|  | /* | 
|  | * DTLS implementation written by Nagendra Modadugu | 
|  | * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/buf.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable | 
|  | * for these values? Notably, why is kMinMTU a function of the transport | 
|  | * protocol's overhead rather than, say, what's needed to hold a minimally-sized | 
|  | * handshake fragment plus protocol overhead. */ | 
|  |  | 
|  | /* kMinMTU is the minimum acceptable MTU value. */ | 
|  | static const unsigned int kMinMTU = 256 - 28; | 
|  |  | 
|  | /* kDefaultMTU is the default MTU value to use if neither the user nor | 
|  | * the underlying BIO supplies one. */ | 
|  | static const unsigned int kDefaultMTU = 1500 - 28; | 
|  |  | 
|  |  | 
|  | /* Receiving handshake messages. */ | 
|  |  | 
|  | static void dtls1_hm_fragment_free(hm_fragment *frag) { | 
|  | if (frag == NULL) { | 
|  | return; | 
|  | } | 
|  | OPENSSL_free(frag->data); | 
|  | OPENSSL_free(frag->reassembly); | 
|  | OPENSSL_free(frag); | 
|  | } | 
|  |  | 
|  | static hm_fragment *dtls1_hm_fragment_new(const struct hm_header_st *msg_hdr) { | 
|  | hm_fragment *frag = OPENSSL_malloc(sizeof(hm_fragment)); | 
|  | if (frag == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  | OPENSSL_memset(frag, 0, sizeof(hm_fragment)); | 
|  | frag->type = msg_hdr->type; | 
|  | frag->seq = msg_hdr->seq; | 
|  | frag->msg_len = msg_hdr->msg_len; | 
|  |  | 
|  | /* Allocate space for the reassembled message and fill in the header. */ | 
|  | frag->data = OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); | 
|  | if (frag->data == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | CBB cbb; | 
|  | if (!CBB_init_fixed(&cbb, frag->data, DTLS1_HM_HEADER_LENGTH) || | 
|  | !CBB_add_u8(&cbb, msg_hdr->type) || | 
|  | !CBB_add_u24(&cbb, msg_hdr->msg_len) || | 
|  | !CBB_add_u16(&cbb, msg_hdr->seq) || | 
|  | !CBB_add_u24(&cbb, 0 /* frag_off */) || | 
|  | !CBB_add_u24(&cbb, msg_hdr->msg_len) || | 
|  | !CBB_finish(&cbb, NULL, NULL)) { | 
|  | CBB_cleanup(&cbb); | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* If the handshake message is empty, |frag->reassembly| is NULL. */ | 
|  | if (msg_hdr->msg_len > 0) { | 
|  | /* Initialize reassembly bitmask. */ | 
|  | if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  | size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; | 
|  | frag->reassembly = OPENSSL_malloc(bitmask_len); | 
|  | if (frag->reassembly == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  | OPENSSL_memset(frag->reassembly, 0, bitmask_len); | 
|  | } | 
|  |  | 
|  | return frag; | 
|  |  | 
|  | err: | 
|  | dtls1_hm_fragment_free(frag); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, | 
|  | * exclusive, set. */ | 
|  | static uint8_t bit_range(size_t start, size_t end) { | 
|  | return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); | 
|  | } | 
|  |  | 
|  | /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, | 
|  | * as received in |frag|. If |frag| becomes complete, it clears | 
|  | * |frag->reassembly|. The range must be within the bounds of |frag|'s message | 
|  | * and |frag->reassembly| must not be NULL. */ | 
|  | static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, | 
|  | size_t end) { | 
|  | size_t msg_len = frag->msg_len; | 
|  |  | 
|  | if (frag->reassembly == NULL || start > end || end > msg_len) { | 
|  | assert(0); | 
|  | return; | 
|  | } | 
|  | /* A zero-length message will never have a pending reassembly. */ | 
|  | assert(msg_len > 0); | 
|  |  | 
|  | if ((start >> 3) == (end >> 3)) { | 
|  | frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); | 
|  | } else { | 
|  | frag->reassembly[start >> 3] |= bit_range(start & 7, 8); | 
|  | for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { | 
|  | frag->reassembly[i] = 0xff; | 
|  | } | 
|  | if ((end & 7) != 0) { | 
