primality test has finished. | 
|  | // | 
|  | // The callback can return zero to abort the generation progress or one to | 
|  | // allow it to continue. | 
|  | // | 
|  | // When other code needs to call a BN generation function it will often take a | 
|  | // BN_GENCB argument and may call the function with other argument values. | 
|  | struct bn_gencb_st { | 
|  | void *arg;        // callback-specific data | 
|  | int (*callback)(int event, int n, struct bn_gencb_st *); | 
|  | }; | 
|  |  | 
|  | // BN_GENCB_new returns a newly-allocated |BN_GENCB| object, or NULL on | 
|  | // allocation failure. The result must be released with |BN_GENCB_free| when | 
|  | // done. | 
|  | OPENSSL_EXPORT BN_GENCB *BN_GENCB_new(void); | 
|  |  | 
|  | // BN_GENCB_free releases memory associated with |callback|. | 
|  | OPENSSL_EXPORT void BN_GENCB_free(BN_GENCB *callback); | 
|  |  | 
|  | // BN_GENCB_set configures |callback| to call |f| and sets |callout->arg| to | 
|  | // |arg|. | 
|  | OPENSSL_EXPORT void BN_GENCB_set(BN_GENCB *callback, | 
|  | int (*f)(int event, int n, BN_GENCB *), | 
|  | void *arg); | 
|  |  | 
|  | // BN_GENCB_call calls |callback|, if not NULL, and returns the return value of | 
|  | // the callback, or 1 if |callback| is NULL. | 
|  | OPENSSL_EXPORT int BN_GENCB_call(BN_GENCB *callback, int event, int n); | 
|  |  | 
|  | // BN_GENCB_get_arg returns |callback->arg|. | 
|  | OPENSSL_EXPORT void *BN_GENCB_get_arg(const BN_GENCB *callback); | 
|  |  | 
|  | // BN_generate_prime_ex sets |ret| to a prime number of |bits| length. If safe | 
|  | // is non-zero then the prime will be such that (ret-1)/2 is also a prime. | 
|  | // (This is needed for Diffie-Hellman groups to ensure that the only subgroups | 
|  | // are of size 2 and (p-1)/2.). | 
|  | // | 
|  | // If |add| is not NULL, the prime will fulfill the condition |ret| % |add| == | 
|  | // |rem| in order to suit a given generator. (If |rem| is NULL then |ret| % | 
|  | // |add| == 1.) | 
|  | // | 
|  | // If |cb| is not NULL, it will be called during processing to give an | 
|  | // indication of progress. See the comments for |BN_GENCB|. It returns one on | 
|  | // success and zero otherwise. | 
|  | OPENSSL_EXPORT int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, | 
|  | const BIGNUM *add, const BIGNUM *rem, | 
|  | BN_GENCB *cb); | 
|  |  | 
|  | // BN_prime_checks_for_validation can be used as the |checks| argument to the | 
|  | // primarily testing functions when validating an externally-supplied candidate | 
|  | // prime. It gives a false positive rate of at most 2^{-128}. (The worst case | 
|  | // false positive rate for a single iteration is 1/4 per | 
|  | // https://eprint.iacr.org/2018/749. (1/4)^64 = 2^{-128}.) | 
|  | #define BN_prime_checks_for_validation 64 | 
|  |  | 
|  | // BN_prime_checks_for_generation can be used as the |checks| argument to the | 
|  | // primality testing functions when generating random primes. It gives a false | 
|  | // positive rate at most the security level of the corresponding RSA key size. | 
|  | // | 
|  | // Note this value only performs enough checks if the candidate prime was | 
|  | // selected randomly. If validating an externally-supplied candidate, especially | 
|  | // one that may be selected adversarially, use |BN_prime_checks_for_validation| | 
|  | // instead. | 
|  | #define BN_prime_checks_for_generation 0 | 
