blob: d5952e1c1009f44e2ab21e5290d93fa6e8c4c653 [file] [log] [blame]
// Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/evp.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <map>
#include <optional>
#include <string>
#include <string_view>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/digest.h>
#include <openssl/dh.h>
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include <openssl/err.h>
#include <openssl/obj.h>
#include <openssl/rsa.h>
#include "../test/der_trailing_data.h"
#include "../test/file_test.h"
#include "../test/test_util.h"
#include "../test/wycheproof_util.h"
// evp_test dispatches between multiple test types. PublicKey and PrivateKey
// tests take a key name parameter and key information. If the test is
// successful, the key is saved under that key name. Decrypt, Sign, and Verify
// tests take a previously imported key name as parameter and test their
// respective operations.
static const EVP_MD *GetDigest(std::string_view name) {
if (name == "MD5") {
return EVP_md5();
} else if (name == "SHA1") {
return EVP_sha1();
} else if (name == "SHA224") {
return EVP_sha224();
} else if (name == "SHA256") {
return EVP_sha256();
} else if (name == "SHA384") {
return EVP_sha384();
} else if (name == "SHA512") {
return EVP_sha512();
}
ADD_FAILURE() << "Unknown digest: " << name;
return nullptr;
}
static std::optional<int> GetRSAPadding(std::string_view name) {
if (name == "PKCS1") {
return RSA_PKCS1_PADDING;
}
if (name == "PSS") {
return RSA_PKCS1_PSS_PADDING;
}
if (name == "OAEP") {
return RSA_PKCS1_OAEP_PADDING;
}
if (name == "None") {
return RSA_NO_PADDING;
}
ADD_FAILURE() << "Unknown RSA padding mode: " << name;
return std::nullopt;
}
struct AlgorithmInfo {
const EVP_PKEY_ALG *alg;
int pkey_id;
bool is_default;
};
static const std::map<std::string, AlgorithmInfo> kAllAlgorithms = {
{"RSA", {EVP_pkey_rsa(), EVP_PKEY_RSA, true}},
{"RSA-PSS-SHA-256", {EVP_pkey_rsa_pss_sha256(), EVP_PKEY_RSA_PSS, false}},
{"EC-P-224", {EVP_pkey_ec_p224(), EVP_PKEY_EC, true}},
{"EC-P-256", {EVP_pkey_ec_p256(), EVP_PKEY_EC, true}},
{"EC-P-384", {EVP_pkey_ec_p384(), EVP_PKEY_EC, true}},
{"EC-P-521", {EVP_pkey_ec_p521(), EVP_PKEY_EC, true}},
{"X25519", {EVP_pkey_x25519(), EVP_PKEY_X25519, true}},
{"Ed25519", {EVP_pkey_ed25519(), EVP_PKEY_ED25519, true}},
{"DSA", {EVP_pkey_dsa(), EVP_PKEY_DSA, true}},
};
using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>;
enum class KeyRole { kPublic, kPrivate };
static void CheckRSAParam(FileTest *t, std::string_view attr_name,
const EVP_PKEY *pkey,
const BIGNUM *(*rsa_getter)(const RSA *)) {
SCOPED_TRACE(attr_name);
if (t->HasAttribute(attr_name)) {
bssl::UniquePtr<BIGNUM> want =
HexToBIGNUM(t->GetAttributeOrDie(attr_name).c_str());
ASSERT_TRUE(want);
const RSA *rsa = EVP_PKEY_get0_RSA(pkey);
ASSERT_TRUE(rsa);
const BIGNUM *got = rsa_getter(rsa);
ASSERT_TRUE(got);
EXPECT_EQ(BN_cmp(want.get(), got), 0)
<< "wanted: " << BIGNUMToHex(want.get())
<< "\ngot: " << BIGNUMToHex(got);
}
// We have many test RSA keys so, for now, don't require that all RSA keys
// list out these parameters. That is, the absence of an RSA parameter does
// not currently assert that we omit them.
