|  | /* ==================================================================== | 
|  | * Copyright (c) 2012 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  | #include "../fipsmodule/cipher/internal.h" | 
|  |  | 
|  |  | 
|  | int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | size_t block_size, size_t mac_size) { | 
|  | const size_t overhead = 1 /* padding length byte */ + mac_size; | 
|  |  | 
|  | // These lengths are all public so we can test them in non-constant time. | 
|  | if (overhead > in_len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t padding_length = in[in_len - 1]; | 
|  |  | 
|  | crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length); | 
|  | // The padding consists of a length byte at the end of the record and | 
|  | // then that many bytes of padding, all with the same value as the | 
|  | // length byte. Thus, with the length byte included, there are i+1 | 
|  | // bytes of padding. | 
|  | // | 
|  | // We can't check just |padding_length+1| bytes because that leaks | 
|  | // decrypted information. Therefore we always have to check the maximum | 
|  | // amount of padding possible. (Again, the length of the record is | 
|  | // public information so we can use it.) | 
|  | size_t to_check = 256;  // maximum amount of padding, inc length byte. | 
|  | if (to_check > in_len) { | 
|  | to_check = in_len; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < to_check; i++) { | 
|  | uint8_t mask = constant_time_ge_8(padding_length, i); | 
|  | uint8_t b = in[in_len - 1 - i]; | 
|  | // The final |padding_length+1| bytes should all have the value | 
|  | // |padding_length|. Therefore the XOR should be zero. | 
|  | good &= ~(mask & (padding_length ^ b)); | 
|  | } | 
|  |  | 
|  | // If any of the final |padding_length+1| bytes had the wrong value, | 
|  | // one or more of the lower eight bits of |good| will be cleared. | 
|  | good = constant_time_eq_w(0xff, good & 0xff); | 
|  |  | 
|  | // Always treat |padding_length| as zero on error. If, assuming block size of | 
|  | // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16 | 
|  | // and returned -1, distinguishing good MAC and bad padding from bad MAC and | 
|  | // bad padding would give POODLE's padding oracle. | 
|  | padding_length = good & (padding_length + 1); | 
|  | *out_len = in_len - padding_length; | 
|  | *out_padding_ok = good; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, | 
|  | size_t in_len, size_t orig_len) { | 
|  | uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE]; | 
|  | uint8_t *rotated_mac = rotated_mac1; | 
|  | uint8_t *rotated_mac_tmp = rotated_mac2; | 
|  |  | 
|  | // mac_end is the index of |in| just after the end of the MAC. | 
|  | size_t mac_end = in_len; | 
|  | size_t mac_start = mac_end - md_size; | 
|  |  | 
|  | declassify_assert(orig_len >= in_len); | 
|  | declassify_assert(in_len >= md_size); | 
|  | assert(md_size <= EVP_MAX_MD_SIZE); | 
|  | assert(md_size > 0); | 
|  |  | 
|  | // scan_start contains the number of bytes that we can ignore because | 
|  | // the MAC's position can only vary by 255 bytes. | 
|  | size_t scan_start = 0; | 
|  | // This information is public so it's safe to branch based on it. | 
|  | if (orig_len > md_size + 255 + 1) { | 
|  | scan_start = orig_len - (md_size + 255 + 1); | 
|  | } | 
|  |  | 
|  | size_t rotate_offset = 0; | 
|  | uint8_t mac_started = 0; | 
|  | OPENSSL_memset(rotated_mac, 0, md_size); | 
|  | for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) { | 
|  | if (j >= md_size) { | 
|  | j -= md_size; | 
|  | } | 
|  | crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start); | 
