|  | // Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "../aes/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // kSizeTWithoutLower4Bits is a mask that can be used to zero the lower four | 
|  | // bits of a |size_t|. | 
|  | static const size_t kSizeTWithoutLower4Bits = (size_t) -16; | 
|  |  | 
|  |  | 
|  | #define GCM_MUL(key, ctx, Xi) gcm_gmult_nohw((ctx)->Xi, (key)->Htable) | 
|  | #define GHASH(key, ctx, in, len) \ | 
|  | gcm_ghash_nohw((ctx)->Xi, (key)->Htable, in, len) | 
|  | // GHASH_CHUNK is "stride parameter" missioned to mitigate cache | 
|  | // trashing effect. In other words idea is to hash data while it's | 
|  | // still in L1 cache after encryption pass... | 
|  | #define GHASH_CHUNK (3 * 1024) | 
|  |  | 
|  | #if defined(GHASH_ASM_X86_64) || defined(GHASH_ASM_X86) | 
|  | static inline void gcm_reduce_1bit(u128 *V) { | 
|  | if (sizeof(crypto_word_t) == 8) { | 
|  | uint64_t T = UINT64_C(0xe100000000000000) & (0 - (V->hi & 1)); | 
|  | V->hi = (V->lo << 63) | (V->hi >> 1); | 
|  | V->lo = (V->lo >> 1) ^ T; | 
|  | } else { | 
|  | uint32_t T = 0xe1000000U & (0 - (uint32_t)(V->hi & 1)); | 
|  | V->hi = (V->lo << 63) | (V->hi >> 1); | 
|  | V->lo = (V->lo >> 1) ^ ((uint64_t)T << 32); | 
|  | } | 
|  | } | 
|  |  | 
|  | void gcm_init_ssse3(u128 Htable[16], const uint64_t H[2]) { | 
|  | Htable[0].hi = 0; | 
|  | Htable[0].lo = 0; | 
|  | u128 V; | 
|  | V.hi = H[1]; | 
|  | V.lo = H[0]; | 
|  |  | 
|  | Htable[8] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[4] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[2] = V; | 
|  | gcm_reduce_1bit(&V); | 
|  | Htable[1] = V; | 
|  | Htable[3].hi = V.hi ^ Htable[2].hi, Htable[3].lo = V.lo ^ Htable[2].lo; | 
|  | V = Htable[4]; | 
|  | Htable[5].hi = V.hi ^ Htable[1].hi, Htable[5].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[6].hi = V.hi ^ Htable[2].hi, Htable[6].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[7].hi = V.hi ^ Htable[3].hi, Htable[7].lo = V.lo ^ Htable[3].lo; | 
|  | V = Htable[8]; | 
|  | Htable[9].hi = V.hi ^ Htable[1].hi, Htable[9].lo = V.lo ^ Htable[1].lo; | 
|  | Htable[10].hi = V.hi ^ Htable[2].hi, Htable[10].lo = V.lo ^ Htable[2].lo; | 
|  | Htable[11].hi = V.hi ^ Htable[3].hi, Htable[11].lo = V.lo ^ Htable[3].lo; | 
|  | Htable[12].hi = V.hi ^ Htable[4].hi, Htable[12].lo = V.lo ^ Htable[4].lo; | 
|  | Htable[13].hi = V.hi ^ Htable[5].hi, Htable[13].lo = V.lo ^ Htable[5].lo; | 
|  | Htable[14].hi = V.hi ^ Htable[6].hi, Htable[14].lo = V.lo ^ Htable[6].lo; | 
|  | Htable[15].hi = V.hi ^ Htable[7].hi, Htable[15].lo = V.lo ^ Htable[7].lo; | 
|  |  | 
|  | // Treat |Htable| as a 16x16 byte table and transpose it. Thus, Htable[i] | 
|  | // contains the i'th byte of j*H for all j. | 
|  | uint8_t *Hbytes = (uint8_t *)Htable; | 
|  | for (int i = 0; i < 16; i++) { | 
|  | for (int j = 0; j < i; j++) { | 
|  | uint8_t tmp = Hbytes[16*i + j]; | 
|  | Hbytes[16*i + j] = Hbytes[16*j + i]; | 
|  | Hbytes[16*j + i] = tmp; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // GHASH_ASM_X86_64 || GHASH_ASM_X86 | 
|  |  | 
|  | #ifdef GCM_FUNCREF | 
