blob: 9eeeb131ef28306264873f7ecc8c8cb5de00dd0b [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <vector>
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/base64.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/curve25519.h>
#include <openssl/digest.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#define OPENSSL_UNSTABLE_EXPERIMENTAL_KYBER
#include <openssl/experimental/kyber.h>
#define OPENSSL_UNSTABLE_EXPERIMENTAL_SPX
#include <openssl/experimental/spx.h>
#include <openssl/hrss.h>
#include <openssl/mem.h>
#include <openssl/mldsa.h>
#include <openssl/mlkem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include <openssl/rsa.h>
#include <openssl/siphash.h>
#include <openssl/slhdsa.h>
#include <openssl/trust_token.h>
#if defined(OPENSSL_WINDOWS)
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <windows.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#elif defined(OPENSSL_APPLE)
#include <sys/time.h>
#else
#include <time.h>
#endif
#if defined(OPENSSL_THREADS)
#include <condition_variable>
#include <mutex>
#include <thread>
#endif
#include "../crypto/ec_extra/internal.h"
#include "../crypto/fipsmodule/ec/internal.h"
#include "../crypto/internal.h"
#include "../crypto/mldsa/internal.h"
#include "../crypto/trust_token/internal.h"
#include "internal.h"
// g_print_json is true if printed output is JSON formatted.
static bool g_print_json = false;
// TimeResults represents the results of benchmarking a function.
struct TimeResults {
// num_calls is the number of function calls done in the time period.
uint64_t num_calls;
// us is the number of microseconds that elapsed in the time period.
uint64_t us;
void Print(const std::string &description) const {
if (g_print_json) {
PrintJSON(description);
} else {
printf(
"Did %" PRIu64 " %s operations in %" PRIu64 "us (%.1f ops/sec)\n",
num_calls, description.c_str(), us,
(static_cast<double>(num_calls) / static_cast<double>(us)) * 1000000);
}
}
void PrintWithBytes(const std::string &description,
size_t bytes_per_call) const {
if (g_print_json) {
PrintJSON(description, bytes_per_call);
} else {
printf(
"Did %" PRIu64 " %s operations in %" PRIu64
"us (%.1f ops/sec): %.1f MB/s\n",
num_calls, description.c_str(), us,
(static_cast<double>(num_calls) / static_cast<double>(us)) * 1000000,
static_cast<double>(bytes_per_call * num_calls) /
static_cast<double>(us));
}
}
private:
void PrintJSON(const std::string &description,
size_t bytes_per_call = 0) const {
if (first_json_printed) {
puts(",");
}
printf("{\"description\": \"%s\", \"numCalls\": %" PRIu64
", \"microseconds\": %" PRIu64,
description.c_str(), num_calls, us);
if (bytes_per_call > 0) {
printf(", \"bytesPerCall\": %zu", bytes_per_call);
}
printf("}");
first_json_printed = true;
}
// first_json_printed is true if |g_print_json| is true and the first item in
// the JSON results has been printed already. This is used to handle the
// commas between each item in the result list.
static bool first_json_printed;
};
bool TimeResults::first_json_printed = false;
#if defined(OPENSSL_WINDOWS)
static uint64_t time_now() { return GetTickCount64() * 1000; }
#elif defined(OPENSSL_APPLE)
static uint64_t time_now() {
struct timeval tv;
uint64_t ret;
gettimeofday(&tv, NULL);
ret = tv.tv_sec;
ret *= 1000000;
ret += tv.tv_usec;
return ret;
}
#else
static uint64_t time_now() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
uint64_t ret = ts.tv_sec;
ret *= 1000000;
ret += ts.tv_nsec / 1000;
return ret;
}
#endif
static uint64_t g_timeout_seconds = 1;
static std::vector<size_t> g_chunk_lengths = {16, 256, 1350, 8192, 16384};
// IterationsBetweenTimeChecks returns the number of iterations of |func| to run
// in between checking the time, or zero on error.
static uint32_t IterationsBetweenTimeChecks(std::function<bool()> func) {
uint64_t start = time_now();
if (!func()) {
return 0;
}
uint64_t delta = time_now() - start;
if (delta == 0) {
return 250;
}
// Aim for about 100ms between time checks.
uint32_t ret = static_cast<double>(100000) / static_cast<double>(delta);
if (ret > 1000) {
ret = 1000;
} else if (ret < 1) {
ret = 1;
}
return ret;
}
static bool TimeFunctionImpl(TimeResults *results, std::function<bool()> func,
uint32_t iterations_between_time_checks) {
// total_us is the total amount of time that we'll aim to measure a function
// for.
const uint64_t total_us = g_timeout_seconds * 1000000;
uint64_t start = time_now(), now;
uint64_t done = 0;
for (;;) {
for (uint32_t i = 0; i < iterations_between_time_checks; i++) {
if (!func()) {
return false;
}
done++;
}
now = time_now();
if (now - start > total_us) {
break;
}
}
results->us = now - start;
results->num_calls = done;
return true;
}
static bool TimeFunction(TimeResults *results, std::function<bool()> func) {
uint32_t iterations_between_time_checks = IterationsBetweenTimeChecks(func);
if (iterations_between_time_checks == 0) {
return false;
}
return TimeFunctionImpl(results, std::move(func),
iterations_between_time_checks);
}
#if defined(OPENSSL_THREADS)
// g_threads is the number of threads to run in parallel benchmarks.
static int g_threads = 1;
// Latch behaves like C++20 std::latch.
class Latch {
public:
explicit Latch(int expected) : expected_(expected) {}
Latch(const Latch &) = delete;
Latch &operator=(const Latch &) = delete;
void ArriveAndWait() {
std::unique_lock<std::mutex> lock(lock_);
expected_--;
if (expected_ > 0) {
cond_.wait(lock, [&] { return expected_ == 0; });
} else {
cond_.notify_all();
}
}
private:
int expected_;
std::mutex lock_;
std::condition_variable cond_;
};
static bool TimeFunctionParallel(TimeResults *results,
std::function<bool()> func) {
if (g_threads <= 1) {
return TimeFunction(results, std::move(func));
}
uint32_t iterations_between_time_checks = IterationsBetweenTimeChecks(func);
if (iterations_between_time_checks == 0) {
return false;
}
struct ThreadResult {
TimeResults time_result;
bool ok = false;
};
std::vector<ThreadResult> thread_results(g_threads);
Latch latch(g_threads);
std::vector<std::thread> threads;
for (int i = 0; i < g_threads; i++) {
threads.emplace_back([&, i] {
// Wait for all the threads to be ready before running the benchmark.
latch.ArriveAndWait();
thread_results[i].ok = TimeFunctionImpl(
&thread_results[i].time_result, func, iterations_between_time_checks);
});
}
for (auto &thread : threads) {
thread.join();
}
results->num_calls = 0;
results->us = 0;
for (const auto &pair : thread_results) {
if (!pair.ok) {
return false;
}
results->num_calls += pair.time_result.num_calls;
results->us += pair.time_result.us;
}
return true;
}
#else
static bool TimeFunctionParallel(TimeResults *results,
std::function<bool()> func) {
return TimeFunction(results, std::move(func));
}
#endif
static bool SpeedRSA(const std::string &selected) {
if (!selected.empty() && selected.find("RSA") == std::string::npos) {
return true;
}
static const struct {
const char *name;
const uint8_t *key;
const size_t key_len;
} kRSAKeys[] = {
{"RSA 2048", kDERRSAPrivate2048, kDERRSAPrivate2048Len},
{"RSA 3072", kDERRSAPrivate3072, kDERRSAPrivate3072Len},
{"RSA 4096", kDERRSAPrivate4096, kDERRSAPrivate4096Len},
};
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kRSAKeys); i++) {
const std::string name = kRSAKeys[i].name;
bssl::UniquePtr<RSA> key(
RSA_private_key_from_bytes(kRSAKeys[i].key, kRSAKeys[i].key_len));
if (key == nullptr) {
fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
ERR_print_errors_fp(stderr);
return false;
}
static constexpr size_t kMaxSignature = 512;
if (RSA_size(key.get()) > kMaxSignature) {
abort();
}
const uint8_t fake_sha256_hash[32] = {0};
TimeResults results;
if (!TimeFunctionParallel(&results, [&key, &fake_sha256_hash]() -> bool {
// Usually during RSA signing we're using a long-lived |RSA| that
// has already had all of its |BN_MONT_CTX|s constructed, so it
// makes sense to use |key| directly here.
