| // Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/evp.h> |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <map> |
| #include <optional> |
| #include <string> |
| #include <string_view> |
| #include <utility> |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/digest.h> |
| #include <openssl/dh.h> |
| #include <openssl/dsa.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/obj.h> |
| #include <openssl/rsa.h> |
| |
| #include "../test/der_trailing_data.h" |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| #include "../test/wycheproof_util.h" |
| |
| |
| // evp_test dispatches between multiple test types. PublicKey and PrivateKey |
| // tests take a key name parameter and key information. If the test is |
| // successful, the key is saved under that key name. Decrypt, Sign, and Verify |
| // tests take a previously imported key name as parameter and test their |
| // respective operations. |
| |
| static const EVP_MD *GetDigest(std::string_view name) { |
| if (name == "MD5") { |
| return EVP_md5(); |
| } else if (name == "SHA1") { |
| return EVP_sha1(); |
| } else if (name == "SHA224") { |
| return EVP_sha224(); |
| } else if (name == "SHA256") { |
| return EVP_sha256(); |
| } else if (name == "SHA384") { |
| return EVP_sha384(); |
| } else if (name == "SHA512") { |
| return EVP_sha512(); |
| } |
| ADD_FAILURE() << "Unknown digest: " << name; |
| return nullptr; |
| } |
| |
| static std::optional<int> GetRSAPadding(std::string_view name) { |
| if (name == "PKCS1") { |
| return RSA_PKCS1_PADDING; |
| } |
| if (name == "PSS") { |
| return RSA_PKCS1_PSS_PADDING; |
| } |
| if (name == "OAEP") { |
| return RSA_PKCS1_OAEP_PADDING; |
| } |
| if (name == "None") { |
| return RSA_NO_PADDING; |
| } |
| ADD_FAILURE() << "Unknown RSA padding mode: " << name; |
| return std::nullopt; |
| } |
| |
| struct AlgorithmInfo { |
| const EVP_PKEY_ALG *alg; |
| int pkey_id; |
| bool is_default; |
| }; |
| |
| static const std::map<std::string, AlgorithmInfo> kAllAlgorithms = { |
| {"RSA", {EVP_pkey_rsa(), EVP_PKEY_RSA, true}}, |
| {"RSA-PSS-SHA-256", {EVP_pkey_rsa_pss_sha256(), EVP_PKEY_RSA_PSS, false}}, |
| {"EC-P-224", {EVP_pkey_ec_p224(), EVP_PKEY_EC, true}}, |
| {"EC-P-256", {EVP_pkey_ec_p256(), EVP_PKEY_EC, true}}, |
| {"EC-P-384", {EVP_pkey_ec_p384(), EVP_PKEY_EC, true}}, |
| {"EC-P-521", {EVP_pkey_ec_p521(), EVP_PKEY_EC, true}}, |
| {"X25519", {EVP_pkey_x25519(), EVP_PKEY_X25519, true}}, |
| {"Ed25519", {EVP_pkey_ed25519(), EVP_PKEY_ED25519, true}}, |
| {"DSA", {EVP_pkey_dsa(), EVP_PKEY_DSA, true}}, |
| }; |
| |
| using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>; |
| |
| enum class KeyRole { kPublic, kPrivate }; |
| |
| static void CheckRSAParam(FileTest *t, std::string_view attr_name, |
| const EVP_PKEY *pkey, |
| const BIGNUM *(*rsa_getter)(const RSA *)) { |
| SCOPED_TRACE(attr_name); |
| if (t->HasAttribute(attr_name)) { |
| bssl::UniquePtr<BIGNUM> want = |
| HexToBIGNUM(t->GetAttributeOrDie(attr_name).c_str()); |
| ASSERT_TRUE(want); |
| |
| const RSA *rsa = EVP_PKEY_get0_RSA(pkey); |
| ASSERT_TRUE(rsa); |
| const BIGNUM *got = rsa_getter(rsa); |
| ASSERT_TRUE(got); |
| EXPECT_EQ(BN_cmp(want.get(), got), 0) |
| << "wanted: " << BIGNUMToHex(want.get()) |
| << "\ngot: " << BIGNUMToHex(got); |
| } |
| // We have many test RSA keys so, for now, don't require that all RSA keys |
| // list out these parameters. That is, the absence of an RSA parameter does |
| // not currently assert that we omit them. |
| } |
| |
| static bool ImportKey(FileTest *t, KeyMap *key_map, KeyRole key_role) { |
| std::string format_name = key_role == KeyRole::kPublic ? "spki" : "pkcs8"; |
| auto parse_func = key_role == KeyRole::kPublic |
| ? &EVP_PKEY_from_subject_public_key_info |
| : &EVP_PKEY_from_private_key_info; |
| auto parse_default_func = key_role == KeyRole::kPublic ? &EVP_parse_public_key |
| : &EVP_parse_private_key; |
| auto marshal_func = key_role == KeyRole::kPublic ? &EVP_marshal_public_key |
| : &EVP_marshal_private_key; |
| |