|  | mac_started |= is_mac_start; | 
|  | uint8_t mac_ended = constant_time_ge_8(i, mac_end); | 
|  | rotated_mac[j] |= in[i] & mac_started & ~mac_ended; | 
|  | // Save the offset that |mac_start| is mapped to. | 
|  | rotate_offset |= j & is_mac_start; | 
|  | } | 
|  |  | 
|  | // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit | 
|  | // position. | 
|  | for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) { | 
|  | // Rotate by |offset| iff the corresponding bit is set in | 
|  | // |rotate_offset|, placing the result in |rotated_mac_tmp|. | 
|  | const uint8_t skip_rotate = (rotate_offset & 1) - 1; | 
|  | for (size_t i = 0, j = offset; i < md_size; i++, j++) { | 
|  | if (j >= md_size) { | 
|  | j -= md_size; | 
|  | } | 
|  | rotated_mac_tmp[i] = | 
|  | constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]); | 
|  | } | 
|  |  | 
|  | // Swap pointers so |rotated_mac| contains the (possibly) rotated value. | 
|  | // Note the number of iterations and thus the identity of these pointers is | 
|  | // public information. | 
|  | uint8_t *tmp = rotated_mac; | 
|  | rotated_mac = rotated_mac_tmp; | 
|  | rotated_mac_tmp = tmp; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(out, rotated_mac, md_size); | 
|  | } | 
|  |  | 
|  | int EVP_sha1_final_with_secret_suffix(SHA_CTX *ctx, | 
|  | uint8_t out[SHA_DIGEST_LENGTH], | 
|  | const uint8_t *in, size_t len, | 
|  | size_t max_len) { | 
|  | // Bound the input length so |total_bits| below fits in four bytes. This is | 
|  | // redundant with TLS record size limits. This also ensures |input_idx| below | 
|  | // does not overflow. | 
|  | size_t max_len_bits = max_len << 3; | 
|  | if (ctx->Nh != 0 || | 
|  | (max_len_bits >> 3) != max_len ||  // Overflow | 
|  | ctx->Nl + max_len_bits < max_len_bits || | 
|  | ctx->Nl + max_len_bits > UINT32_MAX) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We need to hash the following into |ctx|: | 
|  | // | 
|  | // - ctx->data[:ctx->num] | 
|  | // - in[:len] | 
|  | // - A 0x80 byte | 
|  | // - However many zero bytes are needed to pad up to a block. | 
|  | // - Eight bytes of length. | 
|  | size_t num_blocks = (ctx->num + len + 1 + 8 + SHA_CBLOCK - 1) >> 6; | 
|  | size_t last_block = num_blocks - 1; | 
|  | size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA_CBLOCK - 1) >> 6; | 
|  |  | 
|  | // The bounds above imply |total_bits| fits in four bytes. | 
|  | size_t total_bits = ctx->Nl + (len << 3); | 
|  | uint8_t length_bytes[4]; | 
|  | length_bytes[0] = (uint8_t)(total_bits >> 24); | 
|  | length_bytes[1] = (uint8_t)(total_bits >> 16); | 
|  | length_bytes[2] = (uint8_t)(total_bits >> 8); | 
|  | length_bytes[3] = (uint8_t)total_bits; | 
|  |  | 
|  | // We now construct and process each expected block in constant-time. | 
|  | uint8_t block[SHA_CBLOCK] = {0}; | 
|  | uint32_t result[5] = {0}; | 
|  | // input_idx is the index into |in| corresponding to the current block. | 
|  | // However, we allow this index to overflow beyond |max_len|, to simplify the | 
|  | // 0x80 byte. | 
|  | size_t input_idx = 0; | 
|  | for (size_t i = 0; i < max_blocks; i++) { | 
|  | // Fill |block| with data from the partial block in |ctx| and |in|. We copy | 
|  | // as if we were hashing up to |max_len| and then zero the excess later. | 
|  | size_t block_start = 0; | 
|  | if (i == 0) { | 
|  | OPENSSL_memcpy(block, ctx->data, ctx->num); | 
|  | block_start = ctx->num; | 
|  | } | 
|  | if (input_idx < max_len) { | 
|  | size_t to_copy = SHA_CBLOCK - block_start; | 
|  | if (to_copy > max_len - input_idx) { | 
|  | to_copy = max_len - input_idx; | 
|  | } | 