|  | frag->reassembly[end >> 3] |= bit_range(0, end & 7); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if the fragment is complete. */ | 
|  | for (size_t i = 0; i < (msg_len >> 3); i++) { | 
|  | if (frag->reassembly[i] != 0xff) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | if ((msg_len & 7) != 0 && | 
|  | frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | OPENSSL_free(frag->reassembly); | 
|  | frag->reassembly = NULL; | 
|  | } | 
|  |  | 
|  | /* dtls1_is_current_message_complete returns one if the current handshake | 
|  | * message is complete and zero otherwise. */ | 
|  | static int dtls1_is_current_message_complete(const SSL *ssl) { | 
|  | hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % | 
|  | SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  | return frag != NULL && frag->reassembly == NULL; | 
|  | } | 
|  |  | 
|  | /* dtls1_get_incoming_message returns the incoming message corresponding to | 
|  | * |msg_hdr|. If none exists, it creates a new one and inserts it in the | 
|  | * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It | 
|  | * returns NULL on failure. The caller does not take ownership of the result. */ | 
|  | static hm_fragment *dtls1_get_incoming_message( | 
|  | SSL *ssl, const struct hm_header_st *msg_hdr) { | 
|  | if (msg_hdr->seq < ssl->d1->handshake_read_seq || | 
|  | msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | hm_fragment *frag = ssl->d1->incoming_messages[idx]; | 
|  | if (frag != NULL) { | 
|  | assert(frag->seq == msg_hdr->seq); | 
|  | /* The new fragment must be compatible with the previous fragments from this | 
|  | * message. */ | 
|  | if (frag->type != msg_hdr->type || | 
|  | frag->msg_len != msg_hdr->msg_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); | 
|  | return NULL; | 
|  | } | 
|  | return frag; | 
|  | } | 
|  |  | 
|  | /* This is the first fragment from this message. */ | 
|  | frag = dtls1_hm_fragment_new(msg_hdr); | 
|  | if (frag == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | ssl->d1->incoming_messages[idx] = frag; | 
|  | return frag; | 
|  | } | 
|  |  | 
|  | /* dtls1_process_handshake_record reads a handshake record and processes it. It | 
|  | * returns one if the record was successfully processed and 0 or -1 on error. */ | 
|  | static int dtls1_process_handshake_record(SSL *ssl) { | 
|  | SSL3_RECORD *rr = &ssl->s3->rrec; | 
|  |  | 
|  | start: | 
|  | if (rr->length == 0) { | 
|  | int ret = dtls1_get_record(ssl); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cross-epoch records are discarded, but we may receive out-of-order | 
|  | * application data between ChangeCipherSpec and Finished or a ChangeCipherSpec | 
|  | * before the appropriate point in the handshake. Those must be silently | 
|  | * discarded. | 
|  | * | 
|  | * However, only allow the out-of-order records in the correct epoch. | 
|  | * Application data must come in the encrypted epoch, and ChangeCipherSpec in | 
|  | * the unencrypted epoch (we never renegotiate). Other cases fall through and | 
|  | * fail with a fatal error. */ | 
|  | if ((rr->type == SSL3_RT_APPLICATION_DATA && | 
|  | ssl->s3->aead_read_ctx != NULL) || | 
|  | (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC && | 
|  | ssl->s3->aead_read_ctx == NULL)) { | 
|  | rr->length = 0; | 
|  | goto start; | 
|  | } | 
|  |  | 
|  | if (rr->type != SSL3_RT_HANDSHAKE) { | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, rr->data, rr->length); | 
|  |  | 
|  | while (CBS_len(&cbs) > 0) { | 
|  | /* Read a handshake fragment. */ | 
|  | struct hm_header_st msg_hdr; | 
|  | CBS body; | 
|  | if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const size_t frag_off = msg_hdr.frag_off; | 
|  | const size_t frag_len = msg_hdr.frag_len; | 
|  | const size_t msg_len = msg_hdr.msg_len; | 
|  | if (frag_off > msg_len || frag_off + frag_len < frag_off || | 
|  | frag_off + frag_len > msg_len || | 
|  | msg_len > ssl_max_handshake_message_len(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* The encrypted epoch in DTLS has only one handshake message. */ | 
|  | if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (msg_hdr.seq < ssl->d1->handshake_read_seq || | 
|  | msg_hdr.seq > | 
|  | (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | /* Ignore fragments from the past, or ones too far in the future. */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hm_fragment *frag = dtls1_get_incoming_message(ssl, &msg_hdr); | 
|  | if (frag == NULL) { | 
|  | return -1; | 
|  | } | 
|  | assert(frag->msg_len == msg_len); | 
|  |  | 
|  | if (frag->reassembly == NULL) { | 
|  | /* The message is already assembled. */ | 
|  | continue; | 
|  | } | 
|  | assert(msg_len > 0); | 
|  |  | 
|  | /* Copy the body into the fragment. */ | 
|  | OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, CBS_data(&body), | 
|  | CBS_len(&body)); | 
|  | dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); | 
|  | } | 
|  |  | 
|  | rr->length = 0; | 
|  | ssl_read_buffer_discard(ssl); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_get_message(SSL *ssl, int msg_type, | 
|  | enum ssl_hash_message_t hash_message) { | 
|  | if (ssl->s3->tmp.reuse_message) { | 
|  | /* A ssl_dont_hash_message call cannot be combined with reuse_message; the | 
|  | * ssl_dont_hash_message would have to have been applied to the previous | 
|  | * call. */ | 
|  | assert(hash_message == ssl_hash_message); | 
|  | assert(ssl->init_msg != NULL); | 
|  |  | 
|  | ssl->s3->tmp.reuse_message = 0; | 
|  | hash_message = ssl_dont_hash_message; | 
|  | } else { | 
|  | dtls1_release_current_message(ssl, 0 /* don't free buffer */); | 
|  | } | 
|  |  | 
|  | /* Process handshake records until the current message is ready. */ | 
|  | while (!dtls1_is_current_message_complete(ssl)) { | 
|  | int ret = dtls1_process_handshake_record(ssl); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % | 
|  | SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  | assert(frag != NULL); | 
|  | assert(frag->reassembly == NULL); | 
|  | assert(ssl->d1->handshake_read_seq == frag->seq); | 
|  |  | 
|  | /* TODO(davidben): This function has a lot of implicit outputs. Simplify the | 
|  | * |ssl_get_message| API. */ | 
|  | ssl->s3->tmp.message_type = frag->type; | 
|  | ssl->init_msg = frag->data + DTLS1_HM_HEADER_LENGTH; | 
|  | ssl->init_num = frag->msg_len; | 
|  |  | 
|  | if (msg_type >= 0 && ssl->s3->tmp.message_type != msg_type) { | 
|  | ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); | 
|  | return -1; | 
|  | } | 
|  | if (hash_message == ssl_hash_message && !ssl_hash_current_message(ssl)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, frag->data, | 
|  | ssl->init_num + DTLS1_HM_HEADER_LENGTH); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void dtls1_get_current_message(const SSL *ssl, CBS *out) { | 
|  | assert(dtls1_is_current_message_complete(ssl)); | 
|  |  | 
|  | hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % | 
|  | SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  | CBS_init(out, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); | 
|  | } | 
|  |  | 
|  | void dtls1_release_current_message(SSL *ssl, int free_buffer) { | 
|  | if (ssl->init_msg == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(dtls1_is_current_message_complete(ssl)); | 
|  | size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | dtls1_hm_fragment_free(ssl->d1->incoming_messages[index]); | 
|  | ssl->d1->incoming_messages[index] = NULL; | 
|  | ssl->d1->handshake_read_seq++; | 
|  |  | 
|  | ssl->init_msg = NULL; | 
|  | ssl->init_num = 0; | 
|  | } | 
|  |  | 
|  | void dtls_clear_incoming_messages(SSL *ssl) { | 
|  | for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { | 
|  | dtls1_hm_fragment_free(ssl->d1->incoming_messages[i]); | 
|  | ssl->d1->incoming_messages[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int dtls_has_incoming_messages(const SSL *ssl) { | 
|  | size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; | 
|  | for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { | 
|  | /* Skip the current message. */ | 
|  | if (ssl->init_msg != NULL && i == current) { | 
|  | assert(dtls1_is_current_message_complete(ssl)); | 
|  | continue; | 
|  | } | 
|  | if (ssl->d1->incoming_messages[i] != NULL) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, | 
|  | CBS *out_body) { | 
|  | OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); | 
|  |  | 
|  | if (!CBS_get_u8(cbs, &out_hdr->type) || | 
|  | !CBS_get_u24(cbs, &out_hdr->msg_len) || | 
|  | !CBS_get_u16(cbs, &out_hdr->seq) || | 
|  | !CBS_get_u24(cbs, &out_hdr->frag_off) || | 
|  | !CBS_get_u24(cbs, &out_hdr->frag_len) || | 
|  | !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Sending handshake messages. */ | 
|  |  | 
|  | static void dtls1_update_mtu(SSL *ssl) { | 
|  | /* TODO(davidben): What is this code doing and do we need it? */ | 
|  | if (ssl->d1->mtu < dtls1_min_mtu() && | 
|  | !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { | 
|  | long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); | 
|  | if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { | 
|  | ssl->d1->mtu = (unsigned)mtu; | 
|  | } else { | 
|  | ssl->d1->mtu = kDefaultMTU; | 
|  | BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The MTU should be above the minimum now. */ | 
|  | assert(ssl->d1->mtu >= dtls1_min_mtu()); | 
|  | } | 
|  |  | 
|  | /* dtls1_max_record_size returns the maximum record body length that may be | 
|  | * written without exceeding the MTU. It accounts for any buffering installed on | 
|  | * the write BIO. If no record may be written, it returns zero. */ | 
|  | static size_t dtls1_max_record_size(const SSL *ssl) { | 
|  | size_t ret = ssl->d1->mtu; | 
|  |  | 
|  | size_t overhead = SSL_max_seal_overhead(ssl); | 
|  | if (ret <= overhead) { | 
|  | return 0; | 
|  | } | 
|  | ret -= overhead; | 
|  |  | 
|  | size_t pending = BIO_wpending(ssl->wbio); | 
|  | if (ret <= pending) { | 
|  | return 0; | 
|  | } | 
|  | ret -= pending; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dtls1_write_change_cipher_spec(SSL *ssl, | 
|  | enum dtls1_use_epoch_t use_epoch) { | 
|  | dtls1_update_mtu(ssl); | 
|  |  | 
|  | /* During the handshake, wbio is buffered to pack messages together. Flush the | 
|  | * buffer if the ChangeCipherSpec would not fit in a packet. */ | 
|  | if (dtls1_max_record_size(ssl) == 0) { | 
|  | int ret = BIO_flush(ssl->wbio); | 
|  | if (ret <= 0) { | 
|  | ssl->rwstate = SSL_WRITING; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; | 
|  | int ret = | 
|  | dtls1_write_record(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, | 
|  | sizeof(kChangeCipherSpec), use_epoch); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, | 
|  | kChangeCipherSpec, sizeof(kChangeCipherSpec)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* dtls1_do_handshake_write writes handshake message |in| using the given epoch, | 
|  | * starting |offset| bytes into the message body. It returns one on success. On | 
|  | * error, it returns <= 0 and sets |*out_offset| to the number of bytes of body | 
|  | * that were successfully written. This may be used to retry the write | 
|  | * later. |in| must be a reassembled handshake message with the full DTLS | 
|  | * handshake header. */ | 
|  | static int dtls1_do_handshake_write(SSL *ssl, size_t *out_offset, | 
|  | const uint8_t *in, size_t offset, | 
|  | size_t len, | 
|  | enum dtls1_use_epoch_t use_epoch) { | 
|  | dtls1_update_mtu(ssl); | 
|  |  | 
|  | int ret = -1; | 
|  | CBB cbb; | 
|  | CBB_zero(&cbb); | 
|  | /* Allocate a temporary buffer to hold the message fragments to avoid | 