uint8_t out[kMaxSignature];
unsigned out_len;
return RSA_sign(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), out, &out_len, key.get());
})) {
fprintf(stderr, "RSA_sign failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print(name + " signing");
uint8_t sig[kMaxSignature];
unsigned sig_len;
if (!RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), sig,
&sig_len, key.get())) {
return false;
}
if (!TimeFunctionParallel(
&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
return RSA_verify(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), sig, sig_len,
key.get());
})) {
fprintf(stderr, "RSA_verify failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print(name + " verify (same key)");
if (!TimeFunctionParallel(
&results, [&key, &fake_sha256_hash, &sig, sig_len]() -> bool {
// Usually during RSA verification we have to parse an RSA key
// from a certificate or similar, in which case we'd need to
// construct a new RSA key, with a new |BN_MONT_CTX| for the
// public modulus. If we were to use |key| directly instead, then
// these costs wouldn't be accounted for.
bssl::UniquePtr<RSA> verify_key(RSA_new_public_key(
RSA_get0_n(key.get()), RSA_get0_e(key.get())));
if (!verify_key) {
return false;
}
return RSA_verify(NID_sha256, fake_sha256_hash,
sizeof(fake_sha256_hash), sig, sig_len,
verify_key.get());
})) {
fprintf(stderr, "RSA_verify failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print(name + " verify (fresh key)");
if (!TimeFunctionParallel(&results, [&]() -> bool {
return bssl::UniquePtr<RSA>(RSA_private_key_from_bytes(
kRSAKeys[i].key, kRSAKeys[i].key_len)) != nullptr;
})) {
fprintf(stderr, "Failed to parse %s key.\n", name.c_str());
ERR_print_errors_fp(stderr);
return false;
}
results.Print(name + " private key parse");
}
return true;
}
static bool SpeedRSAKeyGen(const std::string &selected) {
// Don't run this by default because it's so slow.
if (selected != "RSAKeyGen") {
return true;
}
bssl::UniquePtr<BIGNUM> e(BN_new());
if (!BN_set_word(e.get(), 65537)) {
return false;
}
const std::vector<int> kSizes = {2048, 3072, 4096};
for (int size : kSizes) {
const uint64_t start = time_now();
uint64_t num_calls = 0;
uint64_t us;
std::vector<uint64_t> durations;
for (;;) {
bssl::UniquePtr<RSA> rsa(RSA_new());
const uint64_t iteration_start = time_now();
if (!RSA_generate_key_ex(rsa.get(), size, e.get(), nullptr)) {
fprintf(stderr, "RSA_generate_key_ex failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
const uint64_t iteration_end = time_now();
num_calls++;
durations.push_back(iteration_end - iteration_start);
us = iteration_end - start;
if (us > 30 * 1000000 /* 30 secs */) {
break;
}
}
std::sort(durations.begin(), durations.end());
const std::string description =
std::string("RSA ") + std::to_string(size) + std::string(" key-gen");
const TimeResults results = {num_calls, us};
results.Print(description);
const size_t n = durations.size();
assert(n > 0);
// Distribution information is useful, but doesn't fit into the standard
// format used by |g_print_json|.
if (!g_print_json) {
uint64_t min = durations[0];
uint64_t median = n & 1 ? durations[n / 2]
: (durations[n / 2 - 1] + durations[n / 2]) / 2;
uint64_t max = durations[n - 1];
printf(" min: %" PRIu64 "us, median: %" PRIu64 "us, max: %" PRIu64
"us\n",
min, median, max);
}
}
return true;
}
static std::string ChunkLenSuffix(size_t chunk_len) {
char buf[32];
snprintf(buf, sizeof(buf), " (%zu byte%s)", chunk_len,
chunk_len != 1 ? "s" : "");
return buf;
}
static bool SpeedAEADChunk(const EVP_AEAD *aead, std::string name,
size_t chunk_len, size_t ad_len,
evp_aead_direction_t direction) {
static const unsigned kAlignment = 16;
name += ChunkLenSuffix(chunk_len);
bssl::ScopedEVP_AEAD_CTX ctx;
const size_t key_len = EVP_AEAD_key_length(aead);
const size_t nonce_len = EVP_AEAD_nonce_length(aead);
const size_t overhead_len = EVP_AEAD_max_overhead(aead);
auto key = std::make_unique<uint8_t[]>(key_len);
OPENSSL_memset(key.get(), 0, key_len);
auto nonce = std::make_unique<uint8_t[]>(nonce_len);
OPENSSL_memset(nonce.get(), 0, nonce_len);
auto in_storage = std::make_unique<uint8_t[]>(chunk_len + kAlignment);
// N.B. for EVP_AEAD_CTX_seal_scatter the input and output buffers may be the
// same size. However, in the direction == evp_aead_open case we still use
// non-scattering seal, hence we add overhead_len to the size of this buffer.
auto out_storage =
std::make_unique<uint8_t[]>(chunk_len + overhead_len + kAlignment);
auto in2_storage =
std::make_unique<uint8_t[]>(chunk_len + overhead_len + kAlignment);
auto ad = std::make_unique<uint8_t[]>(ad_len);
OPENSSL_memset(ad.get(), 0, ad_len);
auto tag_storage = std::make_unique<uint8_t[]>(overhead_len + kAlignment);
uint8_t *const in =
static_cast<uint8_t *>(align_pointer(in_storage.get(), kAlignment));
OPENSSL_memset(in, 0, chunk_len);
uint8_t *const out =
static_cast<uint8_t *>(align_pointer(out_storage.get(), kAlignment));
OPENSSL_memset(out, 0, chunk_len + overhead_len);
uint8_t *const tag =
static_cast<uint8_t *>(align_pointer(tag_storage.get(), kAlignment));
OPENSSL_memset(tag, 0, overhead_len);
uint8_t *const in2 =
static_cast<uint8_t *>(align_pointer(in2_storage.get(), kAlignment));
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH,
evp_aead_seal)) {
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
ERR_print_errors_fp(stderr);
return false;
}
// TODO(davidben): In most cases, this can be |TimeFunctionParallel|, but a
// few stateful AEADs must be run serially.