| // This test will first import the key from all available methods, then check |
| // that all properties on all keys match. |
| std::vector<std::pair<std::string, bssl::UniquePtr<EVP_PKEY>>> keys; |
| |
| // Parse from SPKI or PKCS#8. |
| std::vector<uint8_t> input; |
| if (!t->GetBytes(&input, "Input")) { |
| return false; |
| } |
| |
| // First, parse the key with all algorithms active. Check this before |
| // specifying an individual algorithm, so that error cases do not need to |
| // specify an Algorithm key. |
| std::vector<const EVP_PKEY_ALG *> algs; |
| for (const auto &[name, info] : kAllAlgorithms) { |
| algs.push_back(info.alg); |
| } |
| bssl::UniquePtr<EVP_PKEY> new_key( |
| parse_func(input.data(), input.size(), algs.data(), algs.size())); |
| if (new_key == nullptr) { |
| return false; |
| } |
| keys.emplace_back(format_name + " - all algs", std::move(new_key)); |
| |
| // Test that the parsers reject trailing data. |
| bool ok = TestDERTrailingData( |
| input, [&](bssl::Span<const uint8_t> rewritten, size_t n) { |
| // We currently intentionally ignore trailing data in the outermost |
| // PKCS#8 PrivateKeyInfo element because we don't parse the attributes. |
| if (n == 0 && key_role == KeyRole::kPrivate) { |
| return; |
| } |
| SCOPED_TRACE(n); |
| bssl::UniquePtr<EVP_PKEY> parsed(parse_func( |
| rewritten.data(), rewritten.size(), algs.data(), algs.size())); |
| EXPECT_FALSE(parsed); |
| }); |
| EXPECT_TRUE(ok); |
| |
| // Parse with just the specific algorithm. |
| std::string alg_name; |
| if (!t->GetAttribute(&alg_name, "Algorithm")) { |
| return false; |
| } |
| auto it = kAllAlgorithms.find(alg_name); |
| if (it == kAllAlgorithms.end()) { |
| ADD_FAILURE() << "Unknown algorithm: " << alg_name; |
| return false; |
| } |
| const AlgorithmInfo &alg_info = it->second; |
| new_key.reset(parse_func(input.data(), input.size(), &alg_info.alg, 1)); |
| if (new_key == nullptr) { |
| return false; |
| } |
| keys.emplace_back(format_name + " - " + alg_name + " only", |
| std::move(new_key)); |
| |
| // Parsing with all other algorithms should fail. This currently assumes each |
| // key can only be parsed by one algorithm. Make the field a list of |
| // algorithms if this ever changes. |
| algs.clear(); |
| for (const auto &[name, info] : kAllAlgorithms) { |
| if (name != alg_name) { |
| algs.push_back(info.alg); |
| } |
| } |
| new_key.reset( |
| parse_func(input.data(), input.size(), algs.data(), algs.size())); |
| EXPECT_FALSE(new_key); |
| ERR_clear_error(); |
| |
| // Parse with the default parser. |
| CBS cbs(input); |
| new_key.reset(parse_default_func(&cbs)); |
| if (alg_info.is_default) { |
| if (new_key == nullptr) { |
| return false; |
| } |
| keys.emplace_back(format_name + " - default algorithms", |
| std::move(new_key)); |
| } else { |
| EXPECT_FALSE(new_key); |
| ERR_clear_error(); |
| } |
| |
| // Import as a raw key. |
| if (key_role == KeyRole::kPublic && t->HasAttribute("RawPublic")) { |
| std::vector<uint8_t> raw; |
| if (!t->GetBytes(&raw, "RawPublic")) { |
| return false; |
| } |
| new_key.reset( |
| EVP_PKEY_from_raw_public_key(alg_info.alg, raw.data(), raw.size())); |
| if (new_key == nullptr) { |
| return false; |
| } |
| keys.emplace_back("raw public", std::move(new_key)); |
| } |
| if (key_role == KeyRole::kPrivate && t->HasAttribute("RawPrivate")) { |
| std::vector<uint8_t> raw; |
| if (!t->GetBytes(&raw, "RawPrivate")) { |
| return false; |
| } |
| new_key.reset( |
| EVP_PKEY_from_raw_private_key(alg_info.alg, raw.data(), raw.size())); |
| if (new_key == nullptr) { |
| return false; |
| } |
| keys.emplace_back("raw private", std::move(new_key)); |
| } |
| |
| // Import RSA key from parameters. |
| if (alg_info.pkey_id == EVP_PKEY_RSA) { |
| if (key_role == KeyRole::kPublic && t->HasAttribute("RSAParamN") && |
| t->HasAttribute("RSAParamE")) { |
| bssl::UniquePtr<BIGNUM> n = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamN").c_str()); |
| bssl::UniquePtr<BIGNUM> e = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamE").c_str()); |
| if (n == nullptr || e == nullptr) { |
