blob: 21f62bff914d6a27f0f86443db5d9cbc2640f8a1 [file] [log] [blame]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/evp.h>
#include <string.h>
#include <array>
#include <openssl/bytestring.h>
#include <openssl/dsa.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/span.h>
#include "internal.h"
#include "../bytestring/internal.h"
#include "../internal.h"
EVP_PKEY *EVP_PKEY_from_subject_public_key_info(const uint8_t *in, size_t len,
const EVP_PKEY_ALG *const *algs,
size_t num_algs) {
// Parse the SubjectPublicKeyInfo.
CBS cbs, spki, algorithm, oid, key;
CBS_init(&cbs, in, len);
if (!CBS_get_asn1(&cbs, &spki, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) ||
CBS_len(&spki) != 0 || //
CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) {
if (alg->method->pub_decode == nullptr ||
bssl::Span(alg->method->oid, alg->method->oid_len) != oid) {
continue;
}
// Every key type we support encodes the key as a byte string with the same
// conversion to BIT STRING, so perform that common conversion ahead of
// time, but only after the OID is recognized as supported.
CBS key_bytes = key;
uint8_t padding;
if (!CBS_get_u8(&key_bytes, &padding) || padding != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
CBS params = algorithm;
switch (alg->method->pub_decode(alg, ret.get(), &params, &key_bytes)) {
case evp_decode_error:
return nullptr;
case evp_decode_ok:
return ret.release();
case evp_decode_unsupported:
// Continue trying other algorithms.
break;
}
}
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth == NULL || key->ameth->pub_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->pub_encode(cbb, key);
}
EVP_PKEY *EVP_PKEY_from_private_key_info(const uint8_t *in, size_t len,
const EVP_PKEY_ALG *const *algs,
size_t num_algs) {
// Parse the PrivateKeyInfo.
CBS cbs, pkcs8, oid, algorithm, key;
uint64_t version;
CBS_init(&cbs, in, len);
if (!CBS_get_asn1(&cbs, &pkcs8, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_uint64(&pkcs8, &version) || version != 0 ||
!CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING) ||
// A PrivateKeyInfo ends with a SET of Attributes which we ignore.
CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) {
if (alg->method->priv_decode == nullptr ||
bssl::Span(alg->method->oid, alg->method->oid_len) != oid) {
continue;
}
CBS params = algorithm, key_copy = key;
switch (alg->method->priv_decode(alg, ret.get(), &params, &key_copy)) {
case evp_decode_error:
return nullptr;
case evp_decode_ok:
return ret.release();
case evp_decode_unsupported:
// Continue trying other algorithms.
break;
}
}
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth == NULL || key->ameth->priv_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->priv_encode(cbb, key);
}
EVP_PKEY *EVP_parse_public_key(CBS *cbs) {
CBS elem;
if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
auto algs = bssl::GetDefaultEVPAlgorithms();
return EVP_PKEY_from_subject_public_key_info(CBS_data(&elem), CBS_len(&elem),
algs.data(), algs.size());
}
EVP_PKEY *EVP_parse_private_key(CBS *cbs) {
CBS elem;
if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
auto algs = bssl::GetDefaultEVPAlgorithms();
return EVP_PKEY_from_private_key_info(CBS_data(&elem), CBS_len(&elem),
algs.data(), algs.size());
}
static bssl::UniquePtr<EVP_PKEY> old_priv_decode(CBS *cbs, int type) {
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
switch (type) {
case EVP_PKEY_EC: {
bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_parse_private_key(cbs, nullptr));
if (ec_key == nullptr) {
return nullptr;
}
EVP_PKEY_assign_EC_KEY(ret.get(), ec_key.release());
return ret;
}
case EVP_PKEY_DSA: {
bssl::UniquePtr<DSA> dsa(DSA_parse_private_key(cbs));
if (dsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_DSA(ret.get(), dsa.release());
return ret;
}
case EVP_PKEY_RSA: {
bssl::UniquePtr<RSA> rsa(RSA_parse_private_key(cbs));
if (rsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_RSA(ret.get(), rsa.release());
return ret;
}
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE);
return nullptr;
}
}
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len) {
return bssl::D2IFromCBS(
out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> {
// Parse with the legacy format.
CBS copy = *cbs;
bssl::UniquePtr<EVP_PKEY> ret = old_priv_decode(cbs, type);
if (ret == nullptr) {
// Try again with PKCS#8.
