| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/evp.h> |
| |
| #include <string.h> |
| |
| #include <array> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/dsa.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/rsa.h> |
| #include <openssl/span.h> |
| |
| #include "internal.h" |
| #include "../bytestring/internal.h" |
| #include "../internal.h" |
| |
| |
| EVP_PKEY *EVP_PKEY_from_subject_public_key_info(const uint8_t *in, size_t len, |
| const EVP_PKEY_ALG *const *algs, |
| size_t num_algs) { |
| // Parse the SubjectPublicKeyInfo. |
| CBS cbs, spki, algorithm, oid, key; |
| CBS_init(&cbs, in, len); |
| if (!CBS_get_asn1(&cbs, &spki, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || |
| CBS_len(&spki) != 0 || // |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { |
| if (alg->method->pub_decode == nullptr || |
| bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { |
| continue; |
| } |
| // Every key type we support encodes the key as a byte string with the same |
| // conversion to BIT STRING, so perform that common conversion ahead of |
| // time, but only after the OID is recognized as supported. |
| CBS key_bytes = key; |
| uint8_t padding; |
| if (!CBS_get_u8(&key_bytes, &padding) || padding != 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| CBS params = algorithm; |
| switch (alg->method->pub_decode(alg, ret.get(), ¶ms, &key_bytes)) { |
| case evp_decode_error: |
| return nullptr; |
| case evp_decode_ok: |
| return ret.release(); |
| case evp_decode_unsupported: |
| // Continue trying other algorithms. |
| break; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
| return nullptr; |
| } |
| |
| int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { |
| if (key->ameth == NULL || key->ameth->pub_encode == NULL) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
| return 0; |
| } |
| |
| return key->ameth->pub_encode(cbb, key); |
| } |
| |
| EVP_PKEY *EVP_PKEY_from_private_key_info(const uint8_t *in, size_t len, |
| const EVP_PKEY_ALG *const *algs, |
| size_t num_algs) { |
| // Parse the PrivateKeyInfo. |
| CBS cbs, pkcs8, oid, algorithm, key; |
| uint64_t version; |
| CBS_init(&cbs, in, len); |
| if (!CBS_get_asn1(&cbs, &pkcs8, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_uint64(&pkcs8, &version) || version != 0 || |
| !CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING) || |
| // A PrivateKeyInfo ends with a SET of Attributes which we ignore. |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { |
| if (alg->method->priv_decode == nullptr || |
| bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { |
| continue; |
| } |
| CBS params = algorithm, key_copy = key; |
| switch (alg->method->priv_decode(alg, ret.get(), ¶ms, &key_copy)) { |
| case evp_decode_error: |
| return nullptr; |
| case evp_decode_ok: |
| return ret.release(); |
| case evp_decode_unsupported: |
| // Continue trying other algorithms. |
| break; |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
| return nullptr; |
| } |
| |
| int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { |
| if (key->ameth == NULL || key->ameth->priv_encode == NULL) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); |
| return 0; |
| } |
| |
| return key->ameth->priv_encode(cbb, key); |
| } |
| |
| EVP_PKEY *EVP_parse_public_key(CBS *cbs) { |
| CBS elem; |
| if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| |
| auto algs = bssl::GetDefaultEVPAlgorithms(); |
| return EVP_PKEY_from_subject_public_key_info(CBS_data(&elem), CBS_len(&elem), |
| algs.data(), algs.size()); |
| } |
| |
| EVP_PKEY *EVP_parse_private_key(CBS *cbs) { |
| CBS elem; |
| if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| |
| auto algs = bssl::GetDefaultEVPAlgorithms(); |
| return EVP_PKEY_from_private_key_info(CBS_data(&elem), CBS_len(&elem), |
| algs.data(), algs.size()); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> old_priv_decode(CBS *cbs, int type) { |
| bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| |
| switch (type) { |
| case EVP_PKEY_EC: { |
| bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_parse_private_key(cbs, nullptr)); |
| if (ec_key == nullptr) { |
| return nullptr; |
| } |
| EVP_PKEY_assign_EC_KEY(ret.get(), ec_key.release()); |
| return ret; |
| } |
| case EVP_PKEY_DSA: { |
| bssl::UniquePtr<DSA> dsa(DSA_parse_private_key(cbs)); |
| if (dsa == nullptr) { |
| return nullptr; |
| } |
| EVP_PKEY_assign_DSA(ret.get(), dsa.release()); |
| return ret; |
| } |
| case EVP_PKEY_RSA: { |
| bssl::UniquePtr<RSA> rsa(RSA_parse_private_key(cbs)); |
| if (rsa == nullptr) { |
| return nullptr; |
| } |
| EVP_PKEY_assign_RSA(ret.get(), rsa.release()); |
| return ret; |
| } |
| default: |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); |
| return nullptr; |
| } |
| } |
| |
| EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, |
| long len) { |
| return bssl::D2IFromCBS( |
| out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { |
| // Parse with the legacy format. |
| CBS copy = *cbs; |
| bssl::UniquePtr<EVP_PKEY> ret = old_priv_decode(cbs, type); |
| if (ret == nullptr) { |
| // Try again with PKCS#8. |
| ERR_clear_error(); |
| *cbs = copy; |
| ret.reset(EVP_parse_private_key(cbs)); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| if (EVP_PKEY_id(ret.get()) != type) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); |
| return nullptr; |
| } |
| } |
| return ret; |
| }); |
| } |
| |
| // num_elements parses one SEQUENCE from |in| and returns the number of elements |
| // in it. On parse error, it returns zero. |
| static size_t num_elements(const uint8_t *in, size_t in_len) { |
| CBS cbs, sequence; |
| CBS_init(&cbs, in, (size_t)in_len); |
