| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project |
| * 2001. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/thread.h> |
| #include <openssl/x509.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| |
| #define V1_ROOT (EXFLAG_V1 | EXFLAG_SS) |
| #define ku_reject(x, usage) \ |
| (((x)->ex_flags & EXFLAG_KUSAGE) && !((x)->ex_kusage & (usage))) |
| #define xku_reject(x, usage) \ |
| (((x)->ex_flags & EXFLAG_XKUSAGE) && !((x)->ex_xkusage & (usage))) |
| |
| static int check_ca(const X509 *x); |
| static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca); |
| static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca); |
| |
| static const X509_PURPOSE xstandard[] = { |
| {X509_PURPOSE_SSL_CLIENT, X509_TRUST_SSL_CLIENT, 0, |
| check_purpose_ssl_client, (char *)"SSL client", (char *)"sslclient", NULL}, |
| {X509_PURPOSE_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, |
| check_purpose_ssl_server, (char *)"SSL server", (char *)"sslserver", NULL}, |
| {X509_PURPOSE_NS_SSL_SERVER, X509_TRUST_SSL_SERVER, 0, |
| check_purpose_ns_ssl_server, (char *)"Netscape SSL server", |
| (char *)"nssslserver", NULL}, |
| {X509_PURPOSE_SMIME_SIGN, X509_TRUST_EMAIL, 0, check_purpose_smime_sign, |
| (char *)"S/MIME signing", (char *)"smimesign", NULL}, |
| {X509_PURPOSE_SMIME_ENCRYPT, X509_TRUST_EMAIL, 0, |
| check_purpose_smime_encrypt, (char *)"S/MIME encryption", |
| (char *)"smimeencrypt", NULL}, |
| {X509_PURPOSE_CRL_SIGN, X509_TRUST_COMPAT, 0, check_purpose_crl_sign, |
| (char *)"CRL signing", (char *)"crlsign", NULL}, |
| {X509_PURPOSE_ANY, X509_TRUST_DEFAULT, 0, no_check, (char *)"Any Purpose", |
| (char *)"any", NULL}, |
| // |X509_PURPOSE_OCSP_HELPER| performs no actual checks. OpenSSL's OCSP |
| // implementation relied on the caller performing EKU and KU checks. |
| {X509_PURPOSE_OCSP_HELPER, X509_TRUST_COMPAT, 0, no_check, |
| (char *)"OCSP helper", (char *)"ocsphelper", NULL}, |
| {X509_PURPOSE_TIMESTAMP_SIGN, X509_TRUST_TSA, 0, |
| check_purpose_timestamp_sign, (char *)"Time Stamp signing", |
| (char *)"timestampsign", NULL}, |
| }; |
| |
| int X509_check_purpose(X509 *x, int id, int ca) { |
| // This differs from OpenSSL, which uses -1 to indicate a fatal error and 0 to |
| // indicate an invalid certificate. BoringSSL uses 0 for both. |
| if (!x509v3_cache_extensions(x)) { |
| return 0; |
| } |
| |
| if (id == -1) { |
| return 1; |
| } |
| int idx = X509_PURPOSE_get_by_id(id); |
| if (idx == -1) { |
| return 0; |
| } |
| // Historically, |check_purpose| implementations other than |X509_PURPOSE_ANY| |
| // called |check_ca|. This is redundant with the |X509_V_ERR_INVALID_CA| |
| // logic, but |X509_check_purpose| is public API, so we preserve this |
| // behavior. |
| if (ca && id != X509_PURPOSE_ANY && !check_ca(x)) { |
| return 0; |
| } |
| const X509_PURPOSE *pt = X509_PURPOSE_get0(idx); |
| return pt->check_purpose(pt, x, ca); |
| } |
| |
| int X509_PURPOSE_set(int *p, int purpose) { |
| if (X509_PURPOSE_get_by_id(purpose) == -1) { |
| OPENSSL_PUT_ERROR(X509V3, X509V3_R_INVALID_PURPOSE); |
| return 0; |
| } |
| *p = purpose; |
| return 1; |
| } |
| |
| int X509_PURPOSE_get_count(void) { return OPENSSL_ARRAY_SIZE(xstandard); } |
| |
| const X509_PURPOSE *X509_PURPOSE_get0(int idx) { |
| if (idx < 0 || (size_t)idx >= OPENSSL_ARRAY_SIZE(xstandard)) { |
| return NULL; |
| } |
| return xstandard + idx; |
| } |
| |
| int X509_PURPOSE_get_by_sname(const char *sname) { |
| const X509_PURPOSE *xptmp; |
| for (int i = 0; i < X509_PURPOSE_get_count(); i++) { |
| xptmp = X509_PURPOSE_get0(i); |