|  | #undef GCM_MUL | 
|  | #define GCM_MUL(key, ctx, Xi) (*gcm_gmult_p)((ctx)->Xi, (key)->Htable) | 
|  | #undef GHASH | 
|  | #define GHASH(key, ctx, in, len) \ | 
|  | (*gcm_ghash_p)((ctx)->Xi, (key)->Htable, in, len) | 
|  | #endif  // GCM_FUNCREF | 
|  |  | 
|  | #if defined(HW_GCM) && defined(OPENSSL_X86_64) | 
|  | static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, uint8_t ivec[16], | 
|  | uint8_t Xi[16], const u128 Htable[16], | 
|  | enum gcm_impl_t impl) { | 
|  | switch (impl) { | 
|  | case gcm_x86_vaes_avx2: | 
|  | len &= kSizeTWithoutLower4Bits; | 
|  | aes_gcm_enc_update_vaes_avx2(in, out, len, key, ivec, Htable, Xi); | 
|  | CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16); | 
|  | return len; | 
|  | case gcm_x86_vaes_avx512: | 
|  | len &= kSizeTWithoutLower4Bits; | 
|  | aes_gcm_enc_update_vaes_avx512(in, out, len, key, ivec, Htable, Xi); | 
|  | CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16); | 
|  | return len; | 
|  | default: | 
|  | return aesni_gcm_encrypt(in, out, len, key, ivec, Htable, Xi); | 
|  | } | 
|  | } | 
|  |  | 
|  | static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, uint8_t ivec[16], | 
|  | uint8_t Xi[16], const u128 Htable[16], | 
|  | enum gcm_impl_t impl) { | 
|  | switch (impl) { | 
|  | case gcm_x86_vaes_avx2: | 
|  | len &= kSizeTWithoutLower4Bits; | 
|  | aes_gcm_dec_update_vaes_avx2(in, out, len, key, ivec, Htable, Xi); | 
|  | CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16); | 
|  | return len; | 
|  | case gcm_x86_vaes_avx512: | 
|  | len &= kSizeTWithoutLower4Bits; | 
|  | aes_gcm_dec_update_vaes_avx512(in, out, len, key, ivec, Htable, Xi); | 
|  | CRYPTO_store_u32_be(&ivec[12], CRYPTO_load_u32_be(&ivec[12]) + len / 16); | 
|  | return len; | 
|  | default: | 
|  | return aesni_gcm_decrypt(in, out, len, key, ivec, Htable, Xi); | 
|  | } | 
|  | } | 
|  | #endif  // HW_GCM && X86_64 | 
|  |  | 
|  | #if defined(HW_GCM) && defined(OPENSSL_AARCH64) | 
|  |  | 
|  | static size_t hw_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, uint8_t ivec[16], | 
|  | uint8_t Xi[16], const u128 Htable[16], | 
|  | enum gcm_impl_t impl) { | 
|  | const size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (!len_blocks) { | 
|  | return 0; | 
|  | } | 
|  | aes_gcm_enc_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable); | 
|  | return len_blocks; | 
|  | } | 
|  |  | 
|  | static size_t hw_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const AES_KEY *key, uint8_t ivec[16], | 
|  | uint8_t Xi[16], const u128 Htable[16], | 
|  | enum gcm_impl_t impl) { | 
|  | const size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (!len_blocks) { | 
|  | return 0; | 
|  | } | 
|  | aes_gcm_dec_kernel(in, len_blocks * 8, out, Xi, ivec, key, Htable); | 
|  | return len_blocks; | 
|  | } | 
|  |  | 
|  | #endif  // HW_GCM && AARCH64 | 
|  |  | 
|  | void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash, | 
|  | u128 out_table[16], const uint8_t gcm_key[16]) { | 
|  | // H is passed to |gcm_init_*| as a pair of byte-swapped, 64-bit values. | 