| return false; |
| } |
| bssl::UniquePtr<RSA> rsa(RSA_new_public_key(n.get(), e.get())); |
| new_key.reset(EVP_PKEY_new()); |
| if (rsa == nullptr || new_key == nullptr || |
| !EVP_PKEY_set1_RSA(new_key.get(), rsa.get())) { |
| return false; |
| } |
| keys.emplace_back("RSA public params", std::move(new_key)); |
| } |
| if (key_role == KeyRole::kPrivate && t->HasAttribute("RSAParamN") && |
| t->HasAttribute("RSAParamE") && t->HasAttribute("RSAParamD") && |
| t->HasAttribute("RSAParamP") && t->HasAttribute("RSAParamQ") && |
| t->HasAttribute("RSAParamDMP1") && t->HasAttribute("RSAParamDMQ1") && |
| t->HasAttribute("RSAParamIQMP")) { |
| bssl::UniquePtr<BIGNUM> n = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamN").c_str()); |
| bssl::UniquePtr<BIGNUM> e = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamE").c_str()); |
| bssl::UniquePtr<BIGNUM> d = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamD").c_str()); |
| bssl::UniquePtr<BIGNUM> p = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamP").c_str()); |
| bssl::UniquePtr<BIGNUM> q = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamQ").c_str()); |
| bssl::UniquePtr<BIGNUM> dmp1 = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamDMP1").c_str()); |
| bssl::UniquePtr<BIGNUM> dmq1 = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamDMQ1").c_str()); |
| bssl::UniquePtr<BIGNUM> iqmp = |
| HexToBIGNUM(t->GetAttributeOrDie("RSAParamIQMP").c_str()); |
| if (n == nullptr || e == nullptr) { |
| return false; |
| } |
| bssl::UniquePtr<RSA> rsa(RSA_new_private_key(n.get(), e.get(), d.get(), |
| p.get(), q.get(), dmp1.get(), |
| dmq1.get(), iqmp.get())); |
| new_key.reset(EVP_PKEY_new()); |
| if (rsa == nullptr || new_key == nullptr || |
| !EVP_PKEY_set1_RSA(new_key.get(), rsa.get())) { |
| return false; |
| } |
| keys.emplace_back("RSA private params", std::move(new_key)); |
| } |
| } |
| |
| // Check properties of the keys. |
| for (const auto &[name, pkey] : keys) { |
| SCOPED_TRACE(name); |
| |
| EXPECT_EQ(alg_info.pkey_id, EVP_PKEY_id(pkey.get())); |
| |
| if (t->HasAttribute("Bits")) { |
| EXPECT_EQ(EVP_PKEY_bits(pkey.get()), |
| atoi(t->GetAttributeOrDie("Bits").c_str())); |
| } |
| |
| if (t->HasAttribute("ECCurve")) { |
| EXPECT_EQ(OBJ_nid2sn(EVP_PKEY_get_ec_curve_nid(pkey.get())), |
| t->GetAttributeOrDie("ECCurve")); |
| } else { |
| EXPECT_EQ(EVP_PKEY_get_ec_curve_nid(pkey.get()), NID_undef); |
| } |
| |
| CheckRSAParam(t, "RSAParamN", pkey.get(), RSA_get0_n); |
| CheckRSAParam(t, "RSAParamE", pkey.get(), RSA_get0_e); |
| CheckRSAParam(t, "RSAParamD", pkey.get(), RSA_get0_d); |
| CheckRSAParam(t, "RSAParamP", pkey.get(), RSA_get0_p); |
| CheckRSAParam(t, "RSAParamQ", pkey.get(), RSA_get0_q); |
| CheckRSAParam(t, "RSAParamDMP1", pkey.get(), RSA_get0_dmp1); |
| CheckRSAParam(t, "RSAParamDMQ1", pkey.get(), RSA_get0_dmq1); |
| CheckRSAParam(t, "RSAParamIQMP", pkey.get(), RSA_get0_iqmp); |
| |
| // All keys must compare equal. |
| EXPECT_EQ(EVP_PKEY_cmp(pkey.get(), keys.front().second.get()), 1); |
| |
| // The key must re-encode correctly. |
| bssl::ScopedCBB cbb; |
| if (!CBB_init(cbb.get(), 0) || !marshal_func(cbb.get(), pkey.get())) { |
| return false; |
| } |
| std::vector<uint8_t> output = input; |
| if (t->HasAttribute("Output") && !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| EXPECT_EQ(Bytes(output), Bytes(CBB_data(cbb.get()), CBB_len(cbb.get()))) |
| << "Re-encoding the key did not match."; |
| |
| if (t->HasAttribute("RawPrivate")) { |
| std::vector<uint8_t> expected; |
| if (!t->GetBytes(&expected, "RawPrivate")) { |
| return false; |
| } |
| |
| std::vector<uint8_t> raw; |
| size_t len; |
| if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) { |
| return false; |
| } |
| raw.resize(len); |
| if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) { |
| return false; |
| } |
| raw.resize(len); |
| EXPECT_EQ(Bytes(raw), Bytes(expected)); |
| |
| // Short buffers should be rejected. |
| raw.resize(len - 1); |
| len = raw.size(); |
| EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)); |
| } else { |
| size_t len; |
| EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)); |
| } |
| |
| if (t->HasAttribute("RawPublic")) { |
| std::vector<uint8_t> expected; |
| if (!t->GetBytes(&expected, "RawPublic")) { |
| return false; |
| } |
| |
| std::vector<uint8_t> raw; |
| size_t len; |
| if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) { |
| return false; |
| } |
| raw.resize(len); |
| if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) { |
| return false; |
| } |
| raw.resize(len); |
| EXPECT_EQ(Bytes(raw), Bytes(expected)); |
| |
| // Short buffers should be rejected. |
| raw.resize(len - 1); |
| len = raw.size(); |
| EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)); |
| } else { |
| size_t len; |
| EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)); |
| } |
| } |
| |
| // Save the key for future tests. |
| const std::string &key_name = t->GetParameter(); |
| EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; |
| (*key_map)[key_name] = std::move(keys.front().second); |
| return true; |
| } |
| |
| static bool GetOptionalBignum(FileTest *t, bssl::UniquePtr<BIGNUM> *out, |
| const std::string &key) { |
| if (!t->HasAttribute(key)) { |
| *out = nullptr; |
| return true; |
| } |
| |
| std::vector<uint8_t> bytes; |
| if (!t->GetBytes(&bytes, key)) { |
| return false; |
| } |
| |
| out->reset(BN_bin2bn(bytes.data(), bytes.size(), nullptr)); |
| return *out != nullptr; |
| } |
| |
| static bool ImportDHKey(FileTest *t, KeyMap *key_map) { |
| bssl::UniquePtr<BIGNUM> p, q, g, pub_key, priv_key; |
| if (!GetOptionalBignum(t, &p, "P") || // |
| !GetOptionalBignum(t, &q, "Q") || // |
| !GetOptionalBignum(t, &g, "G") || |
| !GetOptionalBignum(t, &pub_key, "Public") || |
| !GetOptionalBignum(t, &priv_key, "Private")) { |
| return false; |
| } |
| |
| bssl::UniquePtr<DH> dh(DH_new()); |
| if (dh == nullptr || !DH_set0_pqg(dh.get(), p.get(), q.get(), g.get())) { |
| return false; |
| } |
| // |DH_set0_pqg| takes ownership on success. |
| p.release(); |
| q.release(); |
| g.release(); |
| |
| if (!DH_set0_key(dh.get(), pub_key.get(), priv_key.get())) { |
| return false; |
| } |
| // |DH_set0_key| takes ownership on success. |
| pub_key.release(); |
| priv_key.release(); |
| |
| bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (pkey == nullptr || !EVP_PKEY_set1_DH(pkey.get(), dh.get())) { |
| return false; |
| } |
| |
| // Save the key for future tests. |
| const std::string &key_name = t->GetParameter(); |
| EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; |
| (*key_map)[key_name] = std::move(pkey); |
| return true; |
| } |
| |
| // SetupContext configures |ctx| based on attributes in |t|, with the exception |
| // of the signing digest which must be configured externally. |
| static bool SetupContext(FileTest *t, const KeyMap *key_map, |
| EVP_PKEY_CTX *ctx) { |
| if (t->HasAttribute("RSAPadding")) { |
| auto padding = GetRSAPadding(t->GetAttributeOrDie("RSAPadding")); |
| if (!padding || !EVP_PKEY_CTX_set_rsa_padding(ctx, *padding)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("PSSSaltLength") && |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { |
| return false; |
| } |
| if (t->HasAttribute("MGF1Digest")) { |
| const EVP_MD *digest = GetDigest(t->GetAttributeOrDie("MGF1Digest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPDigest")) { |
| const EVP_MD *digest = GetDigest(t->GetAttributeOrDie("OAEPDigest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPLabel")) { |
| std::vector<uint8_t> label; |
| if (!t->GetBytes(&label, "OAEPLabel")) { |
| return false; |
| } |
| // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be |
| // take ownership of the input. |
| bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>( |
| OPENSSL_memdup(label.data(), label.size()))); |
| if (!buf || |
| !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { |
| return false; |
| } |
| buf.release(); |
| } |
| if (t->HasAttribute("DerivePeer")) { |
| std::string derive_peer = t->GetAttributeOrDie("DerivePeer"); |