| if (!strcmp(xptmp->sname, sname)) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| int X509_PURPOSE_get_by_id(int purpose) { |
| for (size_t i = 0; i <OPENSSL_ARRAY_SIZE(xstandard); i++) { |
| if (xstandard[i].purpose == purpose) { |
| static_assert(OPENSSL_ARRAY_SIZE(xstandard) <= INT_MAX, |
| "indices must fit in int"); |
| return (int)i; |
| } |
| } |
| return -1; |
| } |
| |
| int X509_PURPOSE_get_id(const X509_PURPOSE *xp) { return xp->purpose; } |
| |
| char *X509_PURPOSE_get0_name(const X509_PURPOSE *xp) { return xp->name; } |
| |
| char *X509_PURPOSE_get0_sname(const X509_PURPOSE *xp) { return xp->sname; } |
| |
| int X509_PURPOSE_get_trust(const X509_PURPOSE *xp) { return xp->trust; } |
| |
| int X509_supported_extension(const X509_EXTENSION *ex) { |
| int nid = OBJ_obj2nid(X509_EXTENSION_get_object(ex)); |
| return nid == NID_key_usage || // |
| nid == NID_subject_alt_name || // |
| nid == NID_basic_constraints || // |
| nid == NID_certificate_policies || // |
| nid == NID_ext_key_usage || // |
| nid == NID_policy_constraints || // |
| nid == NID_name_constraints || // |
| nid == NID_policy_mappings || // |
| nid == NID_inhibit_any_policy; |
| } |
| |
| static int setup_dp(X509 *x, DIST_POINT *dp) { |
| if (!dp->distpoint || (dp->distpoint->type != 1)) { |
| return 1; |
| } |
| X509_NAME *iname = NULL; |
| for (size_t i = 0; i < sk_GENERAL_NAME_num(dp->CRLissuer); i++) { |
| GENERAL_NAME *gen = sk_GENERAL_NAME_value(dp->CRLissuer, i); |
| if (gen->type == GEN_DIRNAME) { |
| iname = gen->d.directoryName; |
| break; |
| } |
| } |
| if (!iname) { |
| iname = X509_get_issuer_name(x); |
| } |
| |
| return DIST_POINT_set_dpname(dp->distpoint, iname); |
| } |
| |
| static int setup_crldp(X509 *x) { |
| int j; |
| x->crldp = X509_get_ext_d2i(x, NID_crl_distribution_points, &j, NULL); |
| if (x->crldp == NULL && j != -1) { |
| return 0; |
| } |
| for (size_t i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { |
| if (!setup_dp(x, sk_DIST_POINT_value(x->crldp, i))) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| int x509v3_cache_extensions(X509 *x) { |
| BASIC_CONSTRAINTS *bs; |
| ASN1_BIT_STRING *usage; |
| EXTENDED_KEY_USAGE *extusage; |
| size_t i; |
| int j; |
| |
| CRYPTO_MUTEX_lock_read(&x->lock); |
| const int is_set = x->ex_flags & EXFLAG_SET; |
| CRYPTO_MUTEX_unlock_read(&x->lock); |
| |
| if (is_set) { |
| return (x->ex_flags & EXFLAG_INVALID) == 0; |
| } |
| |
| CRYPTO_MUTEX_lock_write(&x->lock); |
| if (x->ex_flags & EXFLAG_SET) { |
| CRYPTO_MUTEX_unlock_write(&x->lock); |
| return (x->ex_flags & EXFLAG_INVALID) == 0; |
| } |
| |
| if (!X509_digest(x, EVP_sha256(), x->cert_hash, NULL)) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| // V1 should mean no extensions ... |
| if (X509_get_version(x) == X509_VERSION_1) { |
| x->ex_flags |= EXFLAG_V1; |
| } |
| // Handle basic constraints |
| if ((bs = X509_get_ext_d2i(x, NID_basic_constraints, &j, NULL))) { |
| if (bs->ca) { |
| x->ex_flags |= EXFLAG_CA; |
| } |
| if (bs->pathlen) { |
| if ((bs->pathlen->type == V_ASN1_NEG_INTEGER) || !bs->ca) { |
| x->ex_flags |= EXFLAG_INVALID; |
| x->ex_pathlen = 0; |
| } else { |
| // TODO(davidben): |ASN1_INTEGER_get| returns -1 on overflow, |
| // which currently acts as if the constraint isn't present. This |
| // works (an overflowing path length constraint may as well be |
| // infinity), but Chromium's verifier simply treats values above |
| // 255 as an error. |
| x->ex_pathlen = ASN1_INTEGER_get(bs->pathlen); |
| } |
| } else { |
| x->ex_pathlen = -1; |
| } |
| BASIC_CONSTRAINTS_free(bs); |