|  |  | 
|  | // bn_primality_result_t enumerates the outcomes of primality-testing. | 
|  | enum bn_primality_result_t { | 
|  | bn_probably_prime, | 
|  | bn_composite, | 
|  | bn_non_prime_power_composite, | 
|  | }; | 
|  |  | 
|  | // BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime | 
|  | // number using the Enhanced Miller-Rabin Test (FIPS 186-4 C.3.2) with | 
|  | // |checks| iterations and returns the result in |out_result|. Enhanced | 
|  | // Miller-Rabin tests primality for odd integers greater than 3, returning | 
|  | // |bn_probably_prime| if the number is probably prime, | 
|  | // |bn_non_prime_power_composite| if the number is a composite that is not the | 
|  | // power of a single prime, and |bn_composite| otherwise. It returns one on | 
|  | // success and zero on failure. If |cb| is not NULL, then it is called during | 
|  | // each iteration of the primality test. | 
|  | // | 
|  | // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for | 
|  | // recommended values of |checks|. | 
|  | OPENSSL_EXPORT int BN_enhanced_miller_rabin_primality_test( | 
|  | enum bn_primality_result_t *out_result, const BIGNUM *w, int checks, | 
|  | BN_CTX *ctx, BN_GENCB *cb); | 
|  |  | 
|  | // BN_primality_test sets |*is_probably_prime| to one if |candidate| is | 
|  | // probably a prime number by the Miller-Rabin test or zero if it's certainly | 
|  | // not. | 
|  | // | 
|  | // If |do_trial_division| is non-zero then |candidate| will be tested against a | 
|  | // list of small primes before Miller-Rabin tests. The probability of this | 
|  | // function returning a false positive is at most 2^{2*checks}. See | 
|  | // |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for | 
|  | // recommended values of |checks|. | 
|  | // | 
|  | // If |cb| is not NULL then it is called during the checking process. See the | 
|  | // comment above |BN_GENCB|. | 
|  | // | 
|  | // The function returns one on success and zero on error. | 
|  | OPENSSL_EXPORT int BN_primality_test(int *is_probably_prime, | 
|  | const BIGNUM *candidate, int checks, | 
|  | BN_CTX *ctx, int do_trial_division, | 
|  | BN_GENCB *cb); | 
|  |  | 
|  | // BN_is_prime_fasttest_ex returns one if |candidate| is probably a prime | 
|  | // number by the Miller-Rabin test, zero if it's certainly not and -1 on error. | 
|  | // | 
|  | // If |do_trial_division| is non-zero then |candidate| will be tested against a | 
|  | // list of small primes before Miller-Rabin tests. The probability of this | 
|  | // function returning one when |candidate| is composite is at most 2^{2*checks}. | 
|  | // See |BN_prime_checks_for_validation| and |BN_prime_checks_for_generation| for | 
|  | // recommended values of |checks|. | 
|  | // | 
|  | // If |cb| is not NULL then it is called during the checking process. See the | 
|  | // comment above |BN_GENCB|. | 
|  | // | 
|  | // WARNING: deprecated. Use |BN_primality_test|. | 
|  | OPENSSL_EXPORT int BN_is_prime_fasttest_ex(const BIGNUM *candidate, int checks, | 
|  | BN_CTX *ctx, int do_trial_division, | 
|  | BN_GENCB *cb); | 
|  |  | 
|  | // BN_is_prime_ex acts the same as |BN_is_prime_fasttest_ex| with | 
|  | // |do_trial_division| set to zero. | 
|  | // | 
|  | // WARNING: deprecated: Use |BN_primality_test|. | 
|  | OPENSSL_EXPORT int BN_is_prime_ex(const BIGNUM *candidate, int checks, | 
|  | BN_CTX *ctx, BN_GENCB *cb); | 
|  |  | 
|  |  | 
|  | // Number theory functions | 
|  |  | 
|  | // BN_gcd sets |r| = gcd(|a|, |b|). It returns one on success and zero | 
|  | // otherwise. | 
|  | OPENSSL_EXPORT int BN_gcd(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_inverse sets |out| equal to |a|^-1, mod |n|. If |out| is NULL, a | 
|  | // fresh BIGNUM is allocated. It returns the result or NULL on error. | 
|  | // | 
|  | // If |n| is even then the operation is performed using an algorithm that avoids | 
|  | // some branches but which isn't constant-time. This function shouldn't be used | 
|  | // for secret values; use |BN_mod_inverse_blinded| instead. Or, if |n| is | 
|  | // guaranteed to be prime, use | 
|  | // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking | 
|  | // advantage of Fermat's Little Theorem. | 
|  | OPENSSL_EXPORT BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, | 
|  | const BIGNUM *n, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_inverse_blinded sets |out| equal to |a|^-1, mod |n|, where |n| is the | 
|  | // Montgomery modulus for |mont|. |a| must be non-negative and must be less | 
|  | // than |n|. |n| must be greater than 1. |a| is blinded (masked by a random | 
|  | // value) to protect it against side-channel attacks. On failure, if the failure | 
|  | // was caused by |a| having no inverse mod |n| then |*out_no_inverse| will be | 
|  | // set to one; otherwise it will be set to zero. | 
|  | // | 
|  | // Note this function may incorrectly report |a| has no inverse if the random | 
|  | // blinding value has no inverse. It should only be used when |n| has few | 
|  | // non-invertible elements, such as an RSA modulus. | 
|  | OPENSSL_EXPORT int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, | 
|  | const BIGNUM *a, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_inverse_odd sets |out| equal to |a|^-1, mod |n|. |a| must be | 
|  | // non-negative and must be less than |n|. |n| must be odd. This function | 
|  | // shouldn't be used for secret values; use |BN_mod_inverse_blinded| instead. | 
|  | // Or, if |n| is guaranteed to be prime, use | 
|  | // |BN_mod_exp_mont_consttime(out, a, m_minus_2, m, ctx, m_mont)|, taking | 
|  | // advantage of Fermat's Little Theorem. It returns one on success or zero on | 
|  | // failure. On failure, if the failure was caused by |a| having no inverse mod | 
|  | // |n| then |*out_no_inverse| will be set to one; otherwise it will be set to | 
|  | // zero. | 
|  | int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, | 
|  | const BIGNUM *n, BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Montgomery arithmetic. | 
|  |  | 
|  | // BN_MONT_CTX contains the precomputed values needed to work in a specific | 
|  | // Montgomery domain. | 
|  |  | 
|  | // BN_MONT_CTX_new_for_modulus returns a fresh |BN_MONT_CTX| given the modulus, | 
|  | // |mod| or NULL on error. Note this function assumes |mod| is public. | 
|  | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_for_modulus(const BIGNUM *mod, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_MONT_CTX_new_consttime behaves like |BN_MONT_CTX_new_for_modulus| but | 
|  | // treats |mod| as secret. | 
|  | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new_consttime(const BIGNUM *mod, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_MONT_CTX_free frees memory associated with |mont|. | 