| |
| if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { |
| return 0; |
| } |
| |
| size_t count = 0; |
| while (CBS_len(&sequence) > 0) { |
| if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) { |
| return 0; |
| } |
| |
| count++; |
| } |
| |
| return count; |
| } |
| |
| EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { |
| if (len < 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return NULL; |
| } |
| |
| // Parse the input as a PKCS#8 PrivateKeyInfo. |
| CBS cbs; |
| CBS_init(&cbs, *inp, (size_t)len); |
| EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
| if (ret != NULL) { |
| if (out != NULL) { |
| EVP_PKEY_free(*out); |
| *out = ret; |
| } |
| *inp = CBS_data(&cbs); |
| return ret; |
| } |
| ERR_clear_error(); |
| |
| // Count the elements to determine the legacy key format. |
| switch (num_elements(*inp, (size_t)len)) { |
| case 4: |
| return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); |
| |
| case 6: |
| return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); |
| |
| default: |
| return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); |
| } |
| } |
| |
| int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { |
| switch (EVP_PKEY_id(key)) { |
| case EVP_PKEY_RSA: |
| return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(key), outp); |
| case EVP_PKEY_DSA: |
| return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(key), outp); |
| case EVP_PKEY_EC: |
| return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(key), outp); |
| default: |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
| return -1; |
| } |
| } |
| |
| EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, |
| long len) { |
| return bssl::D2IFromCBS( |
| out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { |
| bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); |
| if (ret == nullptr) { |
| return nullptr; |
| } |
| switch (type) { |
| case EVP_PKEY_RSA: { |
| bssl::UniquePtr<RSA> rsa(RSA_parse_public_key(cbs)); |
| if (rsa == nullptr) { |
| return nullptr; |
| } |
| EVP_PKEY_assign_RSA(ret.get(), rsa.release()); |
| return ret; |
| } |
| |
| // Unlike OpenSSL, we do not support EC keys with this API. The raw EC |
| // public key serialization requires knowing the group. In OpenSSL, |
| // calling this function with |EVP_PKEY_EC| and setting |out| to |
| // nullptr does not work. It requires |*out| to include a |
| // partially-initialized |EVP_PKEY| to extract the group. |
| default: |
| OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); |
| return nullptr; |
| } |
| }); |
| } |
| |
| EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) { |
| return bssl::D2IFromCBS(out, inp, len, EVP_parse_public_key); |
| } |
| |
| int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) { |
| if (pkey == nullptr) { |
| return 0; |
| } |
| return bssl::I2DFromCBB( |
| /*initial_capacity=*/128, outp, |
| [&](CBB *cbb) -> bool { return EVP_marshal_public_key(cbb, pkey); }); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> parse_spki( |
| CBS *cbs, bssl::Span<const EVP_PKEY_ALG *const> algs) { |
| CBS spki; |
| if (!CBS_get_asn1_element(cbs, &spki, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return nullptr; |
| } |
| return bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_from_subject_public_key_info( |
| CBS_data(&spki), CBS_len(&spki), algs.data(), algs.size())); |
| } |
| |
| static bssl::UniquePtr<EVP_PKEY> parse_spki(CBS *cbs, const EVP_PKEY_ALG *alg) { |
| return parse_spki(cbs, bssl::Span(&alg, 1)); |
| } |
| |
| RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) { |
| return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<RSA> { |
| bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_rsa()); |
| if (pkey == nullptr) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<RSA>(EVP_PKEY_get1_RSA(pkey.get())); |
| }); |
| } |
| |
| int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) { |
| if (rsa == nullptr) { |
| return 0; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (pkey == nullptr || |
| !EVP_PKEY_set1_RSA(pkey.get(), const_cast<RSA *>(rsa))) { |
| return -1; |
| } |
| |
| return i2d_PUBKEY(pkey.get(), outp); |
| } |
| |
| DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) { |
| return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<DSA> { |
| bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_dsa()); |
| if (pkey == nullptr) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<DSA>(EVP_PKEY_get1_DSA(pkey.get())); |
| }); |
| } |
| |
| int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) { |
| if (dsa == nullptr) { |
| return 0; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (pkey == nullptr || |
| !EVP_PKEY_set1_DSA(pkey.get(), const_cast<DSA *>(dsa))) { |
| return -1; |
| } |
| |
| return i2d_PUBKEY(pkey.get(), outp); |
| } |
| |
| EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) { |
| return bssl::D2IFromCBS( |
| out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<EC_KEY> { |
| const EVP_PKEY_ALG *const algs[] = { |
| EVP_pkey_ec_p224(), EVP_pkey_ec_p256(), EVP_pkey_ec_p384(), |
| EVP_pkey_ec_p521()}; |
| bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, algs); |
| if (pkey == nullptr) { |
| return nullptr; |
| } |
| return bssl::UniquePtr<EC_KEY>(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| }); |
| } |
| |
| int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) { |
| if (ec_key == NULL) { |
| return 0; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); |
| if (pkey == nullptr || |
| !EVP_PKEY_set1_EC_KEY(pkey.get(), const_cast<EC_KEY *>(ec_key))) { |
| return -1; |
| } |
| |
| return i2d_PUBKEY(pkey.get(), outp); |
| } |