}
static bool ImportKey(FileTest *t, KeyMap *key_map, KeyRole key_role) {
std::string format_name = key_role == KeyRole::kPublic ? "spki" : "pkcs8";
auto parse_func = key_role == KeyRole::kPublic
? &EVP_PKEY_from_subject_public_key_info
: &EVP_PKEY_from_private_key_info;
auto parse_default_func = key_role == KeyRole::kPublic ? &EVP_parse_public_key
: &EVP_parse_private_key;
auto marshal_func = key_role == KeyRole::kPublic ? &EVP_marshal_public_key
: &EVP_marshal_private_key;
// This test will first import the key from all available methods, then check
// that all properties on all keys match.
std::vector<std::pair<std::string, bssl::UniquePtr<EVP_PKEY>>> keys;
// Parse from SPKI or PKCS#8.
std::vector<uint8_t> input;
if (!t->GetBytes(&input, "Input")) {
return false;
}
// First, parse the key with all algorithms active. Check this before
// specifying an individual algorithm, so that error cases do not need to
// specify an Algorithm key.
std::vector<const EVP_PKEY_ALG *> algs;
for (const auto &[name, info] : kAllAlgorithms) {
algs.push_back(info.alg);
}
bssl::UniquePtr<EVP_PKEY> new_key(
parse_func(input.data(), input.size(), algs.data(), algs.size()));
if (new_key == nullptr) {
return false;
}
keys.emplace_back(format_name + " - all algs", std::move(new_key));
// Test that the parsers reject trailing data.
bool ok = TestDERTrailingData(
input, [&](bssl::Span<const uint8_t> rewritten, size_t n) {
// We currently intentionally ignore trailing data in the outermost
// PKCS#8 PrivateKeyInfo element because we don't parse the attributes.
if (n == 0 && key_role == KeyRole::kPrivate) {
return;
}
SCOPED_TRACE(n);
bssl::UniquePtr<EVP_PKEY> parsed(parse_func(
rewritten.data(), rewritten.size(), algs.data(), algs.size()));
EXPECT_FALSE(parsed);
});
EXPECT_TRUE(ok);
// Parse with just the specific algorithm.
std::string alg_name;
if (!t->GetAttribute(&alg_name, "Algorithm")) {
return false;
}
auto it = kAllAlgorithms.find(alg_name);
if (it == kAllAlgorithms.end()) {
ADD_FAILURE() << "Unknown algorithm: " << alg_name;
return false;
}
const AlgorithmInfo &alg_info = it->second;
new_key.reset(parse_func(input.data(), input.size(), &alg_info.alg, 1));
if (new_key == nullptr) {
return false;
}
keys.emplace_back(format_name + " - " + alg_name + " only",
std::move(new_key));
// Parsing with all other algorithms should fail. This currently assumes each
// key can only be parsed by one algorithm. Make the field a list of
// algorithms if this ever changes.
algs.clear();
for (const auto &[name, info] : kAllAlgorithms) {
if (name != alg_name) {
algs.push_back(info.alg);
}
}
new_key.reset(
parse_func(input.data(), input.size(), algs.data(), algs.size()));
EXPECT_FALSE(new_key);
ERR_clear_error();
// Parse with the default parser.
CBS cbs(input);
new_key.reset(parse_default_func(&cbs));
if (alg_info.is_default) {
if (new_key == nullptr) {
return false;
}
keys.emplace_back(format_name + " - default algorithms",
std::move(new_key));
} else {
EXPECT_FALSE(new_key);
ERR_clear_error();
}
// Import as a raw key.
if (key_role == KeyRole::kPublic && t->HasAttribute("RawPublic")) {
std::vector<uint8_t> raw;
if (!t->GetBytes(&raw, "RawPublic")) {
return false;
}
new_key.reset(
EVP_PKEY_from_raw_public_key(alg_info.alg, raw.data(), raw.size()));
if (new_key == nullptr) {
return false;
}
keys.emplace_back("raw public", std::move(new_key));
}
if (key_role == KeyRole::kPrivate && t->HasAttribute("RawPrivate")) {
std::vector<uint8_t> raw;
if (!t->GetBytes(&raw, "RawPrivate")) {
return false;
}
new_key.reset(
EVP_PKEY_from_raw_private_key(alg_info.alg, raw.data(), raw.size()));
if (new_key == nullptr) {
return false;
}
keys.emplace_back("raw private", std::move(new_key));
}
// Import RSA key from parameters.
if (alg_info.pkey_id == EVP_PKEY_RSA) {
if (key_role == KeyRole::kPublic && t->HasAttribute("RSAParamN") &&
t->HasAttribute("RSAParamE")) {
bssl::UniquePtr<BIGNUM> n =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamN").c_str());
bssl::UniquePtr<BIGNUM> e =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamE").c_str());
if (n == nullptr || e == nullptr) {
return false;
}
bssl::UniquePtr<RSA> rsa(RSA_new_public_key(n.get(), e.get()));
new_key.reset(EVP_PKEY_new());
if (rsa == nullptr || new_key == nullptr ||
!EVP_PKEY_set1_RSA(new_key.get(), rsa.get())) {
return false;
}
keys.emplace_back("RSA public params", std::move(new_key));
}
if (key_role == KeyRole::kPrivate && t->HasAttribute("RSAParamN") &&
t->HasAttribute("RSAParamE") && t->HasAttribute("RSAParamD") &&
t->HasAttribute("RSAParamP") && t->HasAttribute("RSAParamQ") &&
t->HasAttribute("RSAParamDMP1") && t->HasAttribute("RSAParamDMQ1") &&
t->HasAttribute("RSAParamIQMP")) {
bssl::UniquePtr<BIGNUM> n =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamN").c_str());
bssl::UniquePtr<BIGNUM> e =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamE").c_str());
bssl::UniquePtr<BIGNUM> d =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamD").c_str());
bssl::UniquePtr<BIGNUM> p =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamP").c_str());
bssl::UniquePtr<BIGNUM> q =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamQ").c_str());
bssl::UniquePtr<BIGNUM> dmp1 =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamDMP1").c_str());
bssl::UniquePtr<BIGNUM> dmq1 =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamDMQ1").c_str());
bssl::UniquePtr<BIGNUM> iqmp =
HexToBIGNUM(t->GetAttributeOrDie("RSAParamIQMP").c_str());
if (n == nullptr || e == nullptr) {
return false;
}
bssl::UniquePtr<RSA> rsa(RSA_new_private_key(n.get(), e.get(), d.get(),
p.get(), q.get(), dmp1.get(),
dmq1.get(), iqmp.get()));
new_key.reset(EVP_PKEY_new());
if (rsa == nullptr || new_key == nullptr ||
!EVP_PKEY_set1_RSA(new_key.get(), rsa.get())) {
return false;
}
keys.emplace_back("RSA private params", std::move(new_key));
}
}
// Check properties of the keys.
for (const auto &[name, pkey] : keys) {
SCOPED_TRACE(name);
EXPECT_EQ(alg_info.pkey_id, EVP_PKEY_id(pkey.get()));
if (t->HasAttribute("Bits")) {
EXPECT_EQ(EVP_PKEY_bits(pkey.get()),
atoi(t->GetAttributeOrDie("Bits").c_str()));
}
if (t->HasAttribute("ECCurve")) {
EXPECT_EQ(OBJ_nid2sn(EVP_PKEY_get_ec_curve_nid(pkey.get())),
t->GetAttributeOrDie("ECCurve"));
} else {
EXPECT_EQ(EVP_PKEY_get_ec_curve_nid(pkey.get()), NID_undef);
}
CheckRSAParam(t, "RSAParamN", pkey.get(), RSA_get0_n);
CheckRSAParam(t, "RSAParamE", pkey.get(), RSA_get0_e);
CheckRSAParam(t, "RSAParamD", pkey.get(), RSA_get0_d);
CheckRSAParam(t, "RSAParamP", pkey.get(), RSA_get0_p);
CheckRSAParam(t, "RSAParamQ", pkey.get(), RSA_get0_q);
CheckRSAParam(t, "RSAParamDMP1", pkey.get(), RSA_get0_dmp1);
CheckRSAParam(t, "RSAParamDMQ1", pkey.get(), RSA_get0_dmq1);
CheckRSAParam(t, "RSAParamIQMP", pkey.get(), RSA_get0_iqmp);
// All keys must compare equal.
EXPECT_EQ(EVP_PKEY_cmp(pkey.get(), keys.front().second.get()), 1);
// The key must re-encode correctly.