|  | OPENSSL_EXPORT void BN_MONT_CTX_free(BN_MONT_CTX *mont); | 
|  |  | 
|  | // BN_MONT_CTX_copy sets |to| equal to |from|. It returns |to| on success or | 
|  | // NULL on error. | 
|  | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, | 
|  | const BN_MONT_CTX *from); | 
|  |  | 
|  | // BN_to_montgomery sets |ret| equal to |a| in the Montgomery domain. |a| is | 
|  | // assumed to be in the range [0, n), where |n| is the Montgomery modulus. It | 
|  | // returns one on success or zero on error. | 
|  | OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out | 
|  | // of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where | 
|  | // |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n) | 
|  | // are valid. This function returns one on success or zero on error. | 
|  | OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_mul_montgomery set |r| equal to |a| * |b|, in the Montgomery domain. | 
|  | // Both |a| and |b| must already be in the Montgomery domain (by | 
|  | // |BN_to_montgomery|). In particular, |a| and |b| are assumed to be in the | 
|  | // range [0, n), where |n| is the Montgomery modulus. It returns one on success | 
|  | // or zero on error. | 
|  | OPENSSL_EXPORT int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, | 
|  | const BIGNUM *b, | 
|  | const BN_MONT_CTX *mont, BN_CTX *ctx); | 
|  |  | 
|  |  | 
|  | // Exponentiation. | 
|  |  | 
|  | // BN_exp sets |r| equal to |a|^{|p|}. It does so with a square-and-multiply | 
|  | // algorithm that leaks side-channel information. It returns one on success or | 
|  | // zero otherwise. | 
|  | OPENSSL_EXPORT int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_exp sets |r| equal to |a|^{|p|} mod |m|. It does so with the best | 
|  | // algorithm for the values provided. It returns one on success or zero | 
|  | // otherwise. The |BN_mod_exp_mont_consttime| variant must be used if the | 
|  | // exponent is secret. | 
|  | OPENSSL_EXPORT int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
|  | const BIGNUM *m, BN_CTX *ctx); | 
|  |  | 
|  | // BN_mod_exp_mont behaves like |BN_mod_exp| but treats |a| as secret and | 
|  | // requires 0 <= |a| < |m|. | 
|  | OPENSSL_EXPORT int BN_mod_exp_mont(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | 
|  | const BIGNUM *m, BN_CTX *ctx, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  | // BN_mod_exp_mont_consttime behaves like |BN_mod_exp| but treats |a|, |p|, and | 
|  | // |m| as secret and requires 0 <= |a| < |m|. | 
|  | OPENSSL_EXPORT int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, | 
|  | const BIGNUM *p, const BIGNUM *m, | 
|  | BN_CTX *ctx, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  |  | 
|  | // Deprecated functions | 
|  |  | 
|  | // BN_bn2mpi serialises the value of |in| to |out|, using a format that consists | 
|  | // of the number's length in bytes represented as a 4-byte big-endian number, | 
|  | // and the number itself in big-endian format, where the most significant bit | 
|  | // signals a negative number. (The representation of numbers with the MSB set is | 
|  | // prefixed with null byte). |out| must have sufficient space available; to | 
|  | // find the needed amount of space, call the function with |out| set to NULL. | 
|  | OPENSSL_EXPORT size_t BN_bn2mpi(const BIGNUM *in, uint8_t *out); | 
|  |  | 
|  | // BN_mpi2bn parses |len| bytes from |in| and returns the resulting value. The | 