| auto it = key_map->find(derive_peer); |
| if (it == key_map->end()) { |
| ADD_FAILURE() << "Could not find key " << derive_peer; |
| return false; |
| } |
| EVP_PKEY *derive_peer_key = it->second.get(); |
| if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("DiffieHellmanPad") && !EVP_PKEY_CTX_set_dh_pad(ctx, 1)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool MaybeReplaceWithCopy(bssl::UniquePtr<EVP_PKEY_CTX> *ctx, |
| bool copy_ctx) { |
| if (!copy_ctx) { |
| return true; |
| } |
| bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx->get())); |
| if (!copy) { |
| return false; |
| } |
| *ctx = std::move(copy); |
| return true; |
| } |
| |
| static bool MaybeReplaceWithCopy(bssl::UniquePtr<EVP_MD_CTX> *ctx, |
| bool copy_ctx) { |
| if (!copy_ctx) { |
| return true; |
| } |
| bssl::UniquePtr<EVP_MD_CTX> copy(EVP_MD_CTX_new()); |
| if (ctx == nullptr || !EVP_MD_CTX_copy_ex(copy.get(), ctx->get())) { |
| return false; |
| } |
| *ctx = std::move(copy); |
| return true; |
| } |
| |
| static bool TestDerive(FileTest *t, const KeyMap *key_map, EVP_PKEY *key, |
| bool copy_ctx) { |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || // |
| !EVP_PKEY_derive_init(ctx.get()) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx) || |
| !SetupContext(t, key_map, ctx.get()) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx)) { |
| return false; |
| } |
| |
| size_t len; |
| std::vector<uint8_t> actual, output; |
| if (!EVP_PKEY_derive(ctx.get(), nullptr, &len)) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| |
| // Defer looking up the attribute so Error works properly. |
| if (!t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| |
| // Test when the buffer is too large. |
| actual.resize(len + 1); |
| len = actual.size(); |
| if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| |
| // Test when the buffer is too small. |
| actual.resize(len - 1); |
| len = actual.size(); |
| if (t->HasAttribute("SmallBufferTruncates")) { |
| if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output.data(), len), Bytes(actual)); |
| } else { |
| EXPECT_FALSE(EVP_PKEY_derive(ctx.get(), actual.data(), &len)); |
| ERR_clear_error(); |
| } |
| return true; |
| } |
| |
| static bool TestEVPOperation(FileTest *t, const KeyMap *key_map, |
| bool copy_ctx) { |
| SCOPED_TRACE(copy_ctx); |
| // Load the key. |
| const std::string &key_name = t->GetParameter(); |
| auto it = key_map->find(key_name); |
| if (it == key_map->end()) { |
| ADD_FAILURE() << "Could not find key " << key_name; |
| return false; |
| } |
| EVP_PKEY *key = it->second.get(); |
| |
| int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; |
| int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, |
| const uint8_t *in, size_t in_len) = nullptr; |
| int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, |
| ENGINE *e, EVP_PKEY *pkey) = nullptr; |
| bool is_verify = false; |
| if (t->GetType() == "Decrypt") { |
| key_op_init = EVP_PKEY_decrypt_init; |
| key_op = EVP_PKEY_decrypt; |
| } else if (t->GetType() == "Sign") { |
| key_op_init = EVP_PKEY_sign_init; |
| key_op = EVP_PKEY_sign; |
| } else if (t->GetType() == "Verify") { |
| key_op_init = EVP_PKEY_verify_init; |
| is_verify = true; |
| } else if (t->GetType() == "SignMessage") { |
| md_op_init = EVP_DigestSignInit; |
| } else if (t->GetType() == "VerifyMessage") { |
| md_op_init = EVP_DigestVerifyInit; |
| is_verify = true; |
| } else if (t->GetType() == "Encrypt") { |
| key_op_init = EVP_PKEY_encrypt_init; |
| key_op = EVP_PKEY_encrypt; |
| } else if (t->GetType() == "Derive") { |
| return TestDerive(t, key_map, key, copy_ctx); |
| } else { |
| ADD_FAILURE() << "Unknown test " << t->GetType(); |
| return false; |
| } |
| |
| const EVP_MD *digest = nullptr; |
| if (t->HasAttribute("Digest")) { |
| digest = GetDigest(t->GetAttributeOrDie("Digest")); |
| if (digest == nullptr) { |
| return false; |
| } |
| } |
| |
| // For verify tests, the "output" is the signature. Read it now so that, for |