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), 0) || !marshal_func(cbb.get(), pkey.get())) {
return false;
}
std::vector<uint8_t> output = input;
if (t->HasAttribute("Output") && !t->GetBytes(&output, "Output")) {
return false;
}
EXPECT_EQ(Bytes(output), Bytes(CBB_data(cbb.get()), CBB_len(cbb.get())))
<< "Re-encoding the key did not match.";
if (t->HasAttribute("RawPrivate")) {
std::vector<uint8_t> expected;
if (!t->GetBytes(&expected, "RawPrivate")) {
return false;
}
std::vector<uint8_t> raw;
size_t len;
if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) {
return false;
}
raw.resize(len);
if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) {
return false;
}
raw.resize(len);
EXPECT_EQ(Bytes(raw), Bytes(expected));
// Short buffers should be rejected.
raw.resize(len - 1);
len = raw.size();
EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len));
} else {
size_t len;
EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len));
}
if (t->HasAttribute("RawPublic")) {
std::vector<uint8_t> expected;
if (!t->GetBytes(&expected, "RawPublic")) {
return false;
}
std::vector<uint8_t> raw;
size_t len;
if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) {
return false;
}
raw.resize(len);
if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) {
return false;
}
raw.resize(len);
EXPECT_EQ(Bytes(raw), Bytes(expected));
// Short buffers should be rejected.
raw.resize(len - 1);
len = raw.size();
EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len));
} else {
size_t len;
EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len));
}
}
// Save the key for future tests.
const std::string &key_name = t->GetParameter();
EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name;
(*key_map)[key_name] = std::move(keys.front().second);
return true;
}
static bool GetOptionalBignum(FileTest *t, bssl::UniquePtr<BIGNUM> *out,
const std::string &key) {
if (!t->HasAttribute(key)) {
*out = nullptr;
return true;
}
std::vector<uint8_t> bytes;
if (!t->GetBytes(&bytes, key)) {
return false;
}
out->reset(BN_bin2bn(bytes.data(), bytes.size(), nullptr));
return *out != nullptr;
}
static bool ImportDHKey(FileTest *t, KeyMap *key_map) {
bssl::UniquePtr<BIGNUM> p, q, g, pub_key, priv_key;
if (!GetOptionalBignum(t, &p, "P") || //
!GetOptionalBignum(t, &q, "Q") || //
!GetOptionalBignum(t, &g, "G") ||
!GetOptionalBignum(t, &pub_key, "Public") ||
!GetOptionalBignum(t, &priv_key, "Private")) {
return false;
}
bssl::UniquePtr<DH> dh(DH_new());
if (dh == nullptr || !DH_set0_pqg(dh.get(), p.get(), q.get(), g.get())) {
return false;
}
// |DH_set0_pqg| takes ownership on success.
p.release();
q.release();
g.release();
if (!DH_set0_key(dh.get(), pub_key.get(), priv_key.get())) {
return false;
}
// |DH_set0_key| takes ownership on success.
pub_key.release();
priv_key.release();
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr || !EVP_PKEY_set1_DH(pkey.get(), dh.get())) {
return false;
}
// Save the key for future tests.
const std::string &key_name = t->GetParameter();
EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name;
(*key_map)[key_name] = std::move(pkey);
return true;
}
// SetupContext configures |ctx| based on attributes in |t|, with the exception
// of the signing digest which must be configured externally.
static bool SetupContext(FileTest *t, const KeyMap *key_map,
EVP_PKEY_CTX *ctx) {
if (t->HasAttribute("RSAPadding")) {
auto padding = GetRSAPadding(t->GetAttributeOrDie("RSAPadding"));
if (!padding || !EVP_PKEY_CTX_set_rsa_padding(ctx, *padding)) {
return false;
}
}
if (t->HasAttribute("PSSSaltLength") &&
!EVP_PKEY_CTX_set_rsa_pss_saltlen(
ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) {
return false;
}
if (t->HasAttribute("MGF1Digest")) {
const EVP_MD *digest = GetDigest(t->GetAttributeOrDie("MGF1Digest"));
if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) {
return false;
}
}
if (t->HasAttribute("OAEPDigest")) {
const EVP_MD *digest = GetDigest(t->GetAttributeOrDie("OAEPDigest"));
if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) {
return false;
}
}
if (t->HasAttribute("OAEPLabel")) {
std::vector<uint8_t> label;
if (!t->GetBytes(&label, "OAEPLabel")) {
return false;
}
// For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be
// take ownership of the input.
bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>(
OPENSSL_memdup(label.data(), label.size())));
if (!buf ||
!EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) {
return false;
}
buf.release();
}
if (t->HasAttribute("DerivePeer")) {
std::string derive_peer = t->GetAttributeOrDie("DerivePeer");
auto it = key_map->find(derive_peer);
if (it == key_map->end()) {
ADD_FAILURE() << "Could not find key " << derive_peer;
return false;
}
EVP_PKEY *derive_peer_key = it->second.get();
if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) {
return false;
}
}
if (t->HasAttribute("DiffieHellmanPad") && !EVP_PKEY_CTX_set_dh_pad(ctx, 1)) {
return false;
}
return true;
}
static bool MaybeReplaceWithCopy(bssl::UniquePtr<EVP_PKEY_CTX> *ctx,
bool copy_ctx) {
if (!copy_ctx) {
return true;
}
bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx->get()));
if (!copy) {
return false;
}
*ctx = std::move(copy);
return true;
}
static bool MaybeReplaceWithCopy(bssl::UniquePtr<EVP_MD_CTX> *ctx,
bool copy_ctx) {
if (!copy_ctx) {
return true;
}
bssl::UniquePtr<EVP_MD_CTX> copy(EVP_MD_CTX_new());
if (ctx == nullptr || !EVP_MD_CTX_copy_ex(copy.get(), ctx->get())) {
return false;
}
*ctx = std::move(copy);
return true;
}
static bool TestDerive(FileTest *t, const KeyMap *key_map, EVP_PKEY *key,
bool copy_ctx) {
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!ctx || //
!EVP_PKEY_derive_init(ctx.get()) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx) ||
!SetupContext(t, key_map, ctx.get()) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx)) {
return false;
}
size_t len;
std::vector<uint8_t> actual, output;
if (!EVP_PKEY_derive(ctx.get(), nullptr, &len)) {
return false;
}
actual.resize(len);
if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) {
return false;
}
actual.resize(len);
// Defer looking up the attribute so Error works properly.
if (!t->GetBytes(&output, "Output")) {
return false;
}
EXPECT_EQ(Bytes(output), Bytes(actual));
// Test when the buffer is too large.
actual.resize(len + 1);
len = actual.size();
if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output), Bytes(actual));
// Test when the buffer is too small.
actual.resize(len - 1);
len = actual.size();
if (t->HasAttribute("SmallBufferTruncates")) {
if (!EVP_PKEY_derive(ctx.get(), actual.data(), &len)) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output.data(), len), Bytes(actual));
} else {
EXPECT_FALSE(EVP_PKEY_derive(ctx.get(), actual.data(), &len));
ERR_clear_error();
}
return true;
}
static bool TestEVPOperation(FileTest *t, const KeyMap *key_map,
bool copy_ctx) {
SCOPED_TRACE(copy_ctx);
// Load the key.
const std::string &key_name = t->GetParameter();
auto it = key_map->find(key_name);
if (it == key_map->end()) {
ADD_FAILURE() << "Could not find key " << key_name;
return false;
}
EVP_PKEY *key = it->second.get();
int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr;
int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len,
const uint8_t *in, size_t in_len) = nullptr;
int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type,
ENGINE *e, EVP_PKEY *pkey) = nullptr;
bool is_verify = false;
if (t->GetType() == "Decrypt") {
key_op_init = EVP_PKEY_decrypt_init;
key_op = EVP_PKEY_decrypt;
} else if (t->GetType() == "Sign") {
key_op_init = EVP_PKEY_sign_init;
key_op = EVP_PKEY_sign;
} else if (t->GetType() == "Verify") {
key_op_init = EVP_PKEY_verify_init;
is_verify = true;
} else if (t->GetType() == "SignMessage") {
md_op_init = EVP_DigestSignInit;
} else if (t->GetType() == "VerifyMessage") {
md_op_init = EVP_DigestVerifyInit;
is_verify = true;
} else if (t->GetType() == "Encrypt") {
key_op_init = EVP_PKEY_encrypt_init;
key_op = EVP_PKEY_encrypt;
} else if (t->GetType() == "Derive") {
return TestDerive(t, key_map, key, copy_ctx);
} else {
ADD_FAILURE() << "Unknown test " << t->GetType();
return false;
}
const EVP_MD *digest = nullptr;
if (t->HasAttribute("Digest")) {
digest = GetDigest(t->GetAttributeOrDie("Digest"));
if (digest == nullptr) {
return false;
}
}
// For verify tests, the "output" is the signature. Read it now so that, for
// tests which expect a failure in SetupContext, the attribute is still
// consumed.