|  | OPENSSL_memcpy(block + block_start, in + input_idx, to_copy); | 
|  | } | 
|  |  | 
|  | // Zero any bytes beyond |len| and add the 0x80 byte. | 
|  | for (size_t j = block_start; j < SHA_CBLOCK; j++) { | 
|  | // input[idx] corresponds to block[j]. | 
|  | size_t idx = input_idx + j - block_start; | 
|  | // The barriers on |len| are not strictly necessary. However, without | 
|  | // them, GCC compiles this code by incorporating |len| into the loop | 
|  | // counter and subtracting it out later. This is still constant-time, but | 
|  | // it frustrates attempts to validate this. | 
|  | uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len)); | 
|  | uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len)); | 
|  | block[j] &= is_in_bounds; | 
|  | block[j] |= 0x80 & is_padding_byte; | 
|  | } | 
|  |  | 
|  | input_idx += SHA_CBLOCK - block_start; | 
|  |  | 
|  | // Fill in the length if this is the last block. | 
|  | crypto_word_t is_last_block = constant_time_eq_w(i, last_block); | 
|  | for (size_t j = 0; j < 4; j++) { | 
|  | block[SHA_CBLOCK - 4 + j] |= is_last_block & length_bytes[j]; | 
|  | } | 
|  |  | 
|  | // Process the block and save the hash state if it is the final value. | 
|  | SHA1_Transform(ctx, block); | 
|  | for (size_t j = 0; j < 5; j++) { | 
|  | result[j] |= is_last_block & ctx->h[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the output. | 
|  | for (size_t i = 0; i < 5; i++) { | 
|  | CRYPTO_store_u32_be(out + 4 * i, result[i]); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_sha256_final_with_secret_suffix(SHA256_CTX *ctx, | 
|  | uint8_t out[SHA256_DIGEST_LENGTH], | 
|  | const uint8_t *in, size_t len, | 
|  | size_t max_len) { | 
|  | // Bound the input length so |total_bits| below fits in four bytes. This is | 
|  | // redundant with TLS record size limits. This also ensures |input_idx| below | 
|  | // does not overflow. | 
|  | size_t max_len_bits = max_len << 3; | 
|  | if (ctx->Nh != 0 || | 
|  | (max_len_bits >> 3) != max_len ||  // Overflow | 
|  | ctx->Nl + max_len_bits < max_len_bits || | 
|  | ctx->Nl + max_len_bits > UINT32_MAX) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We need to hash the following into |ctx|: | 
|  | // | 
|  | // - ctx->data[:ctx->num] | 
|  | // - in[:len] | 
|  | // - A 0x80 byte | 
|  | // - However many zero bytes are needed to pad up to a block. | 
|  | // - Eight bytes of length. | 
|  | size_t num_blocks = (ctx->num + len + 1 + 8 + SHA256_CBLOCK - 1) >> 6; | 
|  | size_t last_block = num_blocks - 1; | 
|  | size_t max_blocks = (ctx->num + max_len + 1 + 8 + SHA256_CBLOCK - 1) >> 6; | 
|  |  | 
|  | // The bounds above imply |total_bits| fits in four bytes. | 
|  | size_t total_bits = ctx->Nl + (len << 3); | 
|  | uint8_t length_bytes[4]; | 
|  | length_bytes[0] = (uint8_t)(total_bits >> 24); | 
|  | length_bytes[1] = (uint8_t)(total_bits >> 16); | 
|  | length_bytes[2] = (uint8_t)(total_bits >> 8); | 
|  | length_bytes[3] = (uint8_t)total_bits; | 
|  |  | 
|  | // We now construct and process each expected block in constant-time. | 
|  | uint8_t block[SHA256_CBLOCK] = {0}; | 
|  | uint32_t result[8] = {0}; | 
|  | // input_idx is the index into |in| corresponding to the current block. | 
|  | // However, we allow this index to overflow beyond |max_len|, to simplify the | 
|  | // 0x80 byte. | 
|  | size_t input_idx = 0; | 
|  | for (size_t i = 0; i < max_blocks; i++) { | 
|  | // Fill |block| with data from the partial block in |ctx| and |in|. We copy | 
|  | // as if we were hashing up to |max_len| and then zero the excess later. | 
|  | size_t block_start = 0; | 
|  | if (i == 0) { | 
|  | OPENSSL_memcpy(block, ctx->data, ctx->num); | 