| // tests which expect a failure in SetupContext, the attribute is still |
| // consumed. |
| std::vector<uint8_t> input, actual, output; |
| if (!t->GetBytes(&input, "Input") || |
| (is_verify && !t->GetBytes(&output, "Output"))) { |
| return false; |
| } |
| |
| if (md_op_init) { |
| bssl::UniquePtr<EVP_MD_CTX> ctx(EVP_MD_CTX_new()); |
| EVP_PKEY_CTX *pctx; |
| if (ctx == nullptr || // |
| !md_op_init(ctx.get(), &pctx, digest, nullptr, key) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx) || |
| !SetupContext(t, key_map, pctx) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx)) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return EVP_DigestVerify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| size_t len; |
| if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), |
| input.size()) || |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| return true; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !key_op_init(ctx.get()) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
| !SetupContext(t, key_map, ctx.get()) || |
| !MaybeReplaceWithCopy(&ctx, copy_ctx)) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return EVP_PKEY_verify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| size_t len; |
| if (!key_op(ctx.get(), nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!key_op(ctx.get(), actual.data(), &len, input.data(), input.size())) { |
| return false; |
| } |
| |
| if (t->HasAttribute("CheckDecrypt")) { |
| // Encryption is non-deterministic, so we check by decrypting. |
| size_t plaintext_len; |
| bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!decrypt_ctx || // |
| !EVP_PKEY_decrypt_init(decrypt_ctx.get()) || |
| !MaybeReplaceWithCopy(&decrypt_ctx, copy_ctx) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) || |
| !SetupContext(t, key_map, decrypt_ctx.get()) || |
| !MaybeReplaceWithCopy(&decrypt_ctx, copy_ctx) || |
| !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len, |
| actual.data(), actual.size())) { |
| return false; |
| } |
| output.resize(plaintext_len); |
| if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len, |
| actual.data(), actual.size())) { |
| ADD_FAILURE() << "Could not decrypt result."; |
| return false; |
| } |
| output.resize(plaintext_len); |
| EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; |
| } else if (t->HasAttribute("CheckVerify")) { |
| // Some signature schemes are non-deterministic, so we check by verifying. |
| bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!verify_ctx || // |
| !EVP_PKEY_verify_init(verify_ctx.get()) || |
| !MaybeReplaceWithCopy(&verify_ctx, copy_ctx) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) || |
| !SetupContext(t, key_map, verify_ctx.get()) || |
| !MaybeReplaceWithCopy(&verify_ctx, copy_ctx)) { |
| return false; |
| } |
| if (t->HasAttribute("VerifyPSSSaltLength")) { |
| if (!EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| verify_ctx.get(), |
| atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { |
| return false; |
| } |
| } |
| EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), actual.size(), |
| input.data(), input.size())) |
| << "Could not verify result."; |
| } else { |
| // By default, check by comparing the result against Output. |
| if (!t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| } |
| return true; |
| } |
| |
| static bool TestEVP(FileTest *t, KeyMap *key_map) { |
| if (t->GetType() == "PrivateKey") { |
| return ImportKey(t, key_map, KeyRole::kPrivate); |
| } |
| |
| if (t->GetType() == "PublicKey") { |
| return ImportKey(t, key_map, KeyRole::kPublic); |
| } |
| |
| if (t->GetType() == "DHKey") { |
| return ImportDHKey(t, key_map); |
| } |
| |
| // Run the test twice, once copying the context and once normally. |
| return TestEVPOperation(t, key_map, /*copy_ctx=*/false) && |
| TestEVPOperation(t, key_map, /*copy_ctx=*/true); |
| } |
| |
| static void RunEVPTests(const char *path) { |
| KeyMap key_map; |
| FileTestGTest(path, [&](FileTest *t) { |
| bool result = TestEVP(t, &key_map); |
| if (t->HasAttribute("Error")) { |
| ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; |
| uint32_t err = ERR_peek_error(); |
| EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); |
| } else if (!result) { |
| ADD_FAILURE() << "Operation unexpectedly failed."; |
| } |
| }); |
| } |
| |
| TEST(EVPTest, GeneralTestVectors) { |
| RunEVPTests("crypto/evp/test/evp_tests.txt"); |
| } |
| |
| TEST(EVPTest, DHTestVectors) { RunEVPTests("crypto/evp/test/dh_tests.txt"); } |
| |
| TEST(EVPTest, ECTestVectors) { RunEVPTests("crypto/evp/test/ec_tests.txt"); } |
| |
| TEST(EVPTest, Ed25519TestVectors) { |
| RunEVPTests("crypto/evp/test/ed25519_tests.txt"); |
| } |
| |
| TEST(EVPTest, RSATestVectors) { RunEVPTests("crypto/evp/test/rsa_tests.txt"); } |
| |
| TEST(EVPTest, X25519TestVectors) { |
| RunEVPTests("crypto/evp/test/x25519_tests.txt"); |
| } |
| |
| static void RunWycheproofVerifyTest(const char *path) { |
| SCOPED_TRACE(path); |
| FileTestGTest(path, [](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> der; |
| ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); |
| CBS cbs; |
| CBS_init(&cbs, der.data(), der.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| const EVP_MD *md = nullptr; |
| if (t->HasInstruction("sha")) { |
| md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| } |
| |
| bool is_pss = t->HasInstruction("mgf"); |
| const EVP_MD *mgf1_md = nullptr; |
| int pss_salt_len = RSA_PSS_SALTLEN_DIGEST; |
| if (is_pss) { |
| ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf")); |
| mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
| |
| std::string s_len; |
| ASSERT_TRUE(t->GetInstruction(&s_len, "sLen")); |
| pss_salt_len = atoi(s_len.c_str()); |
| } |
| |
| std::vector<uint8_t> msg; |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| std::vector<uint8_t> sig; |
| ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { |
| // DSA is deprecated and is not usable via EVP. |
| DSA *dsa = EVP_PKEY_get0_DSA(key.get()); |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned digest_len; |
| ASSERT_TRUE( |
| EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); |
| int valid; |
| bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), |
| sig.size(), dsa) && |
| valid; |
| EXPECT_EQ(sig_ok, result.IsValid()); |
| } else { |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| ASSERT_TRUE( |
| EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get())); |
| if (is_pss) { |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len)); |
| } |
| int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), |
| msg.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| EXPECT_EQ(ret, |
| result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}) |
| ? 1 |
| : 0); |
| } |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofDSA) { |
| RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP224) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP256) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP384) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofECDSAP521) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofEdDSA) { |
| RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt"); |
| // TODO(davidben): Is this file redundant with the tests above? |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_signature_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1Sign) { |
| FileTestGTest( |
| "third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt", |
| [](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> pkcs8; |
| ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
| CBS cbs; |
| CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| |
| std::vector<uint8_t> msg, sig; |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| ASSERT_TRUE( |
| EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get())); |
| std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
| size_t len = out.size(); |
| int ret = |
| EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| bool is_valid = |
| result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}); |