|  | * clobbering the message. */ | 
|  | uint8_t *buf = OPENSSL_malloc(ssl->d1->mtu); | 
|  | if (buf == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Although it may be sent as multiple fragments, a DTLS message must be sent | 
|  | * serialized as a single fragment for purposes of |ssl_do_msg_callback| and | 
|  | * the handshake hash. */ | 
|  | CBS cbs, body; | 
|  | struct hm_header_st hdr; | 
|  | CBS_init(&cbs, in, len); | 
|  | if (!dtls1_parse_fragment(&cbs, &hdr, &body) || | 
|  | hdr.frag_off != 0 || | 
|  | hdr.frag_len != CBS_len(&body) || | 
|  | hdr.msg_len != CBS_len(&body) || | 
|  | !CBS_skip(&body, offset) || | 
|  | CBS_len(&cbs) != 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* During the handshake, wbio is buffered to pack messages together. Flush | 
|  | * the buffer if there isn't enough room to make progress. */ | 
|  | if (dtls1_max_record_size(ssl) < DTLS1_HM_HEADER_LENGTH + 1) { | 
|  | int flush_ret = BIO_flush(ssl->wbio); | 
|  | if (flush_ret <= 0) { | 
|  | ssl->rwstate = SSL_WRITING; | 
|  | ret = flush_ret; | 
|  | goto err; | 
|  | } | 
|  | assert(BIO_wpending(ssl->wbio) == 0); | 
|  | } | 
|  |  | 
|  | size_t todo = dtls1_max_record_size(ssl); | 
|  | if (todo < DTLS1_HM_HEADER_LENGTH + 1) { | 
|  | /* To make forward progress, the MTU must, at minimum, fit the handshake | 
|  | * header and one byte of handshake body. */ | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); | 
|  | goto err; | 
|  | } | 
|  | todo -= DTLS1_HM_HEADER_LENGTH; | 
|  |  | 
|  | if (todo > CBS_len(&body)) { | 
|  | todo = CBS_len(&body); | 
|  | } | 
|  | if (todo >= (1u << 24)) { | 
|  | todo = (1u << 24) - 1; | 
|  | } | 
|  |  | 
|  | size_t buf_len; | 
|  | if (!CBB_init_fixed(&cbb, buf, ssl->d1->mtu) || | 
|  | !CBB_add_u8(&cbb, hdr.type) || | 
|  | !CBB_add_u24(&cbb, hdr.msg_len) || | 
|  | !CBB_add_u16(&cbb, hdr.seq) || | 
|  | !CBB_add_u24(&cbb, offset) || | 
|  | !CBB_add_u24(&cbb, todo) || | 
|  | !CBB_add_bytes(&cbb, CBS_data(&body), todo) || | 
|  | !CBB_finish(&cbb, NULL, &buf_len)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | int write_ret = | 
|  | dtls1_write_record(ssl, SSL3_RT_HANDSHAKE, buf, buf_len, use_epoch); | 
|  | if (write_ret <= 0) { | 
|  | ret = write_ret; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!CBS_skip(&body, todo)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | goto err; | 
|  | } | 
|  | offset += todo; | 
|  | } while (CBS_len(&body) != 0); | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, in, len); | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | *out_offset = offset; | 
|  | CBB_cleanup(&cbb); | 
|  | OPENSSL_free(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void dtls_clear_outgoing_messages(SSL *ssl) { | 
|  | for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { | 
|  | OPENSSL_free(ssl->d1->outgoing_messages[i].data); | 
|  | ssl->d1->outgoing_messages[i].data = NULL; | 
|  | } | 
|  | ssl->d1->outgoing_messages_len = 0; | 
|  | } | 
|  |  | 
|  | /* dtls1_add_change_cipher_spec adds a ChangeCipherSpec to the current | 
|  | * handshake flight. */ | 
|  | static int dtls1_add_change_cipher_spec(SSL *ssl) { | 
|  | if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DTLS_OUTGOING_MESSAGE *msg = | 
|  | &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; | 
|  | msg->data = NULL; | 
|  | msg->len = 0; | 
|  | msg->epoch = ssl->d1->w_epoch; | 
|  | msg->is_ccs = 1; | 
|  |  | 
|  | ssl->d1->outgoing_messages_len++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int dtls1_add_message(SSL *ssl, uint8_t *data, size_t len) { | 
|  | if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | OPENSSL_free(data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DTLS_OUTGOING_MESSAGE *msg = | 
|  | &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; | 
|  | msg->data = data; | 
|  | msg->len = len; | 
