blob: c22a918e4f32f4e5b811ebb60ec3edc4ad712679 [file] [log] [blame]
/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <limits.h>
#include <algorithm>
#include <functional>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include <openssl/bytestring.h>
#include <openssl/conf.h>
#include <openssl/crypto.h>
#include <openssl/curve25519.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/nid.h>
#include <openssl/pem.h>
#include <openssl/pool.h>
#include <openssl/x509.h>
#include "internal.h"
#include "../internal.h"
#include "../test/file_util.h"
#include "../test/test_data.h"
#include "../test/test_util.h"
#if defined(OPENSSL_THREADS)
#include <thread>
#endif
static const char kCrossSigningRootPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICcTCCAdqgAwIBAgIIagJHiPvE0MowDQYJKoZIhvcNAQELBQAwPDEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxHjAcBgNVBAMTFUNyb3NzLXNpZ25pbmcgUm9v
dCBDQTAgFw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowPDEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxHjAcBgNVBAMTFUNyb3NzLXNpZ25pbmcgUm9v
dCBDQTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAwo3qFvSB9Zmlbpzn9wJp
ikI75Rxkatez8VkLqyxbOhPYl2Haz8F5p1gDG96dCI6jcLGgu3AKT9uhEQyyUko5
EKYasazSeA9CQrdyhPg0mkTYVETnPM1W/ebid1YtqQbq1CMWlq2aTDoSGAReGFKP
RTdXAbuAXzpCfi/d8LqV13UCAwEAAaN6MHgwDgYDVR0PAQH/BAQDAgIEMB0GA1Ud
JQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjAPBgNVHRMBAf8EBTADAQH/MBkGA1Ud
DgQSBBBHKHC7V3Z/3oLvEZx0RZRwMBsGA1UdIwQUMBKAEEcocLtXdn/egu8RnHRF
lHAwDQYJKoZIhvcNAQELBQADgYEAnglibsy6mGtpIXivtlcz4zIEnHw/lNW+r/eC
CY7evZTmOoOuC/x9SS3MF9vawt1HFUummWM6ZgErqVBOXIB4//ykrcCgf5ZbF5Hr
+3EFprKhBqYiXdD8hpBkrBoXwn85LPYWNd2TceCrx0YtLIprE2R5MB2RIq8y4Jk3
YFXvkME=
-----END CERTIFICATE-----
)";
static const char kRootCAPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICVTCCAb6gAwIBAgIIAj5CwoHlWuYwDQYJKoZIhvcNAQELBQAwLjEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxEDAOBgNVBAMTB1Jvb3QgQ0EwIBcNMTUwMTAx
MDAwMDAwWhgPMjEwMDAxMDEwMDAwMDBaMC4xGjAYBgNVBAoTEUJvcmluZ1NTTCBU
RVNUSU5HMRAwDgYDVQQDEwdSb290IENBMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB
iQKBgQDpDn8RDOZa5oaDcPZRBy4CeBH1siSSOO4mYgLHlPE+oXdqwI/VImi2XeJM
2uCFETXCknJJjYG0iJdrt/yyRFvZTQZw+QzGj+mz36NqhGxDWb6dstB2m8PX+plZ
w7jl81MDvUnWs8yiQ/6twgu5AbhWKZQDJKcNKCEpqa6UW0r5nwIDAQABo3oweDAO
BgNVHQ8BAf8EBAMCAgQwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsGAQUFBwMCMA8G
A1UdEwEB/wQFMAMBAf8wGQYDVR0OBBIEEEA31wH7QC+4HH5UBCeMWQEwGwYDVR0j