std::vector<uint8_t> input, actual, output;
if (!t->GetBytes(&input, "Input") ||
(is_verify && !t->GetBytes(&output, "Output"))) {
return false;
}
if (md_op_init) {
bssl::UniquePtr<EVP_MD_CTX> ctx(EVP_MD_CTX_new());
EVP_PKEY_CTX *pctx;
if (ctx == nullptr || //
!md_op_init(ctx.get(), &pctx, digest, nullptr, key) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx) ||
!SetupContext(t, key_map, pctx) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx)) {
return false;
}
if (is_verify) {
return EVP_DigestVerify(ctx.get(), output.data(), output.size(),
input.data(), input.size());
}
size_t len;
if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) {
return false;
}
actual.resize(len);
if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(),
input.size()) ||
!t->GetBytes(&output, "Output")) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output), Bytes(actual));
return true;
}
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!ctx ||
!key_op_init(ctx.get()) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx) ||
(digest != nullptr &&
!EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) ||
!SetupContext(t, key_map, ctx.get()) ||
!MaybeReplaceWithCopy(&ctx, copy_ctx)) {
return false;
}
if (is_verify) {
return EVP_PKEY_verify(ctx.get(), output.data(), output.size(),
input.data(), input.size());
}
size_t len;
if (!key_op(ctx.get(), nullptr, &len, input.data(), input.size())) {
return false;
}
actual.resize(len);
if (!key_op(ctx.get(), actual.data(), &len, input.data(), input.size())) {
return false;
}
if (t->HasAttribute("CheckDecrypt")) {
// Encryption is non-deterministic, so we check by decrypting.
size_t plaintext_len;
bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!decrypt_ctx || //
!EVP_PKEY_decrypt_init(decrypt_ctx.get()) ||
!MaybeReplaceWithCopy(&decrypt_ctx, copy_ctx) ||
(digest != nullptr &&
!EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) ||
!SetupContext(t, key_map, decrypt_ctx.get()) ||
!MaybeReplaceWithCopy(&decrypt_ctx, copy_ctx) ||
!EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len,
actual.data(), actual.size())) {
return false;
}
output.resize(plaintext_len);
if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len,
actual.data(), actual.size())) {
ADD_FAILURE() << "Could not decrypt result.";
return false;
}
output.resize(plaintext_len);
EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch.";
} else if (t->HasAttribute("CheckVerify")) {
// Some signature schemes are non-deterministic, so we check by verifying.
bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr));
if (!verify_ctx || //
!EVP_PKEY_verify_init(verify_ctx.get()) ||
!MaybeReplaceWithCopy(&verify_ctx, copy_ctx) ||
(digest != nullptr &&
!EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) ||
!SetupContext(t, key_map, verify_ctx.get()) ||
!MaybeReplaceWithCopy(&verify_ctx, copy_ctx)) {
return false;
}
if (t->HasAttribute("VerifyPSSSaltLength")) {
if (!EVP_PKEY_CTX_set_rsa_pss_saltlen(
verify_ctx.get(),
atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) {
return false;
}
}
EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), actual.size(),
input.data(), input.size()))
<< "Could not verify result.";
} else {
// By default, check by comparing the result against Output.
if (!t->GetBytes(&output, "Output")) {
return false;
}
actual.resize(len);
EXPECT_EQ(Bytes(output), Bytes(actual));
}
return true;
}
static bool TestEVP(FileTest *t, KeyMap *key_map) {
if (t->GetType() == "PrivateKey") {
return ImportKey(t, key_map, KeyRole::kPrivate);
}
if (t->GetType() == "PublicKey") {
return ImportKey(t, key_map, KeyRole::kPublic);
}
if (t->GetType() == "DHKey") {
return ImportDHKey(t, key_map);
}
// Run the test twice, once copying the context and once normally.
