|  | // Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../../internal.h" | 
|  |  | 
|  |  | 
|  | // Most method functions in this file are designed to work with non-trivial | 
|  | // representations of field elements if necessary (see ecp_mont.c): while | 
|  | // standard modular addition and subtraction are used, the field_mul and | 
|  | // field_sqr methods will be used for multiplication, and field_encode and | 
|  | // field_decode (if defined) will be used for converting between | 
|  | // representations. | 
|  | // | 
|  | // Functions here specifically assume that if a non-trivial representation is | 
|  | // used, it is a Montgomery representation (i.e. 'encoding' means multiplying | 
|  | // by some factor R). | 
|  |  | 
|  | int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
|  | const BIGNUM *a, const BIGNUM *b, | 
|  | BN_CTX *ctx) { | 
|  | // p must be a prime > 3 | 
|  | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | if (tmp == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!BN_MONT_CTX_set(&group->field, p, ctx) || | 
|  | !ec_bignum_to_felem(group, &group->a, a) || | 
|  | !ec_bignum_to_felem(group, &group->b, b) || | 
|  | // Reuse Z from the generator to cache the value one. | 
|  | !ec_bignum_to_felem(group, &group->generator.raw.Z, BN_value_one())) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // group->a_is_minus3 | 
|  | if (!BN_copy(tmp, a) || | 
|  | !BN_add_word(tmp, 3)) { | 
|  | return 0; | 
|  | } | 
|  | group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field.N)); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | 
|  | BIGNUM *b) { | 
|  | if ((p != NULL && !BN_copy(p, &group->field.N)) || | 
|  | (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || | 
|  | (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_point_init(EC_JACOBIAN *point) { | 
|  | OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); | 
|  | OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); | 
|  | OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_point_copy(EC_JACOBIAN *dest, const EC_JACOBIAN *src) { | 
|  | OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); | 
|  | OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); | 
|  | OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, | 
|  | EC_JACOBIAN *point) { | 
|  | // Although it is strictly only necessary to zero Z, we zero the entire point | 
|  | // in case |point| was stack-allocated and yet to be initialized. | 
|  | ec_GFp_simple_point_init(point); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_invert(const EC_GROUP *group, EC_JACOBIAN *point) { | 
|  | ec_felem_neg(group, &point->Y, &point->Y); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, | 
|  | const EC_JACOBIAN *point) { | 
|  | return ec_felem_non_zero_mask(group, &point->Z) == 0; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, | 
|  | const EC_JACOBIAN *point) { | 
|  | // We have a curve defined by a Weierstrass equation | 
|  | //      y^2 = x^3 + a*x + b. | 
|  | // The point to consider is given in Jacobian projective coordinates | 
|  | // where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3). | 
|  | // Substituting this and multiplying by  Z^6  transforms the above equation | 
|  | // into | 
|  | //      Y^2 = X^3 + a*X*Z^4 + b*Z^6. | 
|  | // To test this, we add up the right-hand side in 'rh'. | 
|  | // | 
|  | // This function may be used when double-checking the secret result of a point | 
|  | // multiplication, so we proceed in constant-time. | 
|  |  | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | // rh := X^2 | 
|  | EC_FELEM rh; | 
|  | felem_sqr(group, &rh, &point->X); | 
|  |  | 
|  | EC_FELEM tmp, Z4, Z6; | 
|  | felem_sqr(group, &tmp, &point->Z); | 
|  | felem_sqr(group, &Z4, &tmp); | 
|  | felem_mul(group, &Z6, &Z4, &tmp); | 
|  |  | 
|  | // rh := rh + a*Z^4 | 
|  | if (group->a_is_minus3) { | 
|  | ec_felem_add(group, &tmp, &Z4, &Z4); | 
|  | ec_felem_add(group, &tmp, &tmp, &Z4); | 
|  | ec_felem_sub(group, &rh, &rh, &tmp); | 
|  | } else { | 
|  | felem_mul(group, &tmp, &Z4, &group->a); | 
|  | ec_felem_add(group, &rh, &rh, &tmp); | 
|  | } | 
|  |  | 
|  | // rh := (rh + a*Z^4)*X | 
|  | felem_mul(group, &rh, &rh, &point->X); | 
|  |  | 
|  | // rh := rh + b*Z^6 | 
|  | felem_mul(group, &tmp, &group->b, &Z6); | 
|  | ec_felem_add(group, &rh, &rh, &tmp); | 
|  |  | 
|  | // 'lh' := Y^2 | 
|  | felem_sqr(group, &tmp, &point->Y); | 
|  |  | 
|  | ec_felem_sub(group, &tmp, &tmp, &rh); | 
|  | BN_ULONG not_equal = ec_felem_non_zero_mask(group, &tmp); | 
|  |  | 
|  | // If Z = 0, the point is infinity, which is always on the curve. | 
|  | BN_ULONG not_infinity = ec_felem_non_zero_mask(group, &point->Z); | 
|  |  | 