|  | msg->epoch = ssl->d1->w_epoch; | 
|  | msg->is_ccs = 0; | 
|  |  | 
|  | ssl->d1->outgoing_messages_len++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { | 
|  | /* Pick a modest size hint to save most of the |realloc| calls. */ | 
|  | if (!CBB_init(cbb, 64) || | 
|  | !CBB_add_u8(cbb, type) || | 
|  | !CBB_add_u24(cbb, 0 /* length (filled in later) */) || | 
|  | !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || | 
|  | !CBB_add_u24(cbb, 0 /* offset */) || | 
|  | !CBB_add_u24_length_prefixed(cbb, body)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, | 
|  | size_t *out_len) { | 
|  | *out_msg = NULL; | 
|  | if (!CBB_finish(cbb, out_msg, out_len) || | 
|  | *out_len < DTLS1_HM_HEADER_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | OPENSSL_free(*out_msg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Fix up the header. Copy the fragment length into the total message | 
|  | * length. */ | 
|  | OPENSSL_memcpy(*out_msg + 1, *out_msg + DTLS1_HM_HEADER_LENGTH - 3, 3); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int dtls1_queue_message(SSL *ssl, uint8_t *msg, size_t len) { | 
|  | ssl3_update_handshake_hash(ssl, msg, len); | 
|  |  | 
|  | ssl->d1->handshake_write_seq++; | 
|  | ssl->init_off = 0; | 
|  | return dtls1_add_message(ssl, msg, len); | 
|  | } | 
|  |  | 
|  | int dtls1_write_message(SSL *ssl) { | 
|  | if (ssl->d1->outgoing_messages_len == 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | const DTLS_OUTGOING_MESSAGE *msg = | 
|  | &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len - 1]; | 
|  | if (msg->is_ccs) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | size_t offset = ssl->init_off; | 
|  | int ret = dtls1_do_handshake_write(ssl, &offset, msg->data, offset, msg->len, | 
|  | dtls1_use_current_epoch); | 
|  | ssl->init_off = offset; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int dtls1_retransmit_message(SSL *ssl, | 
|  | const DTLS_OUTGOING_MESSAGE *msg) { | 
|  | /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1 | 
|  | * (negotiated cipher) exist. */ | 
|  | assert(ssl->d1->w_epoch == 0 || ssl->d1->w_epoch == 1); | 
|  | assert(msg->epoch <= ssl->d1->w_epoch); | 
|  | enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; | 
|  | if (ssl->d1->w_epoch == 1 && msg->epoch == 0) { | 
|  | use_epoch = dtls1_use_previous_epoch; | 
|  | } | 
|  |  | 
|  | /* TODO(davidben): This cannot handle non-blocking writes. */ | 
|  | int ret; | 
|  | if (msg->is_ccs) { | 
|  | ret = dtls1_write_change_cipher_spec(ssl, use_epoch); | 
|  | } else { | 
|  | size_t offset = 0; | 
|  | ret = dtls1_do_handshake_write(ssl, &offset, msg->data, offset, msg->len, | 
|  | use_epoch); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dtls1_retransmit_outgoing_messages(SSL *ssl) { | 
|  | /* Ensure we are packing handshake messages. */ | 
|  | const int was_buffered = ssl_is_wbio_buffered(ssl); | 
|  | assert(was_buffered == SSL_in_init(ssl)); | 
|  | if (!was_buffered && !ssl_init_wbio_buffer(ssl)) { | 
|  | return -1; | 
|  | } | 
|  | assert(ssl_is_wbio_buffered(ssl)); | 
|  |  | 
|  | int ret = -1; | 
|  | for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { | 
|  | if (dtls1_retransmit_message(ssl, &ssl->d1->outgoing_messages[i]) <= 0) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = BIO_flush(ssl->wbio); | 
|  | if (ret <= 0) { | 
|  | ssl->rwstate = SSL_WRITING; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (!was_buffered) { | 
|  | ssl_free_wbio_buffer(ssl); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int dtls1_send_change_cipher_spec(SSL *ssl) { | 
|  | int ret = dtls1_write_change_cipher_spec(ssl, dtls1_use_current_epoch); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | dtls1_add_change_cipher_spec(ssl); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | unsigned int dtls1_min_mtu(void) { | 
|  | return kMinMTU; | 
|  | } |