|  | uint64_t H[2] = {CRYPTO_load_u64_be(gcm_key), | 
|  | CRYPTO_load_u64_be(gcm_key + 8)}; | 
|  |  | 
|  | #if defined(GHASH_ASM_X86_64) | 
|  | if (crypto_gcm_clmul_enabled()) { | 
|  | if (CRYPTO_is_VPCLMULQDQ_capable() && CRYPTO_is_AVX2_capable()) { | 
|  | if (CRYPTO_is_AVX512BW_capable() && CRYPTO_is_AVX512VL_capable() && | 
|  | CRYPTO_is_BMI2_capable() && !CRYPTO_cpu_avoid_zmm_registers()) { | 
|  | gcm_init_vpclmulqdq_avx512(out_table, H); | 
|  | *out_mult = gcm_gmult_vpclmulqdq_avx512; | 
|  | *out_hash = gcm_ghash_vpclmulqdq_avx512; | 
|  | return; | 
|  | } | 
|  | gcm_init_vpclmulqdq_avx2(out_table, H); | 
|  | *out_mult = gcm_gmult_vpclmulqdq_avx2; | 
|  | *out_hash = gcm_ghash_vpclmulqdq_avx2; | 
|  | return; | 
|  | } | 
|  | if (CRYPTO_is_AVX_capable() && CRYPTO_is_MOVBE_capable()) { | 
|  | gcm_init_avx(out_table, H); | 
|  | *out_mult = gcm_gmult_avx; | 
|  | *out_hash = gcm_ghash_avx; | 
|  | return; | 
|  | } | 
|  | gcm_init_clmul(out_table, H); | 
|  | *out_mult = gcm_gmult_clmul; | 
|  | *out_hash = gcm_ghash_clmul; | 
|  | return; | 
|  | } | 
|  | if (CRYPTO_is_SSSE3_capable()) { | 
|  | gcm_init_ssse3(out_table, H); | 
|  | *out_mult = gcm_gmult_ssse3; | 
|  | *out_hash = gcm_ghash_ssse3; | 
|  | return; | 
|  | } | 
|  | #elif defined(GHASH_ASM_X86) | 
|  | if (crypto_gcm_clmul_enabled()) { | 
|  | gcm_init_clmul(out_table, H); | 
|  | *out_mult = gcm_gmult_clmul; | 
|  | *out_hash = gcm_ghash_clmul; | 
|  | return; | 
|  | } | 
|  | if (CRYPTO_is_SSSE3_capable()) { | 
|  | gcm_init_ssse3(out_table, H); | 
|  | *out_mult = gcm_gmult_ssse3; | 
|  | *out_hash = gcm_ghash_ssse3; | 
|  | return; | 
|  | } | 
|  | #elif defined(GHASH_ASM_ARM) | 
|  | if (gcm_pmull_capable()) { | 
|  | gcm_init_v8(out_table, H); | 
|  | *out_mult = gcm_gmult_v8; | 
|  | *out_hash = gcm_ghash_v8; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (gcm_neon_capable()) { | 
|  | gcm_init_neon(out_table, H); | 
|  | *out_mult = gcm_gmult_neon; | 
|  | *out_hash = gcm_ghash_neon; | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | gcm_init_nohw(out_table, H); | 
|  | *out_mult = gcm_gmult_nohw; | 
|  | *out_hash = gcm_ghash_nohw; | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_init_aes_key(GCM128_KEY *gcm_key, const uint8_t *key, | 
|  | size_t key_bytes) { | 
|  | switch (key_bytes) { | 
|  | case 16: | 
|  | boringssl_fips_inc_counter(fips_counter_evp_aes_128_gcm); | 
|  | break; | 
|  |  | 
|  | case 32: | 
|  | boringssl_fips_inc_counter(fips_counter_evp_aes_256_gcm); | 
|  | break; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(gcm_key, 0, sizeof(*gcm_key)); | 
|  | int is_hwaes; | 
|  | gcm_key->ctr = aes_ctr_set_key(&gcm_key->aes, &is_hwaes, &gcm_key->block, key, | 
|  | key_bytes); | 
|  |  | 
|  | uint8_t ghash_key[16]; | 
|  | OPENSSL_memset(ghash_key, 0, sizeof(ghash_key)); | 
|  | gcm_key->block(ghash_key, ghash_key, &gcm_key->aes); | 
|  |  | 
|  | CRYPTO_ghash_init(&gcm_key->gmult, &gcm_key->ghash, gcm_key->Htable, | 
|  | ghash_key); | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) | 