return TestEVPOperation(t, key_map, /*copy_ctx=*/false) &&
TestEVPOperation(t, key_map, /*copy_ctx=*/true);
}
static void RunEVPTests(const char *path) {
KeyMap key_map;
FileTestGTest(path, [&](FileTest *t) {
bool result = TestEVP(t, &key_map);
if (t->HasAttribute("Error")) {
ASSERT_FALSE(result) << "Operation unexpectedly succeeded.";
uint32_t err = ERR_peek_error();
EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err));
} else if (!result) {
ADD_FAILURE() << "Operation unexpectedly failed.";
}
});
}
TEST(EVPTest, GeneralTestVectors) {
RunEVPTests("crypto/evp/test/evp_tests.txt");
}
TEST(EVPTest, DHTestVectors) { RunEVPTests("crypto/evp/test/dh_tests.txt"); }
TEST(EVPTest, ECTestVectors) { RunEVPTests("crypto/evp/test/ec_tests.txt"); }
TEST(EVPTest, Ed25519TestVectors) {
RunEVPTests("crypto/evp/test/ed25519_tests.txt");
}
TEST(EVPTest, RSATestVectors) { RunEVPTests("crypto/evp/test/rsa_tests.txt"); }
TEST(EVPTest, X25519TestVectors) {
RunEVPTests("crypto/evp/test/x25519_tests.txt");
}
static void RunWycheproofVerifyTest(const char *path) {
SCOPED_TRACE(path);
FileTestGTest(path, [](FileTest *t) {
t->IgnoreAllUnusedInstructions();
std::vector<uint8_t> der;
ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer"));
CBS cbs;
CBS_init(&cbs, der.data(), der.size());
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs));
ASSERT_TRUE(key);
const EVP_MD *md = nullptr;
if (t->HasInstruction("sha")) {
md = GetWycheproofDigest(t, "sha", true);
ASSERT_TRUE(md);
}
bool is_pss = t->HasInstruction("mgf");
const EVP_MD *mgf1_md = nullptr;
int pss_salt_len = RSA_PSS_SALTLEN_DIGEST;
if (is_pss) {
ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf"));
mgf1_md = GetWycheproofDigest(t, "mgfSha", true);
std::string s_len;
ASSERT_TRUE(t->GetInstruction(&s_len, "sLen"));
pss_salt_len = atoi(s_len.c_str());
}
std::vector<uint8_t> msg;
ASSERT_TRUE(t->GetBytes(&msg, "msg"));
std::vector<uint8_t> sig;
ASSERT_TRUE(t->GetBytes(&sig, "sig"));
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) {
// DSA is deprecated and is not usable via EVP.
DSA *dsa = EVP_PKEY_get0_DSA(key.get());
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
ASSERT_TRUE(
EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr));
int valid;
bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(),
sig.size(), dsa) &&
valid;
EXPECT_EQ(sig_ok, result.IsValid());
} else {
bssl::ScopedEVP_MD_CTX ctx;
EVP_PKEY_CTX *pctx;
ASSERT_TRUE(
EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get()));
if (is_pss) {
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len));
}
int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(),
msg.size());
// BoringSSL does not enforce policies on weak keys and leaves it to the
// caller.
EXPECT_EQ(ret,
result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"})
? 1
: 0);
}
});
}
TEST(EVPTest, WycheproofDSA) {
RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt");
}
TEST(EVPTest, WycheproofECDSAP224) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt");
}
TEST(EVPTest, WycheproofECDSAP256) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt");
}
TEST(EVPTest, WycheproofECDSAP384) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt");
}
TEST(EVPTest, WycheproofECDSAP521) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt");
}
TEST(EVPTest, WycheproofEdDSA) {
RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt");
}
TEST(EVPTest, WycheproofRSAPKCS1) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt");
// TODO(davidben): Is this file redundant with the tests above?