| EXPECT_EQ(ret, is_valid ? 1 : 0); |
| if (is_valid) { |
| out.resize(len); |
| EXPECT_EQ(Bytes(sig), Bytes(out)); |
| } |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPSS) { |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_2048_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_3072_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_4096_sha256_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_pss_4096_sha512_mgf1_32_test.txt"); |
| RunWycheproofVerifyTest( |
| "third_party/wycheproof_testvectors/rsa_pss_misc_test.txt"); |
| } |
| |
| static void RunWycheproofDecryptTest( |
| const char *path, |
| std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) { |
| FileTestGTest(path, [&](FileTest *t) { |
| t->IgnoreAllUnusedInstructions(); |
| |
| std::vector<uint8_t> pkcs8; |
| ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); |
| CBS cbs; |
| CBS_init(&cbs, pkcs8.data(), pkcs8.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| std::vector<uint8_t> ct, msg; |
| ASSERT_TRUE(t->GetBytes(&ct, "ct")); |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr)); |
| ASSERT_TRUE(ctx); |
| ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get())); |
| ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get())); |
| std::vector<uint8_t> out(EVP_PKEY_size(key.get())); |
| size_t len = out.size(); |
| int ret = |
| EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size()); |
| // BoringSSL does not enforce policies on weak keys and leaves it to the |
| // caller. |
| bool is_valid = result.IsValid({"SmallModulus"}); |
| EXPECT_EQ(ret, is_valid ? 1 : 0); |
| if (is_valid) { |
| out.resize(len); |
| EXPECT_EQ(Bytes(msg), Bytes(out)); |
| } |
| }); |
| } |
| |
| static void RunWycheproofOAEPTest(const char *path) { |
| RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
| const EVP_MD *md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true); |
| ASSERT_TRUE(mgf1_md); |
| std::vector<uint8_t> label; |
| ASSERT_TRUE(t->GetBytes(&label, "label")); |
| |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md)); |
| ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md)); |
| bssl::UniquePtr<uint8_t> label_copy( |
| static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size()))); |
| ASSERT_TRUE(label_copy || label.empty()); |
| ASSERT_TRUE( |
| EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size())); |
| // |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success. |
| label_copy.release(); |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP2048) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha1_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha224_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha224_mgf1sha224_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha384_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha384_mgf1sha384_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_2048_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP3072) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_3072_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEP4096) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha256_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha256_mgf1sha256_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha512_mgf1sha1_test.txt"); |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/" |
| "rsa_oaep_4096_sha512_mgf1sha512_test.txt"); |
| } |
| |
| TEST(EVPTest, WycheproofRSAOAEPMisc) { |
| RunWycheproofOAEPTest( |
| "third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt"); |
| } |
| |
| static void RunWycheproofPKCS1DecryptTest(const char *path) { |
| RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { |
| // No setup needed. PKCS#1 is, sadly, the default. |
| }); |
| } |
| |
| TEST(EVPTest, WycheproofRSAPKCS1Decrypt) { |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt"); |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt"); |
| RunWycheproofPKCS1DecryptTest( |
| "third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt"); |
| } |