|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <errno.h> | 
|  | #include <limits.h> | 
|  | #include <stdarg.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <windows.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  | #endif | 
|  |  | 
|  | #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) | 
|  | #include <errno.h> | 
|  | #include <signal.h> | 
|  | #include <unistd.h> | 
|  | #endif | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | #define OPENSSL_MALLOC_PREFIX 8 | 
|  | static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large"); | 
|  |  | 
|  | #if defined(OPENSSL_ASAN) | 
|  | void __asan_poison_memory_region(const volatile void *addr, size_t size); | 
|  | void __asan_unpoison_memory_region(const volatile void *addr, size_t size); | 
|  | #else | 
|  | static void __asan_poison_memory_region(const void *addr, size_t size) {} | 
|  | static void __asan_unpoison_memory_region(const void *addr, size_t size) {} | 
|  | #endif | 
|  |  | 
|  | // Windows doesn't really support weak symbols as of May 2019, and Clang on | 
|  | // Windows will emit strong symbols instead. See | 
|  | // https://bugs.llvm.org/show_bug.cgi?id=37598 | 
|  | #if defined(__ELF__) && defined(__GNUC__) | 
|  | #define WEAK_SYMBOL_FUNC(rettype, name, args) \ | 
|  | rettype name args __attribute__((weak)); | 
|  | #else | 
|  | #define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL; | 
|  | #endif | 
|  |  | 
|  | // sdallocx is a sized |free| function. By passing the size (which we happen to | 
|  | // always know in BoringSSL), the malloc implementation can save work. We cannot | 
|  | // depend on |sdallocx| being available, however, so it's a weak symbol. | 
|  | // | 
|  | // This will always be safe, but will only be overridden if the malloc | 
|  | // implementation is statically linked with BoringSSL. So, if |sdallocx| is | 
|  | // provided in, say, libc.so, we still won't use it because that's dynamically | 
|  | // linked. This isn't an ideal result, but its helps in some cases. | 
|  | WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags)); | 
|  |  | 
|  | // The following three functions can be defined to override default heap | 
|  | // allocation and freeing. If defined, it is the responsibility of | 
|  | // |OPENSSL_memory_free| to zero out the memory before returning it to the | 
|  | // system. |OPENSSL_memory_free| will not be passed NULL pointers. | 
|  | // | 
|  | // WARNING: These functions are called on every allocation and free in | 
|  | // BoringSSL across the entire process. They may be called by any code in the | 
|  | // process which calls BoringSSL, including in process initializers and thread | 
|  | // destructors. When called, BoringSSL may hold pthreads locks. Any other code | 
|  | // in the process which, directly or indirectly, calls BoringSSL may be on the | 
|  | // call stack and may itself be using arbitrary synchronization primitives. | 
|  | // | 
|  | // As a result, these functions may not have the usual programming environment | 
|  | // available to most C or C++ code. In particular, they may not call into | 
|  | // BoringSSL, or any library which depends on BoringSSL. Any synchronization | 
|  | // primitives used must tolerate every other synchronization primitive linked | 
|  | // into the process, including pthreads locks. Failing to meet these constraints | 
|  | // may result in deadlocks, crashes, or memory corruption. | 
|  | WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size)); | 
|  | WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr)); | 
|  | WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr)); | 
|  |  | 
|  | #if defined(BORINGSSL_MALLOC_FAILURE_TESTING) | 
|  | static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT; | 
|  | static uint64_t current_malloc_count = 0; | 
|  | static uint64_t malloc_number_to_fail = 0; | 
|  | static int malloc_failure_enabled = 0, break_on_malloc_fail = 0, | 
|  | any_malloc_failed = 0; | 
|  |  | 
|  | static void malloc_exit_handler(void) { | 
|  | CRYPTO_MUTEX_lock_read(&malloc_failure_lock); | 
|  | if (any_malloc_failed) { | 
|  | // Signal to the test driver that some allocation failed, so it knows to | 