BBQwEoAQQDfXAftAL7gcflQEJ4xZATANBgkqhkiG9w0BAQsFAAOBgQDXylEK77Za
kKeY6ZerrScWyZhrjIGtHFu09qVpdJEzrk87k2G7iHHR9CAvSofCgEExKtWNS9dN
+9WiZp/U48iHLk7qaYXdEuO07No4BYtXn+lkOykE+FUxmA4wvOF1cTd2tdj3MzX2
kfGIBAYhzGZWhY3JbhIfTEfY1PNM1pWChQ==
-----END CERTIFICATE-----
)";
static const char kRootCrossSignedPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICYzCCAcygAwIBAgIIAj5CwoHlWuYwDQYJKoZIhvcNAQELBQAwPDEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxHjAcBgNVBAMTFUNyb3NzLXNpZ25pbmcgUm9v
dCBDQTAgFw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowLjEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxEDAOBgNVBAMTB1Jvb3QgQ0EwgZ8wDQYJKoZI
hvcNAQEBBQADgY0AMIGJAoGBAOkOfxEM5lrmhoNw9lEHLgJ4EfWyJJI47iZiAseU
8T6hd2rAj9UiaLZd4kza4IURNcKSckmNgbSIl2u3/LJEW9lNBnD5DMaP6bPfo2qE
bENZvp2y0Habw9f6mVnDuOXzUwO9SdazzKJD/q3CC7kBuFYplAMkpw0oISmprpRb
SvmfAgMBAAGjejB4MA4GA1UdDwEB/wQEAwICBDAdBgNVHSUEFjAUBggrBgEFBQcD
AQYIKwYBBQUHAwIwDwYDVR0TAQH/BAUwAwEB/zAZBgNVHQ4EEgQQQDfXAftAL7gc
flQEJ4xZATAbBgNVHSMEFDASgBBHKHC7V3Z/3oLvEZx0RZRwMA0GCSqGSIb3DQEB
CwUAA4GBAErTxYJ0en9HVRHAAr5OO5wuk5Iq3VMc79TMyQLCXVL8YH8Uk7KEwv+q
9MEKZv2eR/Vfm4HlXlUuIqfgUXbwrAYC/YVVX86Wnbpy/jc73NYVCq8FEZeO+0XU
90SWAPDdp+iL7aZdimnMtG1qlM1edmz8AKbrhN/R3IbA2CL0nCWV
-----END CERTIFICATE-----
)";
static const char kIntermediatePEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICXjCCAcegAwIBAgIJAKJMH+7rscPcMA0GCSqGSIb3DQEBCwUAMC4xGjAYBgNV
BAoTEUJvcmluZ1NTTCBURVNUSU5HMRAwDgYDVQQDEwdSb290IENBMCAXDTE1MDEw
MTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjA2MRowGAYDVQQKExFCb3JpbmdTU0wg
VEVTVElORzEYMBYGA1UEAxMPSW50ZXJtZWRpYXRlIENBMIGfMA0GCSqGSIb3DQEB
AQUAA4GNADCBiQKBgQC7YtI0l8ocTYJ0gKyXTtPL4iMJCNY4OcxXl48jkncVG1Hl
blicgNUa1r9m9YFtVkxvBinb8dXiUpEGhVg4awRPDcatlsBSEBuJkiZGYbRcAmSu
CmZYnf6u3aYQ18SU8WqVERPpE4cwVVs+6kwlzRw0+XDoZAczu8ZezVhCUc6NbQID
AQABo3oweDAOBgNVHQ8BAf8EBAMCAgQwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
AQUFBwMCMA8GA1UdEwEB/wQFMAMBAf8wGQYDVR0OBBIEEIwaaKi1dttdV3sfjRSy
BqMwGwYDVR0jBBQwEoAQQDfXAftAL7gcflQEJ4xZATANBgkqhkiG9w0BAQsFAAOB
gQCvnolNWEHuQS8PFVVyuLR+FKBeUUdrVbSfHSzTqNAqQGp0C9fk5oCzDq6ZgTfY
ESXM4cJhb3IAnW0UM0NFsYSKQJ50JZL2L3z5ZLQhHdbs4RmODGoC40BVdnJ4/qgB
aGSh09eQRvAVmbVCviDK2ipkWNegdyI19jFfNP5uIkGlYg==
-----END CERTIFICATE-----
)";
static const char kIntermediateSelfSignedPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICZjCCAc+gAwIBAgIJAKJMH+7rscPcMA0GCSqGSIb3DQEBCwUAMDYxGjAYBgNV
BAoTEUJvcmluZ1NTTCBURVNUSU5HMRgwFgYDVQQDEw9JbnRlcm1lZGlhdGUgQ0Ew