| x->ex_flags |= EXFLAG_BCONS; |
| } else if (j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| // Handle key usage |
| if ((usage = X509_get_ext_d2i(x, NID_key_usage, &j, NULL))) { |
| if (usage->length > 0) { |
| x->ex_kusage = usage->data[0]; |
| if (usage->length > 1) { |
| x->ex_kusage |= usage->data[1] << 8; |
| } |
| } else { |
| x->ex_kusage = 0; |
| } |
| x->ex_flags |= EXFLAG_KUSAGE; |
| ASN1_BIT_STRING_free(usage); |
| } else if (j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| x->ex_xkusage = 0; |
| if ((extusage = X509_get_ext_d2i(x, NID_ext_key_usage, &j, NULL))) { |
| x->ex_flags |= EXFLAG_XKUSAGE; |
| for (i = 0; i < sk_ASN1_OBJECT_num(extusage); i++) { |
| switch (OBJ_obj2nid(sk_ASN1_OBJECT_value(extusage, i))) { |
| case NID_server_auth: |
| x->ex_xkusage |= XKU_SSL_SERVER; |
| break; |
| |
| case NID_client_auth: |
| x->ex_xkusage |= XKU_SSL_CLIENT; |
| break; |
| |
| case NID_email_protect: |
| x->ex_xkusage |= XKU_SMIME; |
| break; |
| |
| case NID_code_sign: |
| x->ex_xkusage |= XKU_CODE_SIGN; |
| break; |
| |
| case NID_ms_sgc: |
| case NID_ns_sgc: |
| x->ex_xkusage |= XKU_SGC; |
| break; |
| |
| case NID_OCSP_sign: |
| x->ex_xkusage |= XKU_OCSP_SIGN; |
| break; |
| |
| case NID_time_stamp: |
| x->ex_xkusage |= XKU_TIMESTAMP; |
| break; |
| |
| case NID_dvcs: |
| x->ex_xkusage |= XKU_DVCS; |
| break; |
| |
| case NID_anyExtendedKeyUsage: |
| x->ex_xkusage |= XKU_ANYEKU; |
| break; |
| } |
| } |
| sk_ASN1_OBJECT_pop_free(extusage, ASN1_OBJECT_free); |
| } else if (j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| |
| x->skid = X509_get_ext_d2i(x, NID_subject_key_identifier, &j, NULL); |
| if (x->skid == NULL && j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| x->akid = X509_get_ext_d2i(x, NID_authority_key_identifier, &j, NULL); |
| if (x->akid == NULL && j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| // Does subject name match issuer ? |
| if (!X509_NAME_cmp(X509_get_subject_name(x), X509_get_issuer_name(x))) { |
| x->ex_flags |= EXFLAG_SI; |
| // If SKID matches AKID also indicate self signed |
| if (X509_check_akid(x, x->akid) == X509_V_OK && |
| !ku_reject(x, X509v3_KU_KEY_CERT_SIGN)) { |
| x->ex_flags |= EXFLAG_SS; |
| } |
| } |
| x->altname = X509_get_ext_d2i(x, NID_subject_alt_name, &j, NULL); |
| if (x->altname == NULL && j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| x->nc = X509_get_ext_d2i(x, NID_name_constraints, &j, NULL); |
| if (x->nc == NULL && j != -1) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| if (!setup_crldp(x)) { |
| x->ex_flags |= EXFLAG_INVALID; |
| } |
| |
| for (j = 0; j < X509_get_ext_count(x); j++) { |
| const X509_EXTENSION *ex = X509_get_ext(x, j); |
| if (!X509_EXTENSION_get_critical(ex)) { |
| continue; |
| } |
| if (!X509_supported_extension(ex)) { |
| x->ex_flags |= EXFLAG_CRITICAL; |
| break; |
| } |
| } |
| x->ex_flags |= EXFLAG_SET; |
| |
| CRYPTO_MUTEX_unlock_write(&x->lock); |
| return (x->ex_flags & EXFLAG_INVALID) == 0; |
| } |
| |
| // check_ca returns one if |x| should be considered a CA certificate and zero |
| // otherwise. |
| static int check_ca(const X509 *x) { |
| // keyUsage if present should allow cert signing |
| if (ku_reject(x, X509v3_KU_KEY_CERT_SIGN)) { |
| return 0; |
| } |
| // Version 1 certificates are considered CAs and don't have extensions. |
| if ((x->ex_flags & V1_ROOT) == V1_ROOT) { |
| return 1; |
| } |
| // Otherwise, it's only a CA if basicConstraints says so. |
| return ((x->ex_flags & EXFLAG_BCONS) && (x->ex_flags & EXFLAG_CA)); |
| } |
| |
| int X509_check_ca(X509 *x) { |
| if (!x509v3_cache_extensions(x)) { |
| return 0; |
| } |
| return check_ca(x); |
| } |
| |
| // check_purpose returns one if |x| is a valid part of a certificate path for |
| // extended key usage |required_xku| and at least one of key usages in |
| // |required_kus|. |ca| indicates whether |x| is a CA or end-entity certificate. |
| static int check_purpose(const X509 *x, int ca, int required_xku, |
| int required_kus) { |
| // Check extended key usage on the entire chain. |
| if (required_xku != 0 && xku_reject(x, required_xku)) { |
| return 0; |
| } |
| |
| // Check key usages only on the end-entity certificate. |
| return ca || !ku_reject(x, required_kus); |
| } |
| |
| static int check_purpose_ssl_client(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| // We need to do digital signatures or key agreement. |
| // |
| // TODO(davidben): We do not implement any TLS client certificate modes based |
| // on key agreement. |
| return check_purpose(x, ca, XKU_SSL_CLIENT, |
| X509v3_KU_DIGITAL_SIGNATURE | X509v3_KU_KEY_AGREEMENT); |
| } |
| |
| // Key usage needed for TLS/SSL server: digital signature, encipherment or |
| // key agreement. The ssl code can check this more thoroughly for individual |
| // key types. |
| #define X509v3_KU_TLS \ |
| (X509v3_KU_DIGITAL_SIGNATURE | X509v3_KU_KEY_ENCIPHERMENT | \ |
| X509v3_KU_KEY_AGREEMENT) |
| |
| static int check_purpose_ssl_server(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| return check_purpose(x, ca, XKU_SSL_SERVER, X509v3_KU_TLS); |
| } |
| |
| static int check_purpose_ns_ssl_server(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| // We need to encipher or Netscape complains. |
| return check_purpose(x, ca, XKU_SSL_SERVER, X509v3_KU_KEY_ENCIPHERMENT); |
| } |
| |
| static int check_purpose_smime_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| return check_purpose(x, ca, XKU_SMIME, |
| X509v3_KU_DIGITAL_SIGNATURE | X509v3_KU_NON_REPUDIATION); |
| } |
| |
| static int check_purpose_smime_encrypt(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| return check_purpose(x, ca, XKU_SMIME, X509v3_KU_KEY_ENCIPHERMENT); |
| } |
| |
| static int check_purpose_crl_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| return check_purpose(x, ca, /*required_xku=*/0, X509v3_KU_CRL_SIGN); |
| } |
| |
| static int check_purpose_timestamp_sign(const X509_PURPOSE *xp, const X509 *x, |
| int ca) { |
| if (ca) { |
| return 1; |
| } |
| |
| // Check the optional key usage field: |
| // if Key Usage is present, it must be one of digitalSignature |
| // and/or nonRepudiation (other values are not consistent and shall |
| // be rejected). |
| if ((x->ex_flags & EXFLAG_KUSAGE) && |
| ((x->ex_kusage & |
| ~(X509v3_KU_NON_REPUDIATION | X509v3_KU_DIGITAL_SIGNATURE)) || |
| !(x->ex_kusage & |
| (X509v3_KU_NON_REPUDIATION | X509v3_KU_DIGITAL_SIGNATURE)))) { |
| return 0; |
| } |
| |
| // Only time stamp key usage is permitted and it's required. |
| // |
| // TODO(davidben): Should we check EKUs up the chain like the other cases? |
| if (!(x->ex_flags & EXFLAG_XKUSAGE) || x->ex_xkusage != XKU_TIMESTAMP) { |
| return 0; |
| } |
| |
| // Extended Key Usage MUST be critical |
| int i_ext = X509_get_ext_by_NID(x, NID_ext_key_usage, -1); |
| if (i_ext >= 0) { |
| const X509_EXTENSION *ext = X509_get_ext(x, i_ext); |
| if (!X509_EXTENSION_get_critical(ext)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int no_check(const X509_PURPOSE *xp, const X509 *x, int ca) { return 1; } |
| |
| int X509_check_issued(X509 *issuer, X509 *subject) { |
| if (X509_NAME_cmp(X509_get_subject_name(issuer), |
| X509_get_issuer_name(subject))) { |
| return X509_V_ERR_SUBJECT_ISSUER_MISMATCH; |
| } |
| if (!x509v3_cache_extensions(issuer) || !x509v3_cache_extensions(subject)) { |
| return X509_V_ERR_UNSPECIFIED; |
| } |
| |
| if (subject->akid) { |
| int ret = X509_check_akid(issuer, subject->akid); |
| if (ret != X509_V_OK) { |
| return ret; |
| } |
| } |
| |
| if (ku_reject(issuer, X509v3_KU_KEY_CERT_SIGN)) { |
| return X509_V_ERR_KEYUSAGE_NO_CERTSIGN; |
| } |
| return X509_V_OK; |
| } |
| |
| int X509_check_akid(X509 *issuer, const AUTHORITY_KEYID *akid) { |
| if (!akid) { |
| return X509_V_OK; |
| } |
| |
| // Check key ids (if present) |
| if (akid->keyid && issuer->skid && |
| ASN1_OCTET_STRING_cmp(akid->keyid, issuer->skid)) { |
| return X509_V_ERR_AKID_SKID_MISMATCH; |
| } |
| // Check serial number |
| if (akid->serial && |
| ASN1_INTEGER_cmp(X509_get_serialNumber(issuer), akid->serial)) { |
| return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; |
| } |
| // Check issuer name |
| if (akid->issuer) { |
| // Ugh, for some peculiar reason AKID includes SEQUENCE OF |
| // GeneralName. So look for a DirName. There may be more than one but |
| // we only take any notice of the first. |
| GENERAL_NAMES *gens; |
| GENERAL_NAME *gen; |
| X509_NAME *nm = NULL; |
| size_t i; |
| gens = akid->issuer; |
| for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
| gen = sk_GENERAL_NAME_value(gens, i); |
| if (gen->type == GEN_DIRNAME) { |
| nm = gen->d.dirn; |
| break; |
| } |
| } |
| if (nm && X509_NAME_cmp(nm, X509_get_issuer_name(issuer))) { |
| return X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH; |
| } |
| } |
| return X509_V_OK; |
| } |
| |
| uint32_t X509_get_extension_flags(X509 *x) { |
| // Ignore the return value. On failure, |x->ex_flags| will include |
| // |EXFLAG_INVALID|. |
| x509v3_cache_extensions(x); |
| return x->ex_flags; |
| } |
| |
| uint32_t X509_get_key_usage(X509 *x) { |
| if (!x509v3_cache_extensions(x)) { |
| return 0; |
| } |
| if (x->ex_flags & EXFLAG_KUSAGE) { |
| return x->ex_kusage; |
| } |
| // If there is no extension, key usage is unconstrained, so set all bits to |
| // one. Note that, although we use |UINT32_MAX|, |ex_kusage| only contains the |
| // first 16 bits when the extension is present. |
| return UINT32_MAX; |
| } |
| |
| uint32_t X509_get_extended_key_usage(X509 *x) { |
| if (!x509v3_cache_extensions(x)) { |
| return 0; |
| } |
| if (x->ex_flags & EXFLAG_XKUSAGE) { |
| return x->ex_xkusage; |
| } |
| // If there is no extension, extended key usage is unconstrained, so set all |
| // bits to one. |
| return UINT32_MAX; |
| } |
| |
| const ASN1_OCTET_STRING *X509_get0_subject_key_id(X509 *x509) { |
| if (!x509v3_cache_extensions(x509)) { |
| return NULL; |
| } |
| return x509->skid; |
| } |
| |
| const ASN1_OCTET_STRING *X509_get0_authority_key_id(X509 *x509) { |
| if (!x509v3_cache_extensions(x509)) { |
| return NULL; |
| } |
| return x509->akid != NULL ? x509->akid->keyid : NULL; |
| } |
| |
| const GENERAL_NAMES *X509_get0_authority_issuer(X509 *x509) { |
| if (!x509v3_cache_extensions(x509)) { |
| return NULL; |
| } |
| return x509->akid != NULL ? x509->akid->issuer : NULL; |
| } |
| |
| const ASN1_INTEGER *X509_get0_authority_serial(X509 *x509) { |
| if (!x509v3_cache_extensions(x509)) { |
| return NULL; |
| } |
| return x509->akid != NULL ? x509->akid->serial : NULL; |
| } |
| |
| long X509_get_pathlen(X509 *x509) { |
| if (!x509v3_cache_extensions(x509) || (x509->ex_flags & EXFLAG_BCONS) == 0) { |
| return -1; |
| } |
| return x509->ex_pathlen; |
| } |