|  | // increment the counter and continue. | 
|  | _exit(88); | 
|  | } | 
|  | CRYPTO_MUTEX_unlock_read(&malloc_failure_lock); | 
|  | } | 
|  |  | 
|  | static void init_malloc_failure(void) { | 
|  | const char *env = getenv("MALLOC_NUMBER_TO_FAIL"); | 
|  | if (env != NULL && env[0] != 0) { | 
|  | char *endptr; | 
|  | malloc_number_to_fail = strtoull(env, &endptr, 10); | 
|  | if (*endptr == 0) { | 
|  | malloc_failure_enabled = 1; | 
|  | atexit(malloc_exit_handler); | 
|  | } | 
|  | } | 
|  | break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL; | 
|  | } | 
|  |  | 
|  | // should_fail_allocation returns one if the current allocation should fail and | 
|  | // zero otherwise. | 
|  | static int should_fail_allocation() { | 
|  | static CRYPTO_once_t once = CRYPTO_ONCE_INIT; | 
|  | CRYPTO_once(&once, init_malloc_failure); | 
|  | if (!malloc_failure_enabled) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We lock just so multi-threaded tests are still correct, but we won't test | 
|  | // every malloc exhaustively. | 
|  | CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
|  | int should_fail = current_malloc_count == malloc_number_to_fail; | 
|  | current_malloc_count++; | 
|  | any_malloc_failed = any_malloc_failed || should_fail; | 
|  | CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
|  |  | 
|  | if (should_fail && break_on_malloc_fail) { | 
|  | raise(SIGTRAP); | 
|  | } | 
|  | if (should_fail) { | 
|  | errno = ENOMEM; | 
|  | } | 
|  | return should_fail; | 
|  | } | 
|  |  | 
|  | void OPENSSL_reset_malloc_counter_for_testing(void) { | 
|  | CRYPTO_MUTEX_lock_write(&malloc_failure_lock); | 
|  | current_malloc_count = 0; | 
|  | CRYPTO_MUTEX_unlock_write(&malloc_failure_lock); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static int should_fail_allocation(void) { return 0; } | 
|  | #endif | 
|  |  | 
|  | void *OPENSSL_malloc(size_t size) { | 
|  | if (should_fail_allocation()) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (OPENSSL_memory_alloc != NULL) { | 
|  | assert(OPENSSL_memory_free != NULL); | 
|  | assert(OPENSSL_memory_get_size != NULL); | 
|  | void *ptr = OPENSSL_memory_alloc(size); | 
|  | if (ptr == NULL && size != 0) { | 
|  | goto err; | 
|  | } | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | if (size + OPENSSL_MALLOC_PREFIX < size) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX); | 
|  | if (ptr == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *(size_t *)ptr = size; | 
|  |  | 
|  | __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
|  | return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX; | 
|  |  | 
|  | err: | 
|  | // This only works because ERR does not call OPENSSL_malloc. | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_zalloc(size_t size) { | 
|  | void *ret = OPENSSL_malloc(size); | 
|  | if (ret != NULL) { | 
|  | OPENSSL_memset(ret, 0, size); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *OPENSSL_calloc(size_t num, size_t size) { | 
|  | if (size != 0 && num > SIZE_MAX / size) { | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_OVERFLOW); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return OPENSSL_zalloc(num * size); | 
|  | } | 
|  |  | 
|  | void OPENSSL_free(void *orig_ptr) { | 
|  | if (orig_ptr == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OPENSSL_memory_free != NULL) { | 
|  | OPENSSL_memory_free(orig_ptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; | 
|  | __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
|  |  | 
|  | size_t size = *(size_t *)ptr; | 
|  | OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX); | 
|  |  | 
|  | // ASan knows to intercept malloc and free, but not sdallocx. | 
|  | #if defined(OPENSSL_ASAN) | 
|  | (void)sdallocx; | 
|  | free(ptr); | 
|  | #else | 
|  | if (sdallocx) { | 
|  | sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */); | 
|  | } else { | 
|  | free(ptr); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void *OPENSSL_realloc(void *orig_ptr, size_t new_size) { | 
|  | if (orig_ptr == NULL) { | 
|  | return OPENSSL_malloc(new_size); | 
|  | } | 
|  |  | 
|  | size_t old_size; | 
|  | if (OPENSSL_memory_get_size != NULL) { | 