|  | block_start = ctx->num; | 
|  | } | 
|  | if (input_idx < max_len) { | 
|  | size_t to_copy = SHA256_CBLOCK - block_start; | 
|  | if (to_copy > max_len - input_idx) { | 
|  | to_copy = max_len - input_idx; | 
|  | } | 
|  | OPENSSL_memcpy(block + block_start, in + input_idx, to_copy); | 
|  | } | 
|  |  | 
|  | // Zero any bytes beyond |len| and add the 0x80 byte. | 
|  | for (size_t j = block_start; j < SHA256_CBLOCK; j++) { | 
|  | // input[idx] corresponds to block[j]. | 
|  | size_t idx = input_idx + j - block_start; | 
|  | // The barriers on |len| are not strictly necessary. However, without | 
|  | // them, GCC compiles this code by incorporating |len| into the loop | 
|  | // counter and subtracting it out later. This is still constant-time, but | 
|  | // it frustrates attempts to validate this. | 
|  | uint8_t is_in_bounds = constant_time_lt_8(idx, value_barrier_w(len)); | 
|  | uint8_t is_padding_byte = constant_time_eq_8(idx, value_barrier_w(len)); | 
|  | block[j] &= is_in_bounds; | 
|  | block[j] |= 0x80 & is_padding_byte; | 
|  | } | 
|  |  | 
|  | input_idx += SHA256_CBLOCK - block_start; | 
|  |  | 
|  | // Fill in the length if this is the last block. | 
|  | crypto_word_t is_last_block = constant_time_eq_w(i, last_block); | 
|  | for (size_t j = 0; j < 4; j++) { | 
|  | block[SHA256_CBLOCK - 4 + j] |= is_last_block & length_bytes[j]; | 
|  | } | 
|  |  | 
|  | // Process the block and save the hash state if it is the final value. | 
|  | SHA256_Transform(ctx, block); | 
|  | for (size_t j = 0; j < 8; j++) { | 
|  | result[j] |= is_last_block & ctx->h[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Write the output. | 
|  | for (size_t i = 0; i < 8; i++) { | 
|  | CRYPTO_store_u32_be(out + 4 * i, result[i]); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) { | 
|  | switch (EVP_MD_type(md)) { | 
|  | case NID_sha1: | 
|  | case NID_sha256: | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int tls_cbc_digest_record_sha1(uint8_t *md_out, size_t *md_out_size, | 
|  | const uint8_t header[13], | 
|  | const uint8_t *data, size_t data_size, | 
|  | size_t data_plus_mac_plus_padding_size, | 
|  | const uint8_t *mac_secret, | 
|  | unsigned mac_secret_length) { | 
|  | if (mac_secret_length > SHA_CBLOCK) { | 
|  | // HMAC pads small keys with zeros and hashes large keys down. This function | 
|  | // should never reach the large key case. | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Compute the initial HMAC block. | 
|  | uint8_t hmac_pad[SHA_CBLOCK]; | 
|  | OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad)); | 
|  | OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); | 
|  | for (size_t i = 0; i < SHA_CBLOCK; i++) { | 
|  | hmac_pad[i] ^= 0x36; | 
|  | } | 
|  |  | 
|  | SHA_CTX ctx; | 
|  | SHA1_Init(&ctx); | 
|  | SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); | 
|  | SHA1_Update(&ctx, header, 13); | 
|  |  | 
|  | // There are at most 256 bytes of padding, so we can compute the public | 
|  | // minimum length for |data_size|. | 
|  | size_t min_data_size = 0; | 
|  | if (data_plus_mac_plus_padding_size > SHA_DIGEST_LENGTH + 256) { | 
|  | min_data_size = data_plus_mac_plus_padding_size - SHA_DIGEST_LENGTH - 256; | 
|  | } | 
|  |  | 
|  | // Hash the public minimum length directly. This reduces the number of blocks | 
|  | // that must be computed in constant-time. | 
|  | SHA1_Update(&ctx, data, min_data_size); | 
|  |  | 
|  | // Hash the remaining data without leaking |data_size|. | 
|  | uint8_t mac_out[SHA_DIGEST_LENGTH]; | 
|  | if (!EVP_sha1_final_with_secret_suffix( | 
|  | &ctx, mac_out, data + min_data_size, data_size - min_data_size, | 