|  | // bytes at |in| are expected to be in the format emitted by |BN_bn2mpi|. | 
|  | // | 
|  | // If |out| is NULL then a fresh |BIGNUM| is allocated and returned, otherwise | 
|  | // |out| is reused and returned. On error, NULL is returned and the error queue | 
|  | // is updated. | 
|  | OPENSSL_EXPORT BIGNUM *BN_mpi2bn(const uint8_t *in, size_t len, BIGNUM *out); | 
|  |  | 
|  | // BN_mod_exp_mont_word is like |BN_mod_exp_mont| except that the base |a| is | 
|  | // given as a |BN_ULONG| instead of a |BIGNUM *|. It returns one on success | 
|  | // or zero otherwise. | 
|  | OPENSSL_EXPORT int BN_mod_exp_mont_word(BIGNUM *r, BN_ULONG a, const BIGNUM *p, | 
|  | const BIGNUM *m, BN_CTX *ctx, | 
|  | const BN_MONT_CTX *mont); | 
|  |  | 
|  | // BN_mod_exp2_mont calculates (a1^p1) * (a2^p2) mod m. It returns 1 on success | 
|  | // or zero otherwise. | 
|  | OPENSSL_EXPORT int BN_mod_exp2_mont(BIGNUM *r, const BIGNUM *a1, | 
|  | const BIGNUM *p1, const BIGNUM *a2, | 
|  | const BIGNUM *p2, const BIGNUM *m, | 
|  | BN_CTX *ctx, const BN_MONT_CTX *mont); | 
|  |  | 
|  | // BN_MONT_CTX_new returns a fresh |BN_MONT_CTX| or NULL on allocation failure. | 
|  | // Use |BN_MONT_CTX_new_for_modulus| instead. | 
|  | OPENSSL_EXPORT BN_MONT_CTX *BN_MONT_CTX_new(void); | 
|  |  | 
|  | // BN_MONT_CTX_set sets up a Montgomery context given the modulus, |mod|. It | 
|  | // returns one on success and zero on error. Use |BN_MONT_CTX_new_for_modulus| | 
|  | // instead. | 
|  | OPENSSL_EXPORT int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, | 
|  | BN_CTX *ctx); | 
|  |  | 
|  | // BN_bn2binpad behaves like |BN_bn2bin_padded|, but it returns |len| on success | 
|  | // and -1 on error. | 
|  | // | 
|  | // Use |BN_bn2bin_padded| instead. It is |size_t|-clean. | 
|  | OPENSSL_EXPORT int BN_bn2binpad(const BIGNUM *in, uint8_t *out, int len); | 
|  |  | 
|  | // BN_bn2lebinpad behaves like |BN_bn2le_padded|, but it returns |len| on | 
|  | // success and -1 on error. | 
|  | // | 
|  | // Use |BN_bn2le_padded| instead. It is |size_t|-clean. | 
|  | OPENSSL_EXPORT int BN_bn2lebinpad(const BIGNUM *in, uint8_t *out, int len); | 
|  |  | 
|  | // BN_prime_checks is a deprecated alias for |BN_prime_checks_for_validation|. | 
|  | // Use |BN_prime_checks_for_generation| or |BN_prime_checks_for_validation| | 
|  | // instead. (This defaults to the |_for_validation| value in order to be | 
|  | // conservative.) | 
|  | #define BN_prime_checks BN_prime_checks_for_validation | 
|  |  | 
|  | // BN_secure_new calls |BN_new|. | 
|  | OPENSSL_EXPORT BIGNUM *BN_secure_new(void); | 
|  |  | 
|  | // BN_le2bn calls |BN_lebin2bn|. | 
|  | OPENSSL_EXPORT BIGNUM *BN_le2bn(const uint8_t *in, size_t len, BIGNUM *ret); | 
|  |  | 
|  |  | 
|  | // Private functions | 
|  |  | 
|  | struct bignum_st { | 
|  | // d is a pointer to an array of |width| |BN_BITS2|-bit chunks in | 
|  | // little-endian order. This stores the absolute value of the number. | 
|  | BN_ULONG *d; | 
|  | // width is the number of elements of |d| which are valid. This value is not | 
|  | // necessarily minimal; the most-significant words of |d| may be zero. | 
|  | // |width| determines a potentially loose upper-bound on the absolute value | 
|  | // of the |BIGNUM|. | 
|  | // | 
|  | // Functions taking |BIGNUM| inputs must compute the same answer for all | 