|  | old_size = OPENSSL_memory_get_size(orig_ptr); | 
|  | } else { | 
|  | void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX; | 
|  | __asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
|  | old_size = *(size_t *)ptr; | 
|  | __asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX); | 
|  | } | 
|  |  | 
|  | void *ret = OPENSSL_malloc(new_size); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | size_t to_copy = new_size; | 
|  | if (old_size < to_copy) { | 
|  | to_copy = old_size; | 
|  | } | 
|  |  | 
|  | memcpy(ret, orig_ptr, to_copy); | 
|  | OPENSSL_free(orig_ptr); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void OPENSSL_cleanse(void *ptr, size_t len) { | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | SecureZeroMemory(ptr, len); | 
|  | #else | 
|  | OPENSSL_memset(ptr, 0, len); | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) | 
|  | /* As best as we can tell, this is sufficient to break any optimisations that | 
|  | might try to eliminate "superfluous" memsets. If there's an easy way to | 
|  | detect memset_s, it would be better to use that. */ | 
|  | __asm__ __volatile__("" : : "r"(ptr) : "memory"); | 
|  | #endif | 
|  | #endif  // !OPENSSL_NO_ASM | 
|  | } | 
|  |  | 
|  | void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); } | 
|  |  | 
|  | int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; } | 
|  |  | 
|  | int CRYPTO_secure_malloc_initialized(void) { return 0; } | 
|  |  | 
|  | size_t CRYPTO_secure_used(void) { return 0; } | 
|  |  | 
|  | void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); } | 
|  |  | 
|  | void OPENSSL_secure_clear_free(void *ptr, size_t len) { | 
|  | OPENSSL_clear_free(ptr, len); | 
|  | } | 
|  |  | 
|  | int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) { | 
|  | const uint8_t *a = in_a; | 
|  | const uint8_t *b = in_b; | 
|  | uint8_t x = 0; | 
|  |  | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | x |= a[i] ^ b[i]; | 
|  | } | 
|  |  | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t OPENSSL_hash32(const void *ptr, size_t len) { | 
|  | // These are the FNV-1a parameters for 32 bits. | 
|  | static const uint32_t kPrime = 16777619u; | 
|  | static const uint32_t kOffsetBasis = 2166136261u; | 
|  |  | 
|  | const uint8_t *in = ptr; | 
|  | uint32_t h = kOffsetBasis; | 
|  |  | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | h ^= in[i]; | 
|  | h *= kPrime; | 
|  | } | 
|  |  | 
|  | return h; | 
|  | } | 
|  |  | 
|  | uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); } | 
|  |  | 
|  | size_t OPENSSL_strnlen(const char *s, size_t len) { | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | if (s[i] == 0) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | char *OPENSSL_strdup(const char *s) { | 
|  | if (s == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | const size_t len = strlen(s) + 1; | 
|  | char *ret = OPENSSL_malloc(len); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | OPENSSL_memcpy(ret, s, len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int OPENSSL_isalpha(int c) { | 
|  | return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'); | 
|  | } | 
|  |  | 
|  | int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; } | 
|  |  | 
|  | int OPENSSL_isxdigit(int c) { | 
|  | return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); | 
|  | } | 
|  |  | 
|  | int OPENSSL_fromxdigit(uint8_t *out, int c) { | 
|  | if (OPENSSL_isdigit(c)) { | 
|  | *out = c - '0'; | 
|  | return 1; | 
|  | } | 
|  | if ('a' <= c && c <= 'f') { | 
|  | *out = c - 'a' + 10; | 
|  | return 1; | 
|  | } | 
|  | if ('A' <= c && c <= 'F') { | 
|  | *out = c - 'A' + 10; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); } | 
|  |  | 
|  | int OPENSSL_tolower(int c) { | 
|  | if (c >= 'A' && c <= 'Z') { | 
|  | return c + ('a' - 'A'); | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | int OPENSSL_isspace(int c) { | 
|  | return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' || | 
|  | c == ' '; | 
|  | } | 
|  |  | 
|  | int OPENSSL_strcasecmp(const char *a, const char *b) { | 
|  | for (size_t i = 0;; i++) { | 
|  | const int aa = OPENSSL_tolower(a[i]); | 
|  | const int bb = OPENSSL_tolower(b[i]); | 
|  |  | 