|  | data_plus_mac_plus_padding_size - min_data_size)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Complete the HMAC in the standard manner. | 
|  | SHA1_Init(&ctx); | 
|  | for (size_t i = 0; i < SHA_CBLOCK; i++) { | 
|  | hmac_pad[i] ^= 0x6a; | 
|  | } | 
|  |  | 
|  | SHA1_Update(&ctx, hmac_pad, SHA_CBLOCK); | 
|  | SHA1_Update(&ctx, mac_out, SHA_DIGEST_LENGTH); | 
|  | SHA1_Final(md_out, &ctx); | 
|  | *md_out_size = SHA_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int tls_cbc_digest_record_sha256(uint8_t *md_out, size_t *md_out_size, | 
|  | const uint8_t header[13], | 
|  | const uint8_t *data, size_t data_size, | 
|  | size_t data_plus_mac_plus_padding_size, | 
|  | const uint8_t *mac_secret, | 
|  | unsigned mac_secret_length) { | 
|  | if (mac_secret_length > SHA256_CBLOCK) { | 
|  | // HMAC pads small keys with zeros and hashes large keys down. This function | 
|  | // should never reach the large key case. | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Compute the initial HMAC block. | 
|  | uint8_t hmac_pad[SHA256_CBLOCK]; | 
|  | OPENSSL_memset(hmac_pad, 0, sizeof(hmac_pad)); | 
|  | OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); | 
|  | for (size_t i = 0; i < SHA256_CBLOCK; i++) { | 
|  | hmac_pad[i] ^= 0x36; | 
|  | } | 
|  |  | 
|  | SHA256_CTX ctx; | 
|  | SHA256_Init(&ctx); | 
|  | SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK); | 
|  | SHA256_Update(&ctx, header, 13); | 
|  |  | 
|  | // There are at most 256 bytes of padding, so we can compute the public | 
|  | // minimum length for |data_size|. | 
|  | size_t min_data_size = 0; | 
|  | if (data_plus_mac_plus_padding_size > SHA256_DIGEST_LENGTH + 256) { | 
|  | min_data_size = | 
|  | data_plus_mac_plus_padding_size - SHA256_DIGEST_LENGTH - 256; | 
|  | } | 
|  |  | 
|  | // Hash the public minimum length directly. This reduces the number of blocks | 
|  | // that must be computed in constant-time. | 
|  | SHA256_Update(&ctx, data, min_data_size); | 
|  |  | 
|  | // Hash the remaining data without leaking |data_size|. | 
|  | uint8_t mac_out[SHA256_DIGEST_LENGTH]; | 
|  | if (!EVP_sha256_final_with_secret_suffix( | 
|  | &ctx, mac_out, data + min_data_size, data_size - min_data_size, | 
|  | data_plus_mac_plus_padding_size - min_data_size)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Complete the HMAC in the standard manner. | 
|  | SHA256_Init(&ctx); | 
|  | for (size_t i = 0; i < SHA256_CBLOCK; i++) { | 
|  | hmac_pad[i] ^= 0x6a; | 
|  | } | 
|  |  | 
|  | SHA256_Update(&ctx, hmac_pad, SHA256_CBLOCK); | 
|  | SHA256_Update(&ctx, mac_out, SHA256_DIGEST_LENGTH); | 
|  | SHA256_Final(md_out, &ctx); | 
|  | *md_out_size = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, | 
|  | size_t *md_out_size, const uint8_t header[13], | 
|  | const uint8_t *data, size_t data_size, | 
|  | size_t data_plus_mac_plus_padding_size, | 
|  | const uint8_t *mac_secret, | 
|  | unsigned mac_secret_length) { | 
|  | switch (EVP_MD_type(md)) { | 
|  | case NID_sha1: | 
|  | return tls_cbc_digest_record_sha1( | 
|  | md_out, md_out_size, header, data, data_size, | 
|  | data_plus_mac_plus_padding_size, mac_secret, mac_secret_length); | 
|  |  | 
|  | case NID_sha256: | 
|  | return tls_cbc_digest_record_sha256( | 
|  | md_out, md_out_size, header, data, data_size, | 
|  | data_plus_mac_plus_padding_size, mac_secret, mac_secret_length); | 
|  |  | 
|  | default: | 
|  | // EVP_tls_cbc_record_digest_supported should have been called first to | 
|  | // check that the hash function is supported. | 
|  | assert(0); | 
|  | *md_out_size = 0; | 
|  | return 0; | 
|  | } | 
|  | } |