ERR_clear_error();
*cbs = copy;
ret.reset(EVP_parse_private_key(cbs));
if (ret == nullptr) {
return nullptr;
}
if (EVP_PKEY_id(ret.get()) != type) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES);
return nullptr;
}
}
return ret;
});
}
// num_elements parses one SEQUENCE from |in| and returns the number of elements
// in it. On parse error, it returns zero.
static size_t num_elements(const uint8_t *in, size_t in_len) {
CBS cbs, sequence;
CBS_init(&cbs, in, (size_t)in_len);
if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) {
return 0;
}
size_t count = 0;
while (CBS_len(&sequence) > 0) {
if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) {
return 0;
}
count++;
}
return count;
}
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) {
if (len < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
// Parse the input as a PKCS#8 PrivateKeyInfo.
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
EVP_PKEY *ret = EVP_parse_private_key(&cbs);
if (ret != NULL) {
if (out != NULL) {
EVP_PKEY_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
ERR_clear_error();
// Count the elements to determine the legacy key format.
switch (num_elements(*inp, (size_t)len)) {
case 4:
return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len);
case 6:
return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len);
default:
return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len);
}
}
int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) {
switch (EVP_PKEY_id(key)) {
case EVP_PKEY_RSA:
return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(key), outp);
case EVP_PKEY_DSA:
return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(key), outp);
case EVP_PKEY_EC:
return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(key), outp);
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return -1;
}
}
EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len) {
return bssl::D2IFromCBS(
out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> {
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
switch (type) {
case EVP_PKEY_RSA: {
bssl::UniquePtr<RSA> rsa(RSA_parse_public_key(cbs));
if (rsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_RSA(ret.get(), rsa.release());
return ret;
}
// Unlike OpenSSL, we do not support EC keys with this API. The raw EC
// public key serialization requires knowing the group. In OpenSSL,
// calling this function with |EVP_PKEY_EC| and setting |out| to
// nullptr does not work. It requires |*out| to include a
// partially-initialized |EVP_PKEY| to extract the group.
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return nullptr;
}
});
}
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) {
return bssl::D2IFromCBS(out, inp, len, EVP_parse_public_key);
}
int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) {
if (pkey == nullptr) {
return 0;
}
return bssl::I2DFromCBB(
/*initial_capacity=*/128, outp,
[&](CBB *cbb) -> bool { return EVP_marshal_public_key(cbb, pkey); });
}
static bssl::UniquePtr<EVP_PKEY> parse_spki(
CBS *cbs, bssl::Span<const EVP_PKEY_ALG *const> algs) {
CBS spki;
if (!CBS_get_asn1_element(cbs, &spki, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
return bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_from_subject_public_key_info(
CBS_data(&spki), CBS_len(&spki), algs.data(), algs.size()));
}
static bssl::UniquePtr<EVP_PKEY> parse_spki(CBS *cbs, const EVP_PKEY_ALG *alg) {
return parse_spki(cbs, bssl::Span(&alg, 1));
}
RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) {
return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<RSA> {
bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_rsa());
if (pkey == nullptr) {
return nullptr;
}
return bssl::UniquePtr<RSA>(EVP_PKEY_get1_RSA(pkey.get()));
});
}
int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) {
if (rsa == nullptr) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_RSA(pkey.get(), const_cast<RSA *>(rsa))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}
DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) {
return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<DSA> {
bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_dsa());
if (pkey == nullptr) {
return nullptr;
}
return bssl::UniquePtr<DSA>(EVP_PKEY_get1_DSA(pkey.get()));
});
}
int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) {
if (dsa == nullptr) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_DSA(pkey.get(), const_cast<DSA *>(dsa))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}
EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) {
return bssl::D2IFromCBS(
out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<EC_KEY> {
const EVP_PKEY_ALG *const algs[] = {
EVP_pkey_ec_p224(), EVP_pkey_ec_p256(), EVP_pkey_ec_p384(),
EVP_pkey_ec_p521()};
bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, algs);
if (pkey == nullptr) {
return nullptr;
}
return bssl::UniquePtr<EC_KEY>(EVP_PKEY_get1_EC_KEY(pkey.get()));
});
}
int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) {
if (ec_key == NULL) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_EC_KEY(pkey.get(), const_cast<EC_KEY *>(ec_key))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}