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_signature_test.txt");
}
TEST(EVPTest, WycheproofRSAPKCS1Sign) {
FileTestGTest(
"third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt",
[](FileTest *t) {
t->IgnoreAllUnusedInstructions();
std::vector<uint8_t> pkcs8;
ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8"));
CBS cbs;
CBS_init(&cbs, pkcs8.data(), pkcs8.size());
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs));
ASSERT_TRUE(key);
const EVP_MD *md = GetWycheproofDigest(t, "sha", true);
ASSERT_TRUE(md);
std::vector<uint8_t> msg, sig;
ASSERT_TRUE(t->GetBytes(&msg, "msg"));
ASSERT_TRUE(t->GetBytes(&sig, "sig"));
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
bssl::ScopedEVP_MD_CTX ctx;
EVP_PKEY_CTX *pctx;
ASSERT_TRUE(
EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get()));
std::vector<uint8_t> out(EVP_PKEY_size(key.get()));
size_t len = out.size();
int ret =
EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size());
// BoringSSL does not enforce policies on weak keys and leaves it to the
// caller.
bool is_valid =
result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"});
EXPECT_EQ(ret, is_valid ? 1 : 0);
if (is_valid) {
out.resize(len);
EXPECT_EQ(Bytes(sig), Bytes(out));
}
});
}
TEST(EVPTest, WycheproofRSAPSS) {
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/"
"rsa_pss_2048_sha256_mgf1_32_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/"
"rsa_pss_3072_sha256_mgf1_32_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/"
"rsa_pss_4096_sha256_mgf1_32_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/"
"rsa_pss_4096_sha512_mgf1_32_test.txt");
RunWycheproofVerifyTest(
"third_party/wycheproof_testvectors/rsa_pss_misc_test.txt");
}
static void RunWycheproofDecryptTest(
const char *path,
std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) {
FileTestGTest(path, [&](FileTest *t) {
t->IgnoreAllUnusedInstructions();
std::vector<uint8_t> pkcs8;
ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8"));
CBS cbs;
CBS_init(&cbs, pkcs8.data(), pkcs8.size());
bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs));
ASSERT_TRUE(key);
std::vector<uint8_t> ct, msg;
ASSERT_TRUE(t->GetBytes(&ct, "ct"));
ASSERT_TRUE(t->GetBytes(&msg, "msg"));
WycheproofResult result;
ASSERT_TRUE(GetWycheproofResult(t, &result));
bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr));
ASSERT_TRUE(ctx);
ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get()));
ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get()));
std::vector<uint8_t> out(EVP_PKEY_size(key.get()));
size_t len = out.size();
int ret =
EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size());
// BoringSSL does not enforce policies on weak keys and leaves it to the
// caller.
bool is_valid = result.IsValid({"SmallModulus"});
EXPECT_EQ(ret, is_valid ? 1 : 0);
if (is_valid) {
out.resize(len);
EXPECT_EQ(Bytes(msg), Bytes(out));
}
});
}
static void RunWycheproofOAEPTest(const char *path) {
RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) {
const EVP_MD *md = GetWycheproofDigest(t, "sha", true);
ASSERT_TRUE(md);
const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true);
ASSERT_TRUE(mgf1_md);
std::vector<uint8_t> label;
ASSERT_TRUE(t->GetBytes(&label, "label"));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md));
bssl::UniquePtr<uint8_t> label_copy(
static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size())));
ASSERT_TRUE(label_copy || label.empty());
ASSERT_TRUE(
EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size()));
// |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success.
label_copy.release();
});
}
TEST(EVPTest, WycheproofRSAOAEP2048) {
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha1_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha224_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha224_mgf1sha224_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha256_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha256_mgf1sha256_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha384_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha384_mgf1sha384_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha512_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_2048_sha512_mgf1sha512_test.txt");
}
TEST(EVPTest, WycheproofRSAOAEP3072) {
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_3072_sha256_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_3072_sha256_mgf1sha256_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_3072_sha512_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_3072_sha512_mgf1sha512_test.txt");
}
TEST(EVPTest, WycheproofRSAOAEP4096) {
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_4096_sha256_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_4096_sha256_mgf1sha256_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_4096_sha512_mgf1sha1_test.txt");
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/"
"rsa_oaep_4096_sha512_mgf1sha512_test.txt");
}
TEST(EVPTest, WycheproofRSAOAEPMisc) {
RunWycheproofOAEPTest(
"third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt");
}
static void RunWycheproofPKCS1DecryptTest(const char *path) {
RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) {
// No setup needed. PKCS#1 is, sadly, the default.
});
}
TEST(EVPTest, WycheproofRSAPKCS1Decrypt) {
RunWycheproofPKCS1DecryptTest(
"third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt");
RunWycheproofPKCS1DecryptTest(
"third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt");
RunWycheproofPKCS1DecryptTest(
"third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt");
}