|  | #if defined(OPENSSL_X86_64) | 
|  | if (gcm_key->ghash == gcm_ghash_vpclmulqdq_avx512 && | 
|  | CRYPTO_is_VAES_capable()) { | 
|  | gcm_key->impl = gcm_x86_vaes_avx512; | 
|  | } else if (gcm_key->ghash == gcm_ghash_vpclmulqdq_avx2 && | 
|  | CRYPTO_is_VAES_capable()) { | 
|  | gcm_key->impl = gcm_x86_vaes_avx2; | 
|  | } else if (gcm_key->ghash == gcm_ghash_avx && is_hwaes) { | 
|  | gcm_key->impl = gcm_x86_aesni; | 
|  | } | 
|  | #elif defined(OPENSSL_AARCH64) | 
|  | if (gcm_pmull_capable() && is_hwaes) { | 
|  | gcm_key->impl = gcm_arm64_aes; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_init_ctx(const GCM128_KEY *key, GCM128_CONTEXT *ctx, | 
|  | const uint8_t *iv, size_t iv_len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult; | 
|  | #endif | 
|  |  | 
|  | OPENSSL_memset(&ctx->Yi, 0, sizeof(ctx->Yi)); | 
|  | OPENSSL_memset(&ctx->Xi, 0, sizeof(ctx->Xi)); | 
|  | ctx->len.aad = 0; | 
|  | ctx->len.msg = 0; | 
|  | ctx->ares = 0; | 
|  | ctx->mres = 0; | 
|  |  | 
|  | uint32_t ctr; | 
|  | if (iv_len == 12) { | 
|  | OPENSSL_memcpy(ctx->Yi, iv, 12); | 
|  | ctx->Yi[15] = 1; | 
|  | ctr = 1; | 
|  | } else { | 
|  | uint64_t len0 = iv_len; | 
|  |  | 
|  | while (iv_len >= 16) { | 
|  | CRYPTO_xor16(ctx->Yi, ctx->Yi, iv); | 
|  | GCM_MUL(key, ctx, Yi); | 
|  | iv += 16; | 
|  | iv_len -= 16; | 
|  | } | 
|  | if (iv_len) { | 
|  | for (size_t i = 0; i < iv_len; ++i) { | 
|  | ctx->Yi[i] ^= iv[i]; | 
|  | } | 
|  | GCM_MUL(key, ctx, Yi); | 
|  | } | 
|  |  | 
|  | uint8_t len_block[16]; | 
|  | OPENSSL_memset(len_block, 0, 8); | 
|  | CRYPTO_store_u64_be(len_block + 8, len0 << 3); | 
|  | CRYPTO_xor16(ctx->Yi, ctx->Yi, len_block); | 
|  |  | 
|  | GCM_MUL(key, ctx, Yi); | 
|  | ctr = CRYPTO_load_u32_be(ctx->Yi + 12); | 
|  | } | 
|  |  | 
|  | key->block(ctx->Yi, ctx->EK0, &key->aes); | 
|  | ++ctr; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_aad(const GCM128_KEY *key, GCM128_CONTEXT *ctx, | 
|  | const uint8_t *aad, size_t aad_len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult; | 
|  | void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = key->ghash; | 
|  | #endif | 
|  |  | 
|  | if (ctx->len.msg != 0) { | 
|  | // The caller must have finished the AAD before providing other input. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t alen = ctx->len.aad + aad_len; | 
|  | if (alen > (UINT64_C(1) << 61) || (sizeof(aad_len) == 8 && alen < aad_len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.aad = alen; | 
|  |  | 
|  | unsigned n = ctx->ares; | 
|  | if (n) { | 
|  | while (n && aad_len) { | 
|  | ctx->Xi[n] ^= *(aad++); | 
|  | --aad_len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | } else { | 
|  | ctx->ares = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process a whole number of blocks. | 
|  | size_t len_blocks = aad_len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | GHASH(key, ctx, aad, len_blocks); | 
|  | aad += len_blocks; | 
|  | aad_len -= len_blocks; | 
|  | } | 
|  |  | 
|  | // Process the remainder. | 
|  | if (aad_len != 0) { | 
|  | n = (unsigned int)aad_len; | 