TimeResults results;
if (direction == evp_aead_seal) {
if (!TimeFunction(&results,
[chunk_len, nonce_len, ad_len, overhead_len, in, out, tag,
&ctx, &nonce, &ad]() -> bool {
size_t tag_len;
return EVP_AEAD_CTX_seal_scatter(
ctx.get(), out, tag, &tag_len, overhead_len,
nonce.get(), nonce_len, in, chunk_len, nullptr, 0,
ad.get(), ad_len);
})) {
fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
} else {
size_t out_len;
EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len,
nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len);
ctx.Reset();
if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len,
EVP_AEAD_DEFAULT_TAG_LENGTH,
evp_aead_open)) {
fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n");
ERR_print_errors_fp(stderr);
return false;
}
if (!TimeFunction(&results,
[chunk_len, overhead_len, nonce_len, ad_len, in2, out,
out_len, &ctx, &nonce, &ad]() -> bool {
size_t in2_len;
// N.B. EVP_AEAD_CTX_open_gather is not implemented for
// all AEADs.
return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len,
chunk_len + overhead_len,
nonce.get(), nonce_len, out,
out_len, ad.get(), ad_len);
})) {
fprintf(stderr, "EVP_AEAD_CTX_open failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
}
results.PrintWithBytes(
name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len);
return true;
}
static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name,
size_t ad_len, const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
for (size_t chunk_len : g_chunk_lengths) {
if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_seal)) {
return false;
}
}
return true;
}
static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name,
size_t ad_len, const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
for (size_t chunk_len : g_chunk_lengths) {
if (!SpeedAEADChunk(aead, name, chunk_len, ad_len, evp_aead_open)) {
return false;
}
}
return true;
}
static bool SpeedAESBlock(const std::string &name, unsigned bits,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
static const uint8_t kZero[32] = {0};
{
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
AES_KEY key;
return AES_set_encrypt_key(kZero, bits, &key) == 0;
})) {
fprintf(stderr, "AES_set_encrypt_key failed.\n");
return false;
}
results.Print(name + " encrypt setup");
}
{
AES_KEY key;
if (AES_set_encrypt_key(kZero, bits, &key) != 0) {
return false;
}
uint8_t block[16] = {0};
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
AES_encrypt(block, block, &key);
return true;
})) {
fprintf(stderr, "AES_encrypt failed.\n");
return false;
}
results.Print(name + " encrypt");
}
{
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
AES_KEY key;
return AES_set_decrypt_key(kZero, bits, &key) == 0;
})) {
fprintf(stderr, "AES_set_decrypt_key failed.\n");
return false;
}
results.Print(name + " decrypt setup");
}
{
AES_KEY key;
if (AES_set_decrypt_key(kZero, bits, &key) != 0) {
return false;
}
uint8_t block[16] = {0};
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
AES_decrypt(block, block, &key);
return true;
})) {
fprintf(stderr, "AES_decrypt failed.\n");
return false;
}
results.Print(name + " decrypt");
}
return true;
}
static bool SpeedHashChunk(const EVP_MD *md, std::string name,
size_t chunk_len) {
uint8_t input[16384] = {0};
if (chunk_len > sizeof(input)) {
return false;
}
name += ChunkLenSuffix(chunk_len);
TimeResults results;
if (!TimeFunctionParallel(&results, [md, chunk_len, &input]() -> bool {
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned int md_len;
bssl::ScopedEVP_MD_CTX ctx;
return EVP_DigestInit_ex(ctx.get(), md, NULL /* ENGINE */) &&
EVP_DigestUpdate(ctx.get(), input, chunk_len) &&
EVP_DigestFinal_ex(ctx.get(), digest, &md_len);
})) {
fprintf(stderr, "EVP_DigestInit_ex failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes(name, chunk_len);
return true;
}
static bool SpeedHash(const EVP_MD *md, const std::string &name,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
for (size_t chunk_len : g_chunk_lengths) {
if (!SpeedHashChunk(md, name, chunk_len)) {
return false;
}
}
return true;
}
static bool SpeedRandomChunk(std::string name, size_t chunk_len) {
static constexpr size_t kMaxChunk = 16384;
if (chunk_len > kMaxChunk) {
return false;
}
name += ChunkLenSuffix(chunk_len);
TimeResults results;
if (!TimeFunctionParallel(&results, [chunk_len]() -> bool {
uint8_t scratch[kMaxChunk];
RAND_bytes(scratch, chunk_len);
return true;
})) {
return false;
}
results.PrintWithBytes(name, chunk_len);
return true;
}
static bool SpeedRandom(const std::string &selected) {
if (!selected.empty() && selected != "RNG") {
return true;
}
for (size_t chunk_len : g_chunk_lengths) {
if (!SpeedRandomChunk("RNG", chunk_len)) {
return false;
}
}
return true;
}
static bool SpeedECDHCurve(const std::string &name, const EC_GROUP *group,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
bssl::UniquePtr<EC_KEY> peer_key(EC_KEY_new());
if (!peer_key || !EC_KEY_set_group(peer_key.get(), group) ||
!EC_KEY_generate_key(peer_key.get())) {
return false;
}
size_t peer_value_len = EC_POINT_point2oct(
EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
POINT_CONVERSION_UNCOMPRESSED, nullptr, 0, nullptr);
if (peer_value_len == 0) {
return false;
}
auto peer_value = std::make_unique<uint8_t[]>(peer_value_len);
peer_value_len = EC_POINT_point2oct(
EC_KEY_get0_group(peer_key.get()), EC_KEY_get0_public_key(peer_key.get()),
POINT_CONVERSION_UNCOMPRESSED, peer_value.get(), peer_value_len, nullptr);
if (peer_value_len == 0) {
return false;
}
TimeResults results;
if (!TimeFunctionParallel(
&results, [group, peer_value_len, &peer_value]() -> bool {
bssl::UniquePtr<EC_KEY> key(EC_KEY_new());
if (!key || !EC_KEY_set_group(key.get(), group) ||
!EC_KEY_generate_key(key.get())) {
return false;
}
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group));
bssl::UniquePtr<EC_POINT> peer_point(EC_POINT_new(group));
bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new());
bssl::UniquePtr<BIGNUM> x(BN_new());
if (!point || !peer_point || !ctx || !x ||
!EC_POINT_oct2point(group, peer_point.get(), peer_value.get(),
peer_value_len, ctx.get()) ||
!EC_POINT_mul(group, point.get(), nullptr, peer_point.get(),
EC_KEY_get0_private_key(key.get()), ctx.get()) ||
!EC_POINT_get_affine_coordinates_GFp(
group, point.get(), x.get(), nullptr, ctx.get())) {
return false;
}
return true;
})) {
return false;
}
results.Print(name);
return true;
}
static bool SpeedECDSACurve(const std::string &name, const EC_GROUP *group,
const std::string &selected) {
if (!selected.empty() && name.find(selected) == std::string::npos) {
return true;
}
bssl::UniquePtr<EC_KEY> key(EC_KEY_new());
if (!key || !EC_KEY_set_group(key.get(), group) ||
!EC_KEY_generate_key(key.get())) {
return false;
}
static constexpr size_t kMaxSignature = 256;
if (ECDSA_size(key.get()) > kMaxSignature) {
abort();
}
uint8_t digest[20];
OPENSSL_memset(digest, 42, sizeof(digest));
TimeResults results;
if (!TimeFunctionParallel(&results, [&key, &digest]() -> bool {
uint8_t out[kMaxSignature];
unsigned out_len;
return ECDSA_sign(0, digest, sizeof(digest), out, &out_len,
key.get()) == 1;
})) {
return false;
}
results.Print(name + " signing");
uint8_t signature[kMaxSignature];
unsigned sig_len;
if (!ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, key.get())) {
return false;
}
if (!TimeFunctionParallel(
&results, [&key, &signature, &digest, sig_len]() -> bool {
return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len,
key.get()) == 1;
})) {
return false;
}
results.Print(name + " verify");
return true;
}
static bool SpeedECDH(const std::string &selected) {
return SpeedECDHCurve("ECDH P-224", EC_group_p224(), selected) &&
SpeedECDHCurve("ECDH P-256", EC_group_p256(), selected) &&
SpeedECDHCurve("ECDH P-384", EC_group_p384(), selected) &&
SpeedECDHCurve("ECDH P-521", EC_group_p521(), selected);
}
static bool SpeedECDSA(const std::string &selected) {
return SpeedECDSACurve("ECDSA P-224", EC_group_p224(), selected) &&
SpeedECDSACurve("ECDSA P-256", EC_group_p256(), selected) &&
SpeedECDSACurve("ECDSA P-384", EC_group_p384(), selected) &&
SpeedECDSACurve("ECDSA P-521", EC_group_p521(), selected);
}
static bool Speed25519(const std::string &selected) {
if (!selected.empty() && selected.find("25519") == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunctionParallel(&results, []() -> bool {
uint8_t public_key[32], private_key[64];
ED25519_keypair(public_key, private_key);
return true;
})) {
return false;
}
results.Print("Ed25519 key generation");
uint8_t public_key[32], private_key[64];
ED25519_keypair(public_key, private_key);
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
if (!TimeFunctionParallel(&results, [&private_key]() -> bool {
uint8_t out[64];
return ED25519_sign(out, kMessage, sizeof(kMessage), private_key) == 1;
})) {
return false;
}
results.Print("Ed25519 signing");
uint8_t signature[64];
if (!ED25519_sign(signature, kMessage, sizeof(kMessage), private_key)) {
return false;
}
if (!TimeFunctionParallel(&results, [&public_key, &signature]() -> bool {
return ED25519_verify(kMessage, sizeof(kMessage), signature,
public_key) == 1;
})) {
fprintf(stderr, "Ed25519 verify failed.\n");
return false;
}
results.Print("Ed25519 verify");
if (!TimeFunctionParallel(&results, []() -> bool {
uint8_t out[32], in[32];
OPENSSL_memset(in, 0, sizeof(in));
X25519_public_from_private(out, in);
return true;
})) {
fprintf(stderr, "Curve25519 base-point multiplication failed.\n");
return false;
}
results.Print("Curve25519 base-point multiplication");
if (!TimeFunctionParallel(&results, []() -> bool {
uint8_t out[32], in1[32], in2[32];
OPENSSL_memset(in1, 0, sizeof(in1));
OPENSSL_memset(in2, 0, sizeof(in2));
in1[0] = 1;
in2[0] = 9;
return X25519(out, in1, in2) == 1;
})) {
fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n");
return false;
}
results.Print("Curve25519 arbitrary point multiplication");
return true;
}
static bool SpeedSPAKE2(const std::string &selected) {
if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) {
return true;
}
TimeResults results;
static const uint8_t kAliceName[] = {'A'};
static const uint8_t kBobName[] = {'B'};
static const uint8_t kPassword[] = "password";
bssl::UniquePtr<SPAKE2_CTX> alice(
SPAKE2_CTX_new(spake2_role_alice, kAliceName, sizeof(kAliceName),
kBobName, sizeof(kBobName)));
uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE];
size_t alice_msg_len;
if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len,
sizeof(alice_msg), kPassword, sizeof(kPassword))) {
fprintf(stderr, "SPAKE2_generate_msg failed.\n");
return false;
}
if (!TimeFunctionParallel(&results, [&alice_msg, alice_msg_len]() -> bool {
bssl::UniquePtr<SPAKE2_CTX> bob(
SPAKE2_CTX_new(spake2_role_bob, kBobName, sizeof(kBobName),
kAliceName, sizeof(kAliceName)));
uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64];
size_t bob_msg_len, bob_key_len;
if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len,
sizeof(bob_msg), kPassword,
sizeof(kPassword)) ||
!SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len,
sizeof(bob_key), alice_msg, alice_msg_len)) {
return false;
}
return true;
})) {
fprintf(stderr, "SPAKE2 failed.\n");
}
results.Print("SPAKE2 over Ed25519");
return true;
}
static bool SpeedScrypt(const std::string &selected) {
if (!selected.empty() && selected.find("scrypt") == std::string::npos) {
return true;
}
TimeResults results;
static const char kPassword[] = "password";
static const uint8_t kSalt[] = "NaCl";
if (!TimeFunctionParallel(&results, [&]() -> bool {
uint8_t out[64];
return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
sizeof(kSalt) - 1, 1024, 8, 16, 0 /* max_mem */,
out, sizeof(out));
})) {
fprintf(stderr, "scrypt failed.\n");
return false;
}
results.Print("scrypt (N = 1024, r = 8, p = 16)");
if (!TimeFunctionParallel(&results, [&]() -> bool {
uint8_t out[64];
return !!EVP_PBE_scrypt(kPassword, sizeof(kPassword) - 1, kSalt,
sizeof(kSalt) - 1, 16384, 8, 1, 0 /* max_mem */,
out, sizeof(out));
})) {
fprintf(stderr, "scrypt failed.\n");
return false;
}
results.Print("scrypt (N = 16384, r = 8, p = 1)");
return true;
}
static bool SpeedHRSS(const std::string &selected) {
if (!selected.empty() && selected != "HRSS") {
return true;
}
TimeResults results;
if (!TimeFunctionParallel(&results, []() -> bool {
struct HRSS_public_key pub;
struct HRSS_private_key priv;
uint8_t entropy[HRSS_GENERATE_KEY_BYTES];
RAND_bytes(entropy, sizeof(entropy));
return HRSS_generate_key(&pub, &priv, entropy);
})) {
fprintf(stderr, "Failed to time HRSS_generate_key.\n");
return false;
}
results.Print("HRSS generate");
struct HRSS_public_key pub;
struct HRSS_private_key priv;
uint8_t key_entropy[HRSS_GENERATE_KEY_BYTES];
RAND_bytes(key_entropy, sizeof(key_entropy));
if (!HRSS_generate_key(&pub, &priv, key_entropy)) {
return false;
}
if (!TimeFunctionParallel(&results, [&pub]() -> bool {
uint8_t entropy[HRSS_ENCAP_BYTES];
uint8_t shared_key[HRSS_KEY_BYTES];
uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
RAND_bytes(entropy, sizeof(entropy));
return HRSS_encap(ciphertext, shared_key, &pub, entropy);
})) {
fprintf(stderr, "Failed to time HRSS_encap.\n");
return false;
}
results.Print("HRSS encap");
uint8_t entropy[HRSS_ENCAP_BYTES];
uint8_t shared_key[HRSS_KEY_BYTES];
uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
RAND_bytes(entropy, sizeof(entropy));
if (!HRSS_encap(ciphertext, shared_key, &pub, entropy)) {
return false;
}
if (!TimeFunctionParallel(&results, [&priv, &ciphertext]() -> bool {
uint8_t shared_key2[HRSS_KEY_BYTES];
return HRSS_decap(shared_key2, &priv, ciphertext, sizeof(ciphertext));
})) {
fprintf(stderr, "Failed to time HRSS_encap.\n");
return false;
}
results.Print("HRSS decap");
return true;
}
static bool SpeedKyber(const std::string &selected) {
if (!selected.empty() && selected != "Kyber") {
return true;
}
TimeResults results;
uint8_t ciphertext[KYBER_CIPHERTEXT_BYTES];
// This ciphertext is nonsense, but Kyber decap is constant-time so, for the
// purposes of timing, it's fine.
memset(ciphertext, 42, sizeof(ciphertext));
if (!TimeFunctionParallel(&results, [&]() -> bool {
KYBER_private_key priv;
uint8_t encoded_public_key[KYBER_PUBLIC_KEY_BYTES];
KYBER_generate_key(encoded_public_key, &priv);
uint8_t shared_secret[KYBER_SHARED_SECRET_BYTES];
KYBER_decap(shared_secret, ciphertext, &priv);
return true;
})) {
fprintf(stderr, "Failed to time KYBER_generate_key + KYBER_decap.\n");
return false;
}
results.Print("Kyber generate + decap");
KYBER_private_key priv;
uint8_t encoded_public_key[KYBER_PUBLIC_KEY_BYTES];
KYBER_generate_key(encoded_public_key, &priv);
KYBER_public_key pub;
if (!TimeFunctionParallel(&results, [&]() -> bool {
CBS encoded_public_key_cbs;
CBS_init(&encoded_public_key_cbs, encoded_public_key,
sizeof(encoded_public_key));
if (!KYBER_parse_public_key(&pub, &encoded_public_key_cbs)) {
return false;
}
uint8_t shared_secret[KYBER_SHARED_SECRET_BYTES];
KYBER_encap(ciphertext, shared_secret, &pub);
return true;
})) {
fprintf(stderr, "Failed to time KYBER_encap.\n");
return false;
}
results.Print("Kyber parse + encap");
return true;
}
static bool SpeedMLDSA(const std::string &selected) {
if (!selected.empty() && selected != "ML-DSA") {
return true;
}
TimeResults results;
auto encoded_public_key =
std::make_unique<uint8_t[]>(MLDSA65_PUBLIC_KEY_BYTES);
auto priv = std::make_unique<MLDSA65_private_key>();
if (!TimeFunctionParallel(&results, [&]() -> bool {
uint8_t seed[MLDSA_SEED_BYTES];
if (!MLDSA65_generate_key(encoded_public_key.get(), seed, priv.get())) {
fprintf(stderr, "Failure in MLDSA65_generate_key.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_generate_key.\n");
return false;
}
results.Print("MLDSA key generation");
auto encoded_private_key =
std::make_unique<uint8_t[]>(MLDSA65_PRIVATE_KEY_BYTES);
CBB cbb;
CBB_init_fixed(&cbb, encoded_private_key.get(), MLDSA65_PRIVATE_KEY_BYTES);
MLDSA65_marshal_private_key(&cbb, priv.get());
if (!TimeFunctionParallel(&results, [&]() -> bool {
CBS cbs;
CBS_init(&cbs, encoded_private_key.get(), MLDSA65_PRIVATE_KEY_BYTES);
if (!MLDSA65_parse_private_key(priv.get(), &cbs)) {
fprintf(stderr, "Failure in MLDSA65_parse_private_key.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_parse_private_key.\n");
return false;
}
results.Print("MLDSA parse (valid) private key");
const char *message = "Hello world";
size_t message_len = strlen(message);
auto out_encoded_signature =
std::make_unique<uint8_t[]>(MLDSA65_SIGNATURE_BYTES);
if (!TimeFunctionParallel(&results, [&]() -> bool {
if (!MLDSA65_sign(out_encoded_signature.get(), priv.get(),
(const uint8_t *)message, message_len, nullptr, 0)) {
fprintf(stderr, "Failure in MLDSA65_sign.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_sign.\n");
return false;
}
results.Print("MLDSA sign (randomized)");
auto pub = std::make_unique<MLDSA65_public_key>();
if (!TimeFunctionParallel(&results, [&]() -> bool {
CBS cbs;
CBS_init(&cbs, encoded_public_key.get(), MLDSA65_PUBLIC_KEY_BYTES);
if (!MLDSA65_parse_public_key(pub.get(), &cbs)) {
fprintf(stderr, "Failure in MLDSA65_parse_public_key.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_parse_public_key.\n");
return false;
}
results.Print("MLDSA parse (valid) public key");
if (!TimeFunctionParallel(&results, [&]() -> bool {
if (!MLDSA65_verify(pub.get(), out_encoded_signature.get(),
MLDSA65_SIGNATURE_BYTES, (const uint8_t *)message,
message_len, nullptr, 0)) {
fprintf(stderr, "Failed to verify MLDSA signature.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_verify.\n");
return false;
}
results.Print("MLDSA verify (valid signature)");
out_encoded_signature[42] ^= 0x42;
if (!TimeFunctionParallel(&results, [&]() -> bool {
if (MLDSA65_verify(pub.get(), out_encoded_signature.get(),
MLDSA65_SIGNATURE_BYTES, (const uint8_t *)message,
message_len, nullptr, 0)) {
fprintf(stderr, "MLDSA signature unexpectedly verified.\n");
return false;
}
return true;
})) {
fprintf(stderr, "Failed to time MLDSA65_verify.\n");
return false;
}
results.Print("MLDSA verify (invalid signature)");
return true;
}
static bool SpeedMLKEM(const std::string &selected) {
if (!selected.empty() && selected != "ML-KEM-768") {
return true;
}
TimeResults results;
uint8_t ciphertext[MLKEM768_CIPHERTEXT_BYTES];
// This ciphertext is nonsense, but decap is constant-time so, for the
// purposes of timing, it's fine.
memset(ciphertext, 42, sizeof(ciphertext));
if (!TimeFunctionParallel(&results, [&]() -> bool {
MLKEM768_private_key priv;
uint8_t encoded_public_key[MLKEM768_PUBLIC_KEY_BYTES];
MLKEM768_generate_key(encoded_public_key, nullptr, &priv);
uint8_t shared_secret[MLKEM_SHARED_SECRET_BYTES];
MLKEM768_decap(shared_secret, ciphertext, sizeof(ciphertext), &priv);
return true;
})) {
fprintf(stderr, "Failed to time MLKEM768_generate_key + MLKEM768_decap.\n");
return false;
}
results.Print("ML-KEM-768 generate + decap");
MLKEM768_private_key priv;
uint8_t encoded_public_key[MLKEM768_PUBLIC_KEY_BYTES];
MLKEM768_generate_key(encoded_public_key, nullptr, &priv);
MLKEM768_public_key pub;
if (!TimeFunctionParallel(&results, [&]() -> bool {
CBS encoded_public_key_cbs;
CBS_init(&encoded_public_key_cbs, encoded_public_key,
sizeof(encoded_public_key));
if (!MLKEM768_parse_public_key(&pub, &encoded_public_key_cbs)) {
return false;
}
uint8_t shared_secret[MLKEM_SHARED_SECRET_BYTES];
MLKEM768_encap(ciphertext, shared_secret, &pub);
return true;
})) {
fprintf(stderr, "Failed to time MLKEM768_encap.\n");
return false;
}
results.Print("ML-KEM-768 parse + encap");
return true;
}
static bool SpeedMLKEM1024(const std::string &selected) {
if (!selected.empty() && selected != "ML-KEM-1024") {
return true;
}
TimeResults results;
uint8_t ciphertext[MLKEM1024_CIPHERTEXT_BYTES];
auto priv = std::make_unique<MLKEM1024_private_key>();
// This ciphertext is nonsense, but decap is constant-time so, for the
// purposes of timing, it's fine.
memset(ciphertext, 42, sizeof(ciphertext));
if (!TimeFunctionParallel(&results, [&]() -> bool {
uint8_t encoded_public_key[MLKEM1024_PUBLIC_KEY_BYTES];
MLKEM1024_generate_key(encoded_public_key, nullptr, priv.get());
uint8_t shared_secret[MLKEM_SHARED_SECRET_BYTES];
MLKEM1024_decap(shared_secret, ciphertext, sizeof(ciphertext),
priv.get());
return true;
})) {
fprintf(stderr, "Failed to time MLKEM768_generate_key + MLKEM768_decap.\n");
return false;
}
results.Print("ML-KEM-1024 generate + decap");
uint8_t encoded_public_key[MLKEM1024_PUBLIC_KEY_BYTES];
MLKEM1024_generate_key(encoded_public_key, nullptr, priv.get());
MLKEM1024_public_key pub;
if (!TimeFunctionParallel(&results, [&]() -> bool {
CBS encoded_public_key_cbs;
CBS_init(&encoded_public_key_cbs, encoded_public_key,
sizeof(encoded_public_key));
if (!MLKEM1024_parse_public_key(&pub, &encoded_public_key_cbs)) {
return false;
}
uint8_t shared_secret[MLKEM_SHARED_SECRET_BYTES];
MLKEM1024_encap(ciphertext, shared_secret, &pub);
return true;
})) {
fprintf(stderr, "Failed to time MLKEM768_encap.\n");
return false;
}
results.Print("ML-KEM-1024 parse + encap");
return true;
}
static bool SpeedSpx(const std::string &selected) {
if (!selected.empty() && selected.find("spx") == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunctionParallel(&results, []() -> bool {
uint8_t public_key[32], private_key[64];
SPX_generate_key(public_key, private_key);
return true;
})) {
return false;
}
results.Print("SPHINCS+-SHA2-128s key generation");
uint8_t public_key[32], private_key[64];
SPX_generate_key(public_key, private_key);
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
if (!TimeFunctionParallel(&results, [&private_key]() -> bool {
uint8_t out[SPX_SIGNATURE_BYTES];
SPX_sign(out, private_key, kMessage, sizeof(kMessage), true);
return true;
})) {
return false;
}
results.Print("SPHINCS+-SHA2-128s signing");
uint8_t signature[SPX_SIGNATURE_BYTES];
SPX_sign(signature, private_key, kMessage, sizeof(kMessage), true);
if (!TimeFunctionParallel(&results, [&public_key, &signature]() -> bool {
return SPX_verify(signature, public_key, kMessage, sizeof(kMessage)) ==
1;
})) {
fprintf(stderr, "SPHINCS+-SHA2-128s verify failed.\n");
return false;
}
results.Print("SPHINCS+-SHA2-128s verify");
return true;
}
static bool SpeedSLHDSA(const std::string &selected) {
if (!selected.empty() && selected.find("SLH-DSA") == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunctionParallel(&results, []() -> bool {
uint8_t public_key[SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
private_key[SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES];
SLHDSA_SHA2_128S_generate_key(public_key, private_key);
return true;
})) {
return false;
}
results.Print("SLHDSA-SHA2-128s key generation");
uint8_t public_key[SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES],
private_key[SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES];
SLHDSA_SHA2_128S_generate_key(public_key, private_key);
static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5};
if (!TimeFunctionParallel(&results, [&private_key]() -> bool {
uint8_t out[SLHDSA_SHA2_128S_SIGNATURE_BYTES];
SLHDSA_SHA2_128S_sign(out, private_key, kMessage, sizeof(kMessage),
nullptr, 0);
return true;
})) {
return false;
}
results.Print("SLHDSA-SHA2-128s signing");
uint8_t signature[SLHDSA_SHA2_128S_SIGNATURE_BYTES];
SLHDSA_SHA2_128S_sign(signature, private_key, kMessage, sizeof(kMessage),
nullptr, 0);
if (!TimeFunctionParallel(&results, [&public_key, &signature]() -> bool {
return SLHDSA_SHA2_128S_verify(signature, sizeof(signature), public_key,
kMessage, sizeof(kMessage), nullptr,
0) == 1;
})) {
fprintf(stderr, "SLHDSA-SHA2-128s verify failed.\n");
return false;
}
results.Print("SLHDSA-SHA2-128s verify");
return true;
}
static bool SpeedHashToCurve(const std::string &selected) {
if (!selected.empty() && selected.find("hashtocurve") == std::string::npos) {
return true;
}
uint8_t input[64];
RAND_bytes(input, sizeof(input));
static const uint8_t kLabel[] = "label";
TimeResults results;
{
if (!TimeFunctionParallel(&results, [&]() -> bool {
EC_JACOBIAN out;
return ec_hash_to_curve_p256_xmd_sha256_sswu(EC_group_p256(), &out,
kLabel, sizeof(kLabel),
input, sizeof(input));
})) {
fprintf(stderr, "hash-to-curve failed.\n");
return false;
}
results.Print("hash-to-curve P256_XMD:SHA-256_SSWU_RO_");
if (!TimeFunctionParallel(&results, [&]() -> bool {
EC_JACOBIAN out;
return ec_hash_to_curve_p384_xmd_sha384_sswu(EC_group_p384(), &out,
kLabel, sizeof(kLabel),
input, sizeof(input));
})) {
fprintf(stderr, "hash-to-curve failed.\n");
return false;
}
results.Print("hash-to-curve P384_XMD:SHA-384_SSWU_RO_");
if (!TimeFunctionParallel(&results, [&]() -> bool {
EC_SCALAR out;
return ec_hash_to_scalar_p384_xmd_sha512_draft07(
EC_group_p384(), &out, kLabel, sizeof(kLabel), input,
sizeof(input));
})) {
fprintf(stderr, "hash-to-scalar failed.\n");
return false;
}
results.Print("hash-to-scalar P384_XMD:SHA-512");
}
return true;
}
static bool SpeedBase64(const std::string &selected) {
if (!selected.empty() && selected.find("base64") == std::string::npos) {
return true;
}
static const char kInput[] =
"MIIDtTCCAp2gAwIBAgIJALW2IrlaBKUhMA0GCSqGSIb3DQEBCwUAMEUxCzAJBgNV"
"BAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBX"
"aWRnaXRzIFB0eSBMdGQwHhcNMTYwNzA5MDQzODA5WhcNMTYwODA4MDQzODA5WjBF"
"MQswCQYDVQQGEwJBVTETMBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50"
"ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIB"
"CgKCAQEAugvahBkSAUF1fC49vb1bvlPrcl80kop1iLpiuYoz4Qptwy57+EWssZBc"
"HprZ5BkWf6PeGZ7F5AX1PyJbGHZLqvMCvViP6pd4MFox/igESISEHEixoiXCzepB"
"rhtp5UQSjHD4D4hKtgdMgVxX+LRtwgW3mnu/vBu7rzpr/DS8io99p3lqZ1Aky+aN"
"lcMj6MYy8U+YFEevb/V0lRY9oqwmW7BHnXikm/vi6sjIS350U8zb/mRzYeIs2R65"