|  | return 1 & ~(not_infinity & not_equal); | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_points_equal(const EC_GROUP *group, const EC_JACOBIAN *a, | 
|  | const EC_JACOBIAN *b) { | 
|  | // This function is implemented in constant-time for two reasons. First, | 
|  | // although EC points are usually public, their Jacobian Z coordinates may be | 
|  | // secret, or at least are not obviously public. Second, more complex | 
|  | // protocols will sometimes manipulate secret points. | 
|  | // | 
|  | // This does mean that we pay a 6M+2S Jacobian comparison when comparing two | 
|  | // publicly affine points costs no field operations at all. If needed, we can | 
|  | // restore this optimization by keeping better track of affine vs. Jacobian | 
|  | // forms. See https://crbug.com/boringssl/326. | 
|  |  | 
|  | // If neither |a| or |b| is infinity, we have to decide whether | 
|  | //     (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), | 
|  | // or equivalently, whether | 
|  | //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). | 
|  |  | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | EC_FELEM tmp1, tmp2, Za23, Zb23; | 
|  | felem_sqr(group, &Zb23, &b->Z);         // Zb23 = Z_b^2 | 
|  | felem_mul(group, &tmp1, &a->X, &Zb23);  // tmp1 = X_a * Z_b^2 | 
|  | felem_sqr(group, &Za23, &a->Z);         // Za23 = Z_a^2 | 
|  | felem_mul(group, &tmp2, &b->X, &Za23);  // tmp2 = X_b * Z_a^2 | 
|  | ec_felem_sub(group, &tmp1, &tmp1, &tmp2); | 
|  | const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp1); | 
|  |  | 
|  | felem_mul(group, &Zb23, &Zb23, &b->Z);  // Zb23 = Z_b^3 | 
|  | felem_mul(group, &tmp1, &a->Y, &Zb23);  // tmp1 = Y_a * Z_b^3 | 
|  | felem_mul(group, &Za23, &Za23, &a->Z);  // Za23 = Z_a^3 | 
|  | felem_mul(group, &tmp2, &b->Y, &Za23);  // tmp2 = Y_b * Z_a^3 | 
|  | ec_felem_sub(group, &tmp1, &tmp1, &tmp2); | 
|  | const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp1); | 
|  | const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); | 
|  |  | 
|  | const BN_ULONG a_not_infinity = ec_felem_non_zero_mask(group, &a->Z); | 
|  | const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); | 
|  | const BN_ULONG a_and_b_infinity = ~(a_not_infinity | b_not_infinity); | 
|  |  | 
|  | const BN_ULONG equal = | 
|  | a_and_b_infinity | (a_not_infinity & b_not_infinity & x_and_y_equal); | 
|  | return equal & 1; | 
|  | } | 
|  |  | 
|  | int ec_affine_jacobian_equal(const EC_GROUP *group, const EC_AFFINE *a, | 
|  | const EC_JACOBIAN *b) { | 
|  | // If |b| is not infinity, we have to decide whether | 
|  | //     (X_a, Y_a) = (X_b/Z_b^2, Y_b/Z_b^3), | 
|  | // or equivalently, whether | 
|  | //     (X_a*Z_b^2, Y_a*Z_b^3) = (X_b, Y_b). | 
|  |  | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | EC_FELEM tmp, Zb2; | 
|  | felem_sqr(group, &Zb2, &b->Z);        // Zb2 = Z_b^2 | 
|  | felem_mul(group, &tmp, &a->X, &Zb2);  // tmp = X_a * Z_b^2 | 
|  | ec_felem_sub(group, &tmp, &tmp, &b->X); | 
|  | const BN_ULONG x_not_equal = ec_felem_non_zero_mask(group, &tmp); | 
|  |  | 
|  | felem_mul(group, &tmp, &a->Y, &Zb2);  // tmp = Y_a * Z_b^2 | 
|  | felem_mul(group, &tmp, &tmp, &b->Z);  // tmp = Y_a * Z_b^3 | 
|  | ec_felem_sub(group, &tmp, &tmp, &b->Y); | 
|  | const BN_ULONG y_not_equal = ec_felem_non_zero_mask(group, &tmp); | 
|  | const BN_ULONG x_and_y_equal = ~(x_not_equal | y_not_equal); | 
|  |  | 
|  | const BN_ULONG b_not_infinity = ec_felem_non_zero_mask(group, &b->Z); | 
|  |  | 
|  | const BN_ULONG equal = b_not_infinity & x_and_y_equal; | 
|  | return equal & 1; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_JACOBIAN *p, | 
|  | const EC_SCALAR *r) { | 
|  | if (ec_GFp_simple_is_at_infinity(group, p)) { | 
|  | // |ec_get_x_coordinate_as_scalar| will check this internally, but this way | 
|  | // we do not push to the error queue. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_SCALAR x; | 
|  | return ec_get_x_coordinate_as_scalar(group, &x, p) && | 
|  | ec_scalar_equal_vartime(group, &x, r); | 
|  | } | 
|  |  | 
|  | void ec_GFp_simple_felem_to_bytes(const EC_GROUP *group, uint8_t *out, | 
|  | size_t *out_len, const EC_FELEM *in) { | 
|  | size_t len = BN_num_bytes(&group->field.N); | 
|  | bn_words_to_big_endian(out, len, in->words, group->field.N.width); | 
|  | *out_len = len; | 
|  | } | 
|  |  | 
|  | int ec_GFp_simple_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | if (len != BN_num_bytes(&group->field.N)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bn_big_endian_to_words(out->words, group->field.N.width, in, len); | 
|  |  | 
|  | if (!bn_less_than_words(out->words, group->field.N.d, group->field.N.width)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } |