| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/bytestring.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/mem.h> |
| #include <openssl/err.h> |
| |
| #include "../internal.h" |
| |
| |
| void CBB_zero(CBB *cbb) { |
| OPENSSL_memset(cbb, 0, sizeof(CBB)); |
| } |
| |
| static void cbb_init(CBB *cbb, uint8_t *buf, size_t cap, int can_resize) { |
| cbb->is_child = 0; |
| cbb->child = NULL; |
| cbb->u.base.buf = buf; |
| cbb->u.base.len = 0; |
| cbb->u.base.cap = cap; |
| cbb->u.base.can_resize = can_resize; |
| cbb->u.base.error = 0; |
| } |
| |
| int CBB_init(CBB *cbb, size_t initial_capacity) { |
| CBB_zero(cbb); |
| |
| uint8_t *buf = OPENSSL_malloc(initial_capacity); |
| if (initial_capacity > 0 && buf == NULL) { |
| return 0; |
| } |
| |
| cbb_init(cbb, buf, initial_capacity, /*can_resize=*/1); |
| return 1; |
| } |
| |
| int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len) { |
| CBB_zero(cbb); |
| cbb_init(cbb, buf, len, /*can_resize=*/0); |
| return 1; |
| } |
| |
| void CBB_cleanup(CBB *cbb) { |
| // Child |CBB|s are non-owning. They are implicitly discarded and should not |
| // be used with |CBB_cleanup| or |ScopedCBB|. |
| assert(!cbb->is_child); |
| if (cbb->is_child) { |
| return; |
| } |
| |
| if (cbb->u.base.can_resize) { |
| OPENSSL_free(cbb->u.base.buf); |
| } |
| } |
| |
| static int cbb_buffer_reserve(struct cbb_buffer_st *base, uint8_t **out, |
| size_t len) { |
| if (base == NULL) { |
| return 0; |
| } |
| |
| size_t newlen = base->len + len; |
| if (newlen < base->len) { |
| // Overflow |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| if (newlen > base->cap) { |
| if (!base->can_resize) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| size_t newcap = base->cap * 2; |
| if (newcap < base->cap || newcap < newlen) { |
| newcap = newlen; |
| } |
| uint8_t *newbuf = OPENSSL_realloc(base->buf, newcap); |
| if (newbuf == NULL) { |
| goto err; |
| } |
| |
| base->buf = newbuf; |
| base->cap = newcap; |
| } |
| |
| if (out) { |
| *out = base->buf + base->len; |
| } |
| |
| return 1; |
| |
| err: |
| base->error = 1; |
| return 0; |
| } |
| |
| static int cbb_buffer_add(struct cbb_buffer_st *base, uint8_t **out, |
| size_t len) { |
| if (!cbb_buffer_reserve(base, out, len)) { |
| return 0; |
| } |
| // This will not overflow or |cbb_buffer_reserve| would have failed. |
| base->len += len; |
| return 1; |
| } |
| |
| int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len) { |
| if (cbb->is_child) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (!CBB_flush(cbb)) { |
| return 0; |
| } |
| |
| if (cbb->u.base.can_resize && (out_data == NULL || out_len == NULL)) { |
| // |out_data| and |out_len| can only be NULL if the CBB is fixed. |
| return 0; |
| } |
| |
| if (out_data != NULL) { |
| *out_data = cbb->u.base.buf; |
| } |
| if (out_len != NULL) { |
| *out_len = cbb->u.base.len; |
| } |
| cbb->u.base.buf = NULL; |
| CBB_cleanup(cbb); |
| return 1; |
| } |
| |
| static struct cbb_buffer_st *cbb_get_base(CBB *cbb) { |
| if (cbb->is_child) { |
| return cbb->u.child.base; |
| } |
| return &cbb->u.base; |
| } |
| |
| static void cbb_on_error(CBB *cbb) { |
| // Due to C's lack of destructors and |CBB|'s auto-flushing API, a failing |
| // |CBB|-taking function may leave a dangling pointer to a child |CBB|. As a |
| // result, the convention is callers may not write to |CBB|s that have failed. |
| // But, as a safety measure, we lock the |CBB| into an error state. Once the |
| // error bit is set, |cbb->child| will not be read. |
| // |
| // TODO(davidben): This still isn't quite ideal. A |CBB| function *outside* |
| // this file may originate an error while the |CBB| points to a local child. |
| // In that case we don't set the error bit and are reliant on the error |
| // convention. Perhaps we allow |CBB_cleanup| on child |CBB|s and make every |
| // child's |CBB_cleanup| set the error bit if unflushed. That will be |
| // convenient for C++ callers, but very tedious for C callers. So C callers |
| // perhaps should get a |CBB_on_error| function that can be, less tediously, |
| // stuck in a |goto err| block. |
| cbb_get_base(cbb)->error = 1; |
| |
| // Clearing the pointer is not strictly necessary, but GCC's dangling pointer |
| // warning does not know |cbb->child| will not be read once |error| is set |
| // above. |
| cbb->child = NULL; |
| } |
| |
| // CBB_flush recurses and then writes out any pending length prefix. The |
| // current length of the underlying base is taken to be the length of the |
| // length-prefixed data. |
| int CBB_flush(CBB *cbb) { |
| // If |base| has hit an error, the buffer is in an undefined state, so |
| // fail all following calls. In particular, |cbb->child| may point to invalid |
| // memory. |
| struct cbb_buffer_st *base = cbb_get_base(cbb); |
| if (base == NULL || base->error) { |
| return 0; |
| } |
| |
| if (cbb->child == NULL) { |
| // Nothing to flush. |
| return 1; |
| } |
| |
| assert(cbb->child->is_child); |
| struct cbb_child_st *child = &cbb->child->u.child; |
| assert(child->base == base); |
| size_t child_start = child->offset + child->pending_len_len; |
| |
| if (!CBB_flush(cbb->child) || |
| child_start < child->offset || |
| base->len < child_start) { |
| goto err; |
| } |
| |
| size_t len = base->len - child_start; |
| |
| if (child->pending_is_asn1) { |
| // For ASN.1 we assume that we'll only need a single byte for the length. |
| // If that turned out to be incorrect, we have to move the contents along |
| // in order to make space. |
| uint8_t len_len; |
| uint8_t initial_length_byte; |
| |
| assert (child->pending_len_len == 1); |
| |
| if (len > 0xfffffffe) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| // Too large. |
| goto err; |
| } else if (len > 0xffffff) { |
| len_len = 5; |
| initial_length_byte = 0x80 | 4; |
| } else if (len > 0xffff) { |
| len_len = 4; |
| initial_length_byte = 0x80 | 3; |
| } else if (len > 0xff) { |
| len_len = 3; |
| initial_length_byte = 0x80 | 2; |
| } else if (len > 0x7f) { |
| len_len = 2; |
| initial_length_byte = 0x80 | 1; |
| } else { |
| len_len = 1; |
| initial_length_byte = (uint8_t)len; |
| len = 0; |
| } |
| |
| if (len_len != 1) { |
| // We need to move the contents along in order to make space. |
| size_t extra_bytes = len_len - 1; |
| if (!cbb_buffer_add(base, NULL, extra_bytes)) { |
| goto err; |
| } |
| OPENSSL_memmove(base->buf + child_start + extra_bytes, |
| base->buf + child_start, len); |
| } |
| base->buf[child->offset++] = initial_length_byte; |
| child->pending_len_len = len_len - 1; |
| } |
| |
| for (size_t i = child->pending_len_len - 1; i < child->pending_len_len; i--) { |
| base->buf[child->offset + i] = (uint8_t)len; |
| len >>= 8; |
| } |
| if (len != 0) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| child->base = NULL; |
| cbb->child = NULL; |
| |
| return 1; |
| |
| err: |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| const uint8_t *CBB_data(const CBB *cbb) { |
| assert(cbb->child == NULL); |
| if (cbb->is_child) { |
| return cbb->u.child.base->buf + cbb->u.child.offset + |
| cbb->u.child.pending_len_len; |
| } |
| return cbb->u.base.buf; |
| } |
| |
| size_t CBB_len(const CBB *cbb) { |
| assert(cbb->child == NULL); |
| if (cbb->is_child) { |
| assert(cbb->u.child.offset + cbb->u.child.pending_len_len <= |
| cbb->u.child.base->len); |
| return cbb->u.child.base->len - cbb->u.child.offset - |
| cbb->u.child.pending_len_len; |
| } |
| return cbb->u.base.len; |
| } |
| |
| static int cbb_add_child(CBB *cbb, CBB *out_child, uint8_t len_len, |
| int is_asn1) { |
| assert(cbb->child == NULL); |
| assert(!is_asn1 || len_len == 1); |
| struct cbb_buffer_st *base = cbb_get_base(cbb); |
| size_t offset = base->len; |
| |
| // Reserve space for the length prefix. |
| uint8_t *prefix_bytes; |
| if (!cbb_buffer_add(base, &prefix_bytes, len_len)) { |
| return 0; |
| } |
| OPENSSL_memset(prefix_bytes, 0, len_len); |
| |
| CBB_zero(out_child); |
| out_child->is_child = 1; |
| out_child->u.child.base = base; |
| out_child->u.child.offset = offset; |
| out_child->u.child.pending_len_len = len_len; |
| out_child->u.child.pending_is_asn1 = is_asn1; |
| cbb->child = out_child; |
| return 1; |
| } |
| |
| static int cbb_add_length_prefixed(CBB *cbb, CBB *out_contents, |
| uint8_t len_len) { |
| if (!CBB_flush(cbb)) { |
| return 0; |
| } |
| |
| return cbb_add_child(cbb, out_contents, len_len, /*is_asn1=*/0); |
| } |
| |
| int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents) { |
| return cbb_add_length_prefixed(cbb, out_contents, 1); |
| } |
| |
| int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents) { |
| return cbb_add_length_prefixed(cbb, out_contents, 2); |
| } |
| |
| int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents) { |
| return cbb_add_length_prefixed(cbb, out_contents, 3); |
| } |
| |
| // add_base128_integer encodes |v| as a big-endian base-128 integer where the |
| // high bit of each byte indicates where there is more data. This is the |
| // encoding used in DER for both high tag number form and OID components. |
| static int add_base128_integer(CBB *cbb, uint64_t v) { |
| unsigned len_len = 0; |
| uint64_t copy = v; |
| while (copy > 0) { |
| len_len++; |
| copy >>= 7; |
| } |
| if (len_len == 0) { |
| len_len = 1; // Zero is encoded with one byte. |
| } |
| for (unsigned i = len_len - 1; i < len_len; i--) { |
| uint8_t byte = (v >> (7 * i)) & 0x7f; |
| if (i != 0) { |
| // The high bit denotes whether there is more data. |
| byte |= 0x80; |
| } |
| if (!CBB_add_u8(cbb, byte)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| int CBB_add_asn1(CBB *cbb, CBB *out_contents, CBS_ASN1_TAG tag) { |
| if (!CBB_flush(cbb)) { |
| return 0; |
| } |
| |
| // Split the tag into leading bits and tag number. |
| uint8_t tag_bits = (tag >> CBS_ASN1_TAG_SHIFT) & 0xe0; |
| CBS_ASN1_TAG tag_number = tag & CBS_ASN1_TAG_NUMBER_MASK; |
| if (tag_number >= 0x1f) { |
| // Set all the bits in the tag number to signal high tag number form. |
| if (!CBB_add_u8(cbb, tag_bits | 0x1f) || |
| !add_base128_integer(cbb, tag_number)) { |
| return 0; |
| } |
| } else if (!CBB_add_u8(cbb, tag_bits | tag_number)) { |
| return 0; |
| } |
| |
| // Reserve one byte of length prefix. |CBB_flush| will finish it later. |
| return cbb_add_child(cbb, out_contents, /*len_len=*/1, /*is_asn1=*/1); |
| } |
| |
| int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len) { |
| uint8_t *out; |
| if (!CBB_add_space(cbb, &out, len)) { |
| return 0; |
| } |
| OPENSSL_memcpy(out, data, len); |
| return 1; |
| } |
| |
| int CBB_add_zeros(CBB *cbb, size_t len) { |
| uint8_t *out; |
| if (!CBB_add_space(cbb, &out, len)) { |
| return 0; |
| } |
| OPENSSL_memset(out, 0, len); |
| return 1; |
| } |
| |
| int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len) { |
| if (!CBB_flush(cbb) || |
| !cbb_buffer_add(cbb_get_base(cbb), out_data, len)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len) { |
| if (!CBB_flush(cbb) || |
| !cbb_buffer_reserve(cbb_get_base(cbb), out_data, len)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int CBB_did_write(CBB *cbb, size_t len) { |
| struct cbb_buffer_st *base = cbb_get_base(cbb); |
| size_t newlen = base->len + len; |
| if (cbb->child != NULL || |
| newlen < base->len || |
| newlen > base->cap) { |
| return 0; |
| } |
| base->len = newlen; |
| return 1; |
| } |
| |
| static int cbb_add_u(CBB *cbb, uint64_t v, size_t len_len) { |
| uint8_t *buf; |
| if (!CBB_add_space(cbb, &buf, len_len)) { |
| return 0; |
| } |
| |
| for (size_t i = len_len - 1; i < len_len; i--) { |
| buf[i] = v; |
| v >>= 8; |
| } |
| |
| // |v| must fit in |len_len| bytes. |
| if (v != 0) { |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int CBB_add_u8(CBB *cbb, uint8_t value) { |
| return cbb_add_u(cbb, value, 1); |
| } |
| |
| int CBB_add_u16(CBB *cbb, uint16_t value) { |
| return cbb_add_u(cbb, value, 2); |
| } |
| |
| int CBB_add_u16le(CBB *cbb, uint16_t value) { |
| return CBB_add_u16(cbb, CRYPTO_bswap2(value)); |
| } |
| |
| int CBB_add_u24(CBB *cbb, uint32_t value) { |
| return cbb_add_u(cbb, value, 3); |
| } |
| |
| int CBB_add_u32(CBB *cbb, uint32_t value) { |
| return cbb_add_u(cbb, value, 4); |
| } |
| |
| int CBB_add_u32le(CBB *cbb, uint32_t value) { |
| return CBB_add_u32(cbb, CRYPTO_bswap4(value)); |
| } |
| |
| int CBB_add_u64(CBB *cbb, uint64_t value) { |
| return cbb_add_u(cbb, value, 8); |
| } |
| |
| int CBB_add_u64le(CBB *cbb, uint64_t value) { |
| return CBB_add_u64(cbb, CRYPTO_bswap8(value)); |
| } |
| |
| void CBB_discard_child(CBB *cbb) { |
| if (cbb->child == NULL) { |
| return; |
| } |
| |
| struct cbb_buffer_st *base = cbb_get_base(cbb); |
| assert(cbb->child->is_child); |
| base->len = cbb->child->u.child.offset; |
| |
| cbb->child->u.child.base = NULL; |
| cbb->child = NULL; |
| } |
| |
| int CBB_add_asn1_uint64(CBB *cbb, uint64_t value) { |
| return CBB_add_asn1_uint64_with_tag(cbb, value, CBS_ASN1_INTEGER); |
| } |
| |
| int CBB_add_asn1_uint64_with_tag(CBB *cbb, uint64_t value, CBS_ASN1_TAG tag) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, tag)) { |
| goto err; |
| } |
| |
| int started = 0; |
| for (size_t i = 0; i < 8; i++) { |
| uint8_t byte = (value >> 8*(7-i)) & 0xff; |
| if (!started) { |
| if (byte == 0) { |
| // Don't encode leading zeros. |
| continue; |
| } |
| // If the high bit is set, add a padding byte to make it |
| // unsigned. |
| if ((byte & 0x80) && !CBB_add_u8(&child, 0)) { |
| goto err; |
| } |
| started = 1; |
| } |
| if (!CBB_add_u8(&child, byte)) { |
| goto err; |
| } |
| } |
| |
| // 0 is encoded as a single 0, not the empty string. |
| if (!started && !CBB_add_u8(&child, 0)) { |
| goto err; |
| } |
| |
| return CBB_flush(cbb); |
| |
| err: |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| int CBB_add_asn1_int64(CBB *cbb, int64_t value) { |
| return CBB_add_asn1_int64_with_tag(cbb, value, CBS_ASN1_INTEGER); |
| } |
| |
| int CBB_add_asn1_int64_with_tag(CBB *cbb, int64_t value, CBS_ASN1_TAG tag) { |
| if (value >= 0) { |
| return CBB_add_asn1_uint64_with_tag(cbb, (uint64_t)value, tag); |
| } |
| |
| uint8_t bytes[sizeof(int64_t)]; |
| memcpy(bytes, &value, sizeof(value)); |
| int start = 7; |
| // Skip leading sign-extension bytes unless they are necessary. |
| while (start > 0 && (bytes[start] == 0xff && (bytes[start - 1] & 0x80))) { |
| start--; |
| } |
| |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, tag)) { |
| goto err; |
| } |
| for (int i = start; i >= 0; i--) { |
| if (!CBB_add_u8(&child, bytes[i])) { |
| goto err; |
| } |
| } |
| return CBB_flush(cbb); |
| |
| err: |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| int CBB_add_asn1_octet_string(CBB *cbb, const uint8_t *data, size_t data_len) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_bytes(&child, data, data_len) || |
| !CBB_flush(cbb)) { |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int CBB_add_asn1_bool(CBB *cbb, int value) { |
| CBB child; |
| if (!CBB_add_asn1(cbb, &child, CBS_ASN1_BOOLEAN) || |
| !CBB_add_u8(&child, value != 0 ? 0xff : 0) || |
| !CBB_flush(cbb)) { |
| cbb_on_error(cbb); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // parse_dotted_decimal parses one decimal component from |cbs|, where |cbs| is |
| // an OID literal, e.g., "1.2.840.113554.4.1.72585". It consumes both the |
| // component and the dot, so |cbs| may be passed into the function again for the |
| // next value. |
| static int parse_dotted_decimal(CBS *cbs, uint64_t *out) { |
| if (!CBS_get_u64_decimal(cbs, out)) { |
| return 0; |
| } |
| |
| // The integer must have either ended at the end of the string, or a |
| // non-terminal dot, which should be consumed. If the string ends with a dot, |
| // this is not a valid OID string. |
| uint8_t dot; |
| return !CBS_get_u8(cbs, &dot) || (dot == '.' && CBS_len(cbs) > 0); |
| } |
| |
| int CBB_add_asn1_oid_from_text(CBB *cbb, const char *text, size_t len) { |
| if (!CBB_flush(cbb)) { |
| return 0; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, (const uint8_t *)text, len); |
| |
| // OIDs must have at least two components. |
| uint64_t a, b; |
| if (!parse_dotted_decimal(&cbs, &a) || |
| !parse_dotted_decimal(&cbs, &b)) { |
| return 0; |
| } |
| |
| // The first component is encoded as 40 * |a| + |b|. This assumes that |a| is |
| // 0, 1, or 2 and that, when it is 0 or 1, |b| is at most 39. |
| if (a > 2 || |
| (a < 2 && b > 39) || |
| b > UINT64_MAX - 80 || |
| !add_base128_integer(cbb, 40u * a + b)) { |
| return 0; |
| } |
| |
| // The remaining components are encoded unmodified. |
| while (CBS_len(&cbs) > 0) { |
| if (!parse_dotted_decimal(&cbs, &a) || |
| !add_base128_integer(cbb, a)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int compare_set_of_element(const void *a_ptr, const void *b_ptr) { |
| // See X.690, section 11.6 for the ordering. They are sorted in ascending |
| // order by their DER encoding. |
| const CBS *a = a_ptr, *b = b_ptr; |
| size_t a_len = CBS_len(a), b_len = CBS_len(b); |
| size_t min_len = a_len < b_len ? a_len : b_len; |
| int ret = OPENSSL_memcmp(CBS_data(a), CBS_data(b), min_len); |
| if (ret != 0) { |
| return ret; |
| } |
| if (a_len == b_len) { |
| return 0; |
| } |
| // If one is a prefix of the other, the shorter one sorts first. (This is not |
| // actually reachable. No DER encoding is a prefix of another DER encoding.) |
| return a_len < b_len ? -1 : 1; |
| } |
| |
| int CBB_flush_asn1_set_of(CBB *cbb) { |
| if (!CBB_flush(cbb)) { |
| return 0; |
| } |
| |
| CBS cbs; |
| size_t num_children = 0; |
| CBS_init(&cbs, CBB_data(cbb), CBB_len(cbb)); |
| while (CBS_len(&cbs) != 0) { |
| if (!CBS_get_any_asn1_element(&cbs, NULL, NULL, NULL)) { |
| OPENSSL_PUT_ERROR(CRYPTO, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| num_children++; |
| } |
| |
| if (num_children < 2) { |
| return 1; // Nothing to do. This is the common case for X.509. |
| } |
| |
| // Parse out the children and sort. We alias them into a copy of so they |
| // remain valid as we rewrite |cbb|. |
| int ret = 0; |
| size_t buf_len = CBB_len(cbb); |
| uint8_t *buf = OPENSSL_memdup(CBB_data(cbb), buf_len); |
| CBS *children = OPENSSL_calloc(num_children, sizeof(CBS)); |
| if (buf == NULL || children == NULL) { |
| goto err; |
| } |
| CBS_init(&cbs, buf, buf_len); |
| for (size_t i = 0; i < num_children; i++) { |
| if (!CBS_get_any_asn1_element(&cbs, &children[i], NULL, NULL)) { |
| goto err; |
| } |
| } |
| qsort(children, num_children, sizeof(CBS), compare_set_of_element); |
| |
| // Write the contents back in the new order. |
| uint8_t *out = (uint8_t *)CBB_data(cbb); |
| size_t offset = 0; |
| for (size_t i = 0; i < num_children; i++) { |
| OPENSSL_memcpy(out + offset, CBS_data(&children[i]), CBS_len(&children[i])); |
| offset += CBS_len(&children[i]); |
| } |
| assert(offset == buf_len); |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(buf); |
| OPENSSL_free(children); |
| return ret; |
| } |