|  | if (aa < bb) { | 
|  | return -1; | 
|  | } else if (aa > bb) { | 
|  | return 1; | 
|  | } else if (aa == 0) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) { | 
|  | for (size_t i = 0; i < n; i++) { | 
|  | const int aa = OPENSSL_tolower(a[i]); | 
|  | const int bb = OPENSSL_tolower(b[i]); | 
|  |  | 
|  | if (aa < bb) { | 
|  | return -1; | 
|  | } else if (aa > bb) { | 
|  | return 1; | 
|  | } else if (aa == 0) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int BIO_snprintf(char *buf, size_t n, const char *format, ...) { | 
|  | va_list args; | 
|  | va_start(args, format); | 
|  | int ret = BIO_vsnprintf(buf, n, format, args); | 
|  | va_end(args); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) { | 
|  | return vsnprintf(buf, n, format, args); | 
|  | } | 
|  |  | 
|  | int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args, | 
|  | int system_malloc) { | 
|  | void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc; | 
|  | void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free; | 
|  | void *(*reallocate)(void *, size_t) = | 
|  | system_malloc ? realloc : OPENSSL_realloc; | 
|  | char *candidate = NULL; | 
|  | size_t candidate_len = 64;  // TODO(bbe) what's the best initial size? | 
|  |  | 
|  | if ((candidate = allocate(candidate_len)) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | va_list args_copy; | 
|  | va_copy(args_copy, args); | 
|  | int ret = vsnprintf(candidate, candidate_len, format, args_copy); | 
|  | va_end(args_copy); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  | if ((size_t)ret >= candidate_len) { | 
|  | // Too big to fit in allocation. | 
|  | char *tmp; | 
|  |  | 
|  | candidate_len = (size_t)ret + 1; | 
|  | if ((tmp = reallocate(candidate, candidate_len)) == NULL) { | 
|  | goto err; | 
|  | } | 
|  | candidate = tmp; | 
|  | ret = vsnprintf(candidate, candidate_len, format, args); | 
|  | } | 
|  | // At this point this should not happen unless vsnprintf is insane. | 
|  | if (ret < 0 || (size_t)ret >= candidate_len) { | 
|  | goto err; | 
|  | } | 
|  | *str = candidate; | 
|  | return ret; | 
|  |  | 
|  | err: | 
|  | deallocate(candidate); | 
|  | *str = NULL; | 
|  | errno = ENOMEM; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int OPENSSL_vasprintf(char **str, const char *format, va_list args) { | 
|  | return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0); | 
|  | } | 
|  |  | 
|  | int OPENSSL_asprintf(char **str, const char *format, ...) { | 
|  | va_list args; | 
|  | va_start(args, format); | 
|  | int ret = OPENSSL_vasprintf(str, format, args); | 
|  | va_end(args); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | char *OPENSSL_strndup(const char *str, size_t size) { | 
|  | size = OPENSSL_strnlen(str, size); | 
|  |  | 
|  | size_t alloc_size = size + 1; | 
|  | if (alloc_size < size) { | 
|  | // overflow | 
|  | OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  | char *ret = OPENSSL_malloc(alloc_size); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(ret, str, size); | 
|  | ret[size] = '\0'; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) { | 
|  | size_t l = 0; | 
|  |  | 
|  | for (; dst_size > 1 && *src; dst_size--) { | 
|  | *dst++ = *src++; | 
|  | l++; | 
|  | } | 
|  |  | 
|  | if (dst_size) { | 
|  | *dst = 0; | 
|  | } | 
|  |  | 
|  | return l + strlen(src); | 
|  | } | 
|  |  | 
|  | size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) { | 
|  | size_t l = 0; | 
|  | for (; dst_size > 0 && *dst; dst_size--, dst++) { | 
|  | l++; | 
|  | } | 
|  | return l + OPENSSL_strlcpy(dst, src, dst_size); | 
|  | } | 
|  |  | 
|  | void *OPENSSL_memdup(const void *data, size_t size) { | 
|  | if (size == 0) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void *ret = OPENSSL_malloc(size); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(ret, data, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *CRYPTO_malloc(size_t size, const char *file, int line) { | 
|  | return OPENSSL_malloc(size); | 
|  | } | 
|  |  | 
|  | void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) { | 
|  | return OPENSSL_realloc(ptr, new_size); | 
|  | } | 
|  |  | 
|  | void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); } |