|  | for (size_t i = 0; i < aad_len; ++i) { | 
|  | ctx->Xi[i] ^= aad[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->ares = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_encrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx, | 
|  | const uint8_t *in, uint8_t *out, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult; | 
|  | void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = key->ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.msg + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.msg = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to encrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | ctx->Xi[n] ^= *(out++) = *(in++) ^ ctx->EKi[n]; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(HW_GCM) | 
|  | // Check |len| to work around a C language bug. See https://crbug.com/1019588. | 
|  | if (key->impl != gcm_separate && len > 0) { | 
|  | // |hw_gcm_encrypt| may not process all the input given to it. It may | 
|  | // not process *any* of its input if it is deemed too small. | 
|  | size_t bulk = hw_gcm_encrypt(in, out, len, &key->aes, ctx->Yi, ctx->Xi, | 
|  | key->Htable, key->impl); | 
|  | in += bulk; | 
|  | out += bulk; | 
|  | len -= bulk; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12); | 
|  | ctr128_f stream = key->ctr; | 
|  | while (len >= GHASH_CHUNK) { | 
|  | (*stream)(in, out, GHASH_CHUNK / 16, &key->aes, ctx->Yi); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | GHASH(key, ctx, out, GHASH_CHUNK); | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  |  | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | size_t j = len_blocks / 16; | 
|  | (*stream)(in, out, j, &key->aes, ctx->Yi); | 
|  | ctr += (uint32_t)j; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | in += len_blocks; | 
|  | len -= len_blocks; | 
|  | GHASH(key, ctx, out, len_blocks); | 
|  | out += len_blocks; | 
|  | } | 
|  |  | 
|  | if (len) { | 
|  | key->block(ctx->Yi, ctx->EKi, &key->aes); | 
|  | ++ctr; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | while (len--) { | 
|  | ctx->Xi[n] ^= out[n] = in[n] ^ ctx->EKi[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_decrypt(const GCM128_KEY *key, GCM128_CONTEXT *ctx, | 
|  | const uint8_t *in, uint8_t *out, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult; | 
|  | void (*gcm_ghash_p)(uint8_t Xi[16], const u128 Htable[16], const uint8_t *inp, | 
|  | size_t len) = key->ghash; | 
|  | #endif | 
|  |  | 
|  | uint64_t mlen = ctx->len.msg + len; | 
|  | if (mlen > ((UINT64_C(1) << 36) - 32) || | 
|  | (sizeof(len) == 8 && mlen < len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->len.msg = mlen; | 
|  |  | 
|  | if (ctx->ares) { | 
|  | // First call to decrypt finalizes GHASH(AAD) | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | ctx->ares = 0; | 
|  | } | 
|  |  | 
|  | unsigned n = ctx->mres; | 
|  | if (n) { | 
|  | while (n && len) { | 
|  | uint8_t c = *(in++); | 
|  | *(out++) = c ^ ctx->EKi[n]; | 
|  | ctx->Xi[n] ^= c; | 
|  | --len; | 
|  | n = (n + 1) % 16; | 
|  | } | 