"LUduTL50+UMgat9ocewI2dv8aO9Dph+8NdGtg8LFYyTTHcUxJoMr1PTOgnmET19W"
"JH4PrFwk7ZE1QJQQ1L4iKmPeQistuQIDAQABo4GnMIGkMB0GA1UdDgQWBBT5m6Vv"
"zYjVYHG30iBE+j2XDhUE8jB1BgNVHSMEbjBsgBT5m6VvzYjVYHG30iBE+j2XDhUE"
"8qFJpEcwRTELMAkGA1UEBhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNV"
"BAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZIIJALW2IrlaBKUhMAwGA1UdEwQF"
"MAMBAf8wDQYJKoZIhvcNAQELBQADggEBAD7Jg68SArYWlcoHfZAB90Pmyrt5H6D8"
"LRi+W2Ri1fBNxREELnezWJ2scjl4UMcsKYp4Pi950gVN+62IgrImcCNvtb5I1Cfy"
"/MNNur9ffas6X334D0hYVIQTePyFk3umI+2mJQrtZZyMPIKSY/sYGQHhGGX6wGK+"
"GO/og0PQk/Vu6D+GU2XRnDV0YZg1lsAsHd21XryK6fDmNkEMwbIWrts4xc7scRrG"
"HWy+iMf6/7p/Ak/SIicM4XSwmlQ8pPxAZPr+E2LoVd9pMpWUwpW2UbtO5wsGTrY5"
"sO45tFNN/y+jtUheB1C2ijObG/tXELaiyCdM+S/waeuv0MXtI4xnn1A=";
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
uint8_t out[sizeof(kInput)];
size_t len;
return EVP_DecodeBase64(out, &len, sizeof(out),
reinterpret_cast<const uint8_t *>(kInput),
strlen(kInput));
})) {
fprintf(stderr, "base64 decode failed.\n");
return false;
}
results.PrintWithBytes("base64 decode", strlen(kInput));
return true;
}
static bool SpeedSipHash(const std::string &selected) {
if (!selected.empty() && selected.find("siphash") == std::string::npos) {
return true;
}
uint64_t key[2] = {0};
for (size_t len : g_chunk_lengths) {
std::vector<uint8_t> input(len);
TimeResults results;
if (!TimeFunctionParallel(&results, [&]() -> bool {
SIPHASH_24(key, input.data(), input.size());
return true;
})) {
fprintf(stderr, "SIPHASH_24 failed.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.PrintWithBytes("SipHash-2-4" + ChunkLenSuffix(len), len);
}
return true;
}
static TRUST_TOKEN_PRETOKEN *trust_token_pretoken_dup(
const TRUST_TOKEN_PRETOKEN *in) {
return static_cast<TRUST_TOKEN_PRETOKEN *>(
OPENSSL_memdup(in, sizeof(TRUST_TOKEN_PRETOKEN)));
}
static bool SpeedTrustToken(std::string name, const TRUST_TOKEN_METHOD *method,
size_t batchsize, const std::string &selected) {
if (!selected.empty() && selected.find("trusttoken") == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunction(&results, [&]() -> bool {
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len;
return TRUST_TOKEN_generate_key(
method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0);
})) {
fprintf(stderr, "TRUST_TOKEN_generate_key failed.\n");
return false;
}
results.Print(name + " generate_key");
bssl::UniquePtr<TRUST_TOKEN_CLIENT> client(
TRUST_TOKEN_CLIENT_new(method, batchsize));
bssl::UniquePtr<TRUST_TOKEN_ISSUER> issuer(
TRUST_TOKEN_ISSUER_new(method, batchsize));
uint8_t priv_key[TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE];
uint8_t pub_key[TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE];
size_t priv_key_len, pub_key_len, key_index;
if (!client || !issuer ||
!TRUST_TOKEN_generate_key(
method, priv_key, &priv_key_len, TRUST_TOKEN_MAX_PRIVATE_KEY_SIZE,
pub_key, &pub_key_len, TRUST_TOKEN_MAX_PUBLIC_KEY_SIZE, 0) ||
!TRUST_TOKEN_CLIENT_add_key(client.get(), &key_index, pub_key,
pub_key_len) ||
!TRUST_TOKEN_ISSUER_add_key(issuer.get(), priv_key, priv_key_len)) {
fprintf(stderr, "failed to generate trust token key.\n");
return false;
}
uint8_t public_key[32], private_key[64];
ED25519_keypair(public_key, private_key);
bssl::UniquePtr<EVP_PKEY> priv(
EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, private_key, 32));
bssl::UniquePtr<EVP_PKEY> pub(
EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, public_key, 32));
if (!priv || !pub) {
fprintf(stderr, "failed to generate trust token SRR key.\n");
return false;
}
TRUST_TOKEN_CLIENT_set_srr_key(client.get(), pub.get());
TRUST_TOKEN_ISSUER_set_srr_key(issuer.get(), priv.get());
uint8_t metadata_key[32];
RAND_bytes(metadata_key, sizeof(metadata_key));
if (!TRUST_TOKEN_ISSUER_set_metadata_key(issuer.get(), metadata_key,
sizeof(metadata_key))) {
fprintf(stderr, "failed to generate trust token metadata key.\n");
return false;
}
if (!TimeFunction(&results, [&]() -> bool {
uint8_t *issue_msg = NULL;
size_t msg_len;
int ok = TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg,
&msg_len, batchsize);
OPENSSL_free(issue_msg);
// Clear pretokens.
sk_TRUST_TOKEN_PRETOKEN_pop_free(client->pretokens,
TRUST_TOKEN_PRETOKEN_free);
client->pretokens = sk_TRUST_TOKEN_PRETOKEN_new_null();
return ok;
})) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
return false;
}
results.Print(name + " begin_issuance");
uint8_t *issue_msg = NULL;
size_t msg_len;
if (!TRUST_TOKEN_CLIENT_begin_issuance(client.get(), &issue_msg, &msg_len,
batchsize)) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_issuance failed.\n");
return false;
}
bssl::UniquePtr<uint8_t> free_issue_msg(issue_msg);
bssl::UniquePtr<STACK_OF(TRUST_TOKEN_PRETOKEN)> pretokens(
sk_TRUST_TOKEN_PRETOKEN_deep_copy(client->pretokens,
trust_token_pretoken_dup,
TRUST_TOKEN_PRETOKEN_free));
if (!TimeFunction(&results, [&]() -> bool {
uint8_t *issue_resp = NULL;
size_t resp_len, tokens_issued;
int ok = TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
&tokens_issued, issue_msg, msg_len,
/*public_metadata=*/0,
/*private_metadata=*/0,
/*max_issuance=*/batchsize);
OPENSSL_free(issue_resp);
return ok;
})) {
fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
return false;
}
results.Print(name + " issue");
uint8_t *issue_resp = NULL;
size_t resp_len, tokens_issued;
if (!TRUST_TOKEN_ISSUER_issue(issuer.get(), &issue_resp, &resp_len,
&tokens_issued, issue_msg, msg_len,
/*public_metadata=*/0, /*private_metadata=*/0,
/*max_issuance=*/batchsize)) {
fprintf(stderr, "TRUST_TOKEN_ISSUER_issue failed.\n");
return false;
}
bssl::UniquePtr<uint8_t> free_issue_resp(issue_resp);
if (!TimeFunction(&results, [&]() -> bool {
size_t key_index2;
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index2,
issue_resp, resp_len));
// Reset pretokens.