|  | // possible widths. |bn_minimal_width|, |bn_set_minimal_width|, and other | 
|  | // helpers may be used to recover the minimal width, provided it is not | 
|  | // secret. If it is secret, use a different algorithm. Functions may output | 
|  | // minimal or non-minimal |BIGNUM|s depending on secrecy requirements, but | 
|  | // those which cause widths to unboundedly grow beyond the minimal value | 
|  | // should be documented such. | 
|  | // | 
|  | // Note this is different from historical |BIGNUM| semantics. | 
|  | int width; | 
|  | // dmax is number of elements of |d| which are allocated. | 
|  | int dmax; | 
|  | // neg is one if the number if negative and zero otherwise. | 
|  | int neg; | 
|  | // flags is a bitmask of |BN_FLG_*| values | 
|  | int flags; | 
|  | }; | 
|  |  | 
|  | struct bn_mont_ctx_st { | 
|  | // RR is R^2, reduced modulo |N|. It is used to convert to Montgomery form. It | 
|  | // is guaranteed to have the same width as |N|. | 
|  | BIGNUM RR; | 
|  | // N is the modulus. It is always stored in minimal form, so |N.width| | 
|  | // determines R. | 
|  | BIGNUM N; | 
|  | BN_ULONG n0[2];  // least significant words of (R*Ri-1)/N | 
|  | }; | 
|  |  | 
|  | OPENSSL_EXPORT unsigned BN_num_bits_word(BN_ULONG l); | 
|  |  | 
|  | #define BN_FLG_MALLOCED 0x01 | 
|  | #define BN_FLG_STATIC_DATA 0x02 | 
|  | // |BN_FLG_CONSTTIME| has been removed and intentionally omitted so code relying | 
|  | // on it will not compile. Consumers outside BoringSSL should use the | 
|  | // higher-level cryptographic algorithms exposed by other modules. Consumers | 
|  | // within the library should call the appropriate timing-sensitive algorithm | 
|  | // directly. | 
|  |  | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | }  // extern C | 
|  |  | 
|  | #if !defined(BORINGSSL_NO_CXX) | 
|  | extern "C++" { | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | BORINGSSL_MAKE_DELETER(BIGNUM, BN_free) | 
|  | BORINGSSL_MAKE_DELETER(BN_CTX, BN_CTX_free) | 
|  | BORINGSSL_MAKE_DELETER(BN_MONT_CTX, BN_MONT_CTX_free) | 
|  |  | 
|  | class BN_CTXScope { | 
|  | public: | 
|  | BN_CTXScope(BN_CTX *ctx) : ctx_(ctx) { BN_CTX_start(ctx_); } | 
|  | ~BN_CTXScope() { BN_CTX_end(ctx_); } | 
|  |  | 
|  | private: | 
|  | BN_CTX *ctx_; | 
|  |  | 
|  | BN_CTXScope(BN_CTXScope &) = delete; | 
|  | BN_CTXScope &operator=(BN_CTXScope &) = delete; | 
|  | }; | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | }  // extern C++ | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define BN_R_ARG2_LT_ARG3 100 | 
|  | #define BN_R_BAD_RECIPROCAL 101 | 
|  | #define BN_R_BIGNUM_TOO_LONG 102 | 
|  | #define BN_R_BITS_TOO_SMALL 103 | 
|  | #define BN_R_CALLED_WITH_EVEN_MODULUS 104 | 
|  | #define BN_R_DIV_BY_ZERO 105 | 
|  | #define BN_R_EXPAND_ON_STATIC_BIGNUM_DATA 106 | 
|  | #define BN_R_INPUT_NOT_REDUCED 107 | 
|  | #define BN_R_INVALID_RANGE 108 | 
|  | #define BN_R_NEGATIVE_NUMBER 109 | 
|  | #define BN_R_NOT_A_SQUARE 110 | 
|  | #define BN_R_NOT_INITIALIZED 111 | 
|  | #define BN_R_NO_INVERSE 112 | 
|  | #define BN_R_PRIVATE_KEY_TOO_LARGE 113 | 
|  | #define BN_R_P_IS_NOT_PRIME 114 | 
|  | #define BN_R_TOO_MANY_ITERATIONS 115 | 
|  | #define BN_R_TOO_MANY_TEMPORARY_VARIABLES 116 | 
|  | #define BN_R_BAD_ENCODING 117 | 
|  | #define BN_R_ENCODE_ERROR 118 | 
|  | #define BN_R_INVALID_INPUT 119 | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_BN_H |