|  | if (n == 0) { | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | } else { | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(HW_GCM) | 
|  | // Check |len| to work around a C language bug. See https://crbug.com/1019588. | 
|  | if (key->impl != gcm_separate && len > 0) { | 
|  | // |hw_gcm_decrypt| may not process all the input given to it. It may | 
|  | // not process *any* of its input if it is deemed too small. | 
|  | size_t bulk = hw_gcm_decrypt(in, out, len, &key->aes, ctx->Yi, ctx->Xi, | 
|  | key->Htable, key->impl); | 
|  | in += bulk; | 
|  | out += bulk; | 
|  | len -= bulk; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | uint32_t ctr = CRYPTO_load_u32_be(ctx->Yi + 12); | 
|  | ctr128_f stream = key->ctr; | 
|  | while (len >= GHASH_CHUNK) { | 
|  | GHASH(key, ctx, in, GHASH_CHUNK); | 
|  | (*stream)(in, out, GHASH_CHUNK / 16, &key->aes, ctx->Yi); | 
|  | ctr += GHASH_CHUNK / 16; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | out += GHASH_CHUNK; | 
|  | in += GHASH_CHUNK; | 
|  | len -= GHASH_CHUNK; | 
|  | } | 
|  |  | 
|  | size_t len_blocks = len & kSizeTWithoutLower4Bits; | 
|  | if (len_blocks != 0) { | 
|  | size_t j = len_blocks / 16; | 
|  | GHASH(key, ctx, in, len_blocks); | 
|  | (*stream)(in, out, j, &key->aes, ctx->Yi); | 
|  | ctr += (uint32_t)j; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | out += len_blocks; | 
|  | in += len_blocks; | 
|  | len -= len_blocks; | 
|  | } | 
|  |  | 
|  | if (len) { | 
|  | key->block(ctx->Yi, ctx->EKi, &key->aes); | 
|  | ++ctr; | 
|  | CRYPTO_store_u32_be(ctx->Yi + 12, ctr); | 
|  | while (len--) { | 
|  | uint8_t c = in[n]; | 
|  | ctx->Xi[n] ^= c; | 
|  | out[n] = c ^ ctx->EKi[n]; | 
|  | ++n; | 
|  | } | 
|  | } | 
|  |  | 
|  | ctx->mres = n; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int CRYPTO_gcm128_finish(const GCM128_KEY *key, GCM128_CONTEXT *ctx, | 
|  | const uint8_t *tag, size_t len) { | 
|  | #ifdef GCM_FUNCREF | 
|  | void (*gcm_gmult_p)(uint8_t Xi[16], const u128 Htable[16]) = key->gmult; | 
|  | #endif | 
|  |  | 
|  | if (ctx->mres || ctx->ares) { | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | } | 
|  |  | 
|  | uint8_t len_block[16]; | 
|  | CRYPTO_store_u64_be(len_block, ctx->len.aad << 3); | 
|  | CRYPTO_store_u64_be(len_block + 8, ctx->len.msg << 3); | 
|  | CRYPTO_xor16(ctx->Xi, ctx->Xi, len_block); | 
|  | GCM_MUL(key, ctx, Xi); | 
|  | CRYPTO_xor16(ctx->Xi, ctx->Xi, ctx->EK0); | 
|  |  | 
|  | if (tag && len <= sizeof(ctx->Xi)) { | 
|  | return CRYPTO_memcmp(ctx->Xi, tag, len) == 0; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CRYPTO_gcm128_tag(const GCM128_KEY *key, GCM128_CONTEXT *ctx, uint8_t *tag, | 
|  | size_t len) { | 
|  | CRYPTO_gcm128_finish(key, ctx, NULL, 0); | 
|  | OPENSSL_memcpy(tag, ctx->Xi, len <= sizeof(ctx->Xi) ? len : sizeof(ctx->Xi)); | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) | 
|  | int crypto_gcm_clmul_enabled(void) { | 
|  | #if defined(GHASH_ASM_X86) || defined(GHASH_ASM_X86_64) | 
|  | return CRYPTO_is_PCLMUL_capable() && CRYPTO_is_SSSE3_capable(); | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | #endif |