client->pretokens = sk_TRUST_TOKEN_PRETOKEN_deep_copy(
pretokens.get(), trust_token_pretoken_dup,
TRUST_TOKEN_PRETOKEN_free);
return !!tokens;
})) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
return false;
}
results.Print(name + " finish_issuance");
bssl::UniquePtr<STACK_OF(TRUST_TOKEN)> tokens(
TRUST_TOKEN_CLIENT_finish_issuance(client.get(), &key_index, issue_resp,
resp_len));
if (!tokens || sk_TRUST_TOKEN_num(tokens.get()) < 1) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_finish_issuance failed.\n");
return false;
}
const TRUST_TOKEN *token = sk_TRUST_TOKEN_value(tokens.get(), 0);
const uint8_t kClientData[] = "\x70TEST CLIENT DATA";
uint64_t kRedemptionTime = 13374242;
if (!TimeFunction(&results, [&]() -> bool {
uint8_t *redeem_msg = NULL;
size_t redeem_msg_len;
int ok = TRUST_TOKEN_CLIENT_begin_redemption(
client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
sizeof(kClientData) - 1, kRedemptionTime);
OPENSSL_free(redeem_msg);
return ok;
})) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
return false;
}
results.Print(name + " begin_redemption");
uint8_t *redeem_msg = NULL;
size_t redeem_msg_len;
if (!TRUST_TOKEN_CLIENT_begin_redemption(
client.get(), &redeem_msg, &redeem_msg_len, token, kClientData,
sizeof(kClientData) - 1, kRedemptionTime)) {
fprintf(stderr, "TRUST_TOKEN_CLIENT_begin_redemption failed.\n");
return false;
}
bssl::UniquePtr<uint8_t> free_redeem_msg(redeem_msg);
if (!TimeFunction(&results, [&]() -> bool {
uint32_t public_value;
uint8_t private_value;
TRUST_TOKEN *rtoken;
uint8_t *client_data = NULL;
size_t client_data_len;
int ok = TRUST_TOKEN_ISSUER_redeem(
issuer.get(), &public_value, &private_value, &rtoken, &client_data,
&client_data_len, redeem_msg, redeem_msg_len);
OPENSSL_free(client_data);
TRUST_TOKEN_free(rtoken);
return ok;
})) {
fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
return false;
}
results.Print(name + " redeem");
uint32_t public_value;
uint8_t private_value;
TRUST_TOKEN *rtoken;
uint8_t *client_data = NULL;
size_t client_data_len;
if (!TRUST_TOKEN_ISSUER_redeem(issuer.get(), &public_value, &private_value,
&rtoken, &client_data, &client_data_len,
redeem_msg, redeem_msg_len)) {
fprintf(stderr, "TRUST_TOKEN_ISSUER_redeem failed.\n");
return false;
}
bssl::UniquePtr<uint8_t> free_client_data(client_data);
bssl::UniquePtr<TRUST_TOKEN> free_rtoken(rtoken);
return true;
}
#if defined(BORINGSSL_FIPS)
static bool SpeedSelfTest(const std::string &selected) {
if (!selected.empty() && selected.find("self-test") == std::string::npos) {
return true;
}
TimeResults results;
if (!TimeFunction(&results, []() -> bool { return BORINGSSL_self_test(); })) {
fprintf(stderr, "BORINGSSL_self_test faileid.\n");
ERR_print_errors_fp(stderr);
return false;
}
results.Print("self-test");
return true;
}
#endif
static const struct argument kArguments[] = {
{
"-filter",
kOptionalArgument,
"A filter on the speed tests to run",
},
{
"-timeout",
kOptionalArgument,
"The number of seconds to run each test for (default is 1)",
},
{
"-chunks",
kOptionalArgument,
"A comma-separated list of input sizes to run tests at (default is "
"16,256,1350,8192,16384)",
},
{
"-json",
kBooleanArgument,
"If this flag is set, speed will print the output of each benchmark in "
"JSON format as follows: \"{\"description\": "
"\"descriptionOfOperation\", \"numCalls\": 1234, "
"\"timeInMicroseconds\": 1234567, \"bytesPerCall\": 1234}\". When "
"there is no information about the bytes per call for an operation, "
"the JSON field for bytesPerCall will be omitted.",
},
#if defined(OPENSSL_THREADS)
{
"-threads",
kOptionalArgument,
"The number of threads to benchmark in parallel (default is 1)",
},
#endif
{
"",
kOptionalArgument,
"",
},
};
bool Speed(const std::vector<std::string> &args) {
std::map<std::string, std::string> args_map;
if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
PrintUsage(kArguments);
return false;
}
std::string selected;
if (args_map.count("-filter") != 0) {
selected = args_map["-filter"];
}
if (args_map.count("-json") != 0) {
g_print_json = true;
}
if (args_map.count("-timeout") != 0) {
g_timeout_seconds = atoi(args_map["-timeout"].c_str());
}
#if defined(OPENSSL_THREADS)
if (args_map.count("-threads") != 0) {
g_threads = atoi(args_map["-threads"].c_str());
}
#endif
if (args_map.count("-chunks") != 0) {
g_chunk_lengths.clear();
const char *start = args_map["-chunks"].data();
const char *end = start + args_map["-chunks"].size();
while (start != end) {
errno = 0;
char *ptr;
unsigned long long val = strtoull(start, &ptr, 10);
if (ptr == start /* no numeric characters found */ ||
errno == ERANGE /* overflow */ || static_cast<size_t>(val) != val) {
fprintf(stderr, "Error parsing -chunks argument\n");
return false;
}
g_chunk_lengths.push_back(static_cast<size_t>(val));
start = ptr;
if (start != end) {
if (*start != ',') {
fprintf(stderr, "Error parsing -chunks argument\n");
return false;
}
start++;
}
}
}
// kTLSADLen is the number of bytes of additional data that TLS passes to
// AEADs.
static const size_t kTLSADLen = 13;
// kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs.
// These are AEADs that weren't originally defined as AEADs, but which we use
// via the AEAD interface. In order for that to work, they have some TLS
// knowledge in them and construct a couple of the AD bytes internally.
static const size_t kLegacyADLen = kTLSADLen - 2;
if (g_print_json) {
puts("[");
}
if (!SpeedRSA(selected) ||
!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) ||
!SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen,
selected) ||
!SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEADOpen(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEADOpen(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1",
kLegacyADLen, selected) ||
!SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
selected) ||
!SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
selected) ||
!SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen,
selected) ||
!SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen,
selected) ||
!SpeedAEAD(EVP_aead_aes_128_ccm_bluetooth(), "AES-128-CCM-Bluetooth",
kTLSADLen, selected) ||
!SpeedAESBlock("AES-128", 128, selected) ||
!SpeedAESBlock("AES-256", 256, selected) ||
!SpeedHash(EVP_sha1(), "SHA-1", selected) ||
!SpeedHash(EVP_sha256(), "SHA-256", selected) ||
!SpeedHash(EVP_sha512(), "SHA-512", selected) ||
!SpeedHash(EVP_blake2b256(), "BLAKE2b-256", selected) ||
!SpeedRandom(selected) || //
!SpeedECDH(selected) || //
!SpeedECDSA(selected) || //
!Speed25519(selected) || //
!SpeedSPAKE2(selected) || //
!SpeedScrypt(selected) || //
!SpeedRSAKeyGen(selected) || //
!SpeedHRSS(selected) || //
!SpeedKyber(selected) || //
!SpeedMLDSA(selected) || //
!SpeedMLKEM(selected) || //
!SpeedMLKEM1024(selected) || //
!SpeedSpx(selected) || //
!SpeedSLHDSA(selected) || //
!SpeedHashToCurve(selected) || //
!SpeedTrustToken("TrustToken-Exp1-Batch1", TRUST_TOKEN_experiment_v1(), 1,
selected) ||
!SpeedTrustToken("TrustToken-Exp1-Batch10", TRUST_TOKEN_experiment_v1(),
10, selected) ||
!SpeedTrustToken("TrustToken-Exp2VOPRF-Batch1",
TRUST_TOKEN_experiment_v2_voprf(), 1, selected) ||
!SpeedTrustToken("TrustToken-Exp2VOPRF-Batch10",
TRUST_TOKEN_experiment_v2_voprf(), 10, selected) ||
!SpeedTrustToken("TrustToken-Exp2PMB-Batch1",
TRUST_TOKEN_experiment_v2_pmb(), 1, selected) ||
!SpeedTrustToken("TrustToken-Exp2PMB-Batch10",
TRUST_TOKEN_experiment_v2_pmb(), 10, selected) ||
!SpeedBase64(selected) || //
!SpeedSipHash(selected)) {
return false;
}
#if defined(BORINGSSL_FIPS)
if (!SpeedSelfTest(selected)) {
return false;
}
#endif
if (g_print_json) {
puts("\n]");
}
return true;
}