IBcNMTUwMTAxMDAwMDAwWhgPMjEwMDAxMDEwMDAwMDBaMDYxGjAYBgNVBAoTEUJv
cmluZ1NTTCBURVNUSU5HMRgwFgYDVQQDEw9JbnRlcm1lZGlhdGUgQ0EwgZ8wDQYJ
KoZIhvcNAQEBBQADgY0AMIGJAoGBALti0jSXyhxNgnSArJdO08viIwkI1jg5zFeX
jyOSdxUbUeVuWJyA1RrWv2b1gW1WTG8GKdvx1eJSkQaFWDhrBE8Nxq2WwFIQG4mS
JkZhtFwCZK4KZlid/q7dphDXxJTxapURE+kThzBVWz7qTCXNHDT5cOhkBzO7xl7N
WEJRzo1tAgMBAAGjejB4MA4GA1UdDwEB/wQEAwICBDAdBgNVHSUEFjAUBggrBgEF
BQcDAQYIKwYBBQUHAwIwDwYDVR0TAQH/BAUwAwEB/zAZBgNVHQ4EEgQQjBpoqLV2
211Xex+NFLIGozAbBgNVHSMEFDASgBCMGmiotXbbXVd7H40UsgajMA0GCSqGSIb3
DQEBCwUAA4GBALcccSrAQ0/EqQBsx0ZDTUydHXXNP2DrUkpUKmAXIe8McqIVSlkT
6H4xz7z8VRKBo9j+drjjtCw2i0CQc8aOLxRb5WJ8eVLnaW2XRlUqAzhF0CrulfVI
E4Vs6ZLU+fra1WAuIj6qFiigRja+3YkZArG8tMA9vtlhTX/g7YBZIkqH
-----END CERTIFICATE-----
)";
static const char kLeafPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICXjCCAcegAwIBAgIIWjO48ufpunYwDQYJKoZIhvcNAQELBQAwNjEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxGDAWBgNVBAMTD0ludGVybWVkaWF0ZSBDQTAg
Fw0xNTAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowMjEaMBgGA1UEChMRQm9y
aW5nU1NMIFRFU1RJTkcxFDASBgNVBAMTC2V4YW1wbGUuY29tMIGfMA0GCSqGSIb3
DQEBAQUAA4GNADCBiQKBgQDD0U0ZYgqShJ7oOjsyNKyVXEHqeafmk/bAoPqY/h1c
oPw2E8KmeqiUSoTPjG5IXSblOxcqpbAXgnjPzo8DI3GNMhAf8SYNYsoH7gc7Uy7j
5x8bUrisGnuTHqkqH6d4/e7ETJ7i3CpR8bvK16DggEvQTudLipz8FBHtYhFakfdh
TwIDAQABo3cwdTAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYIKwYBBQUHAwEG
CCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwGQYDVR0OBBIEEKN5pvbur7mlXjeMEYA0
4nUwGwYDVR0jBBQwEoAQjBpoqLV2211Xex+NFLIGozANBgkqhkiG9w0BAQsFAAOB
gQBj/p+JChp//LnXWC1k121LM/ii7hFzQzMrt70bny406SGz9jAjaPOX4S3gt38y
rhjpPukBlSzgQXFg66y6q5qp1nQTD1Cw6NkKBe9WuBlY3iYfmsf7WT8nhlT1CttU
xNCwyMX9mtdXdQicOfNjIGUCD5OLV5PgHFPRKiHHioBAhg==
-----END CERTIFICATE-----
)";
static const char kLeafNoKeyUsagePEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICNTCCAZ6gAwIBAgIJAIFQGaLQ0G2mMA0GCSqGSIb3DQEBCwUAMDYxGjAYBgNV
BAoTEUJvcmluZ1NTTCBURVNUSU5HMRgwFgYDVQQDEw9JbnRlcm1lZGlhdGUgQ0Ew
IBcNMTUwMTAxMDAwMDAwWhgPMjEwMDAxMDEwMDAwMDBaMDcxGjAYBgNVBAoTEUJv
cmluZ1NTTCBURVNUSU5HMRkwFwYDVQQDExBldmlsLmV4YW1wbGUuY29tMIGfMA0G
CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOKoZe75NPz77EOaMMl4/0s3PyQw++zJvp
ejHAxZiTPCJgMbEHLrSzNoHdopg+CLUH5bE4wTXM8w9Inv5P8OAFJt7gJuPUunmk
j+NoU3QfzOR6BroePcz1vXX9jyVHRs087M/sLqWRHu9IR+/A+UTcBaWaFiDVUxtJ
YOwFMwjNPQIDAQABo0gwRjAMBgNVHRMBAf8EAjAAMBkGA1UdDgQSBBBJfLEUWHq1
27rZ1AVx2J5GMBsGA1UdIwQUMBKAEIwaaKi1dttdV3sfjRSyBqMwDQYJKoZIhvcN
AQELBQADgYEALVKN2Y3LZJOtu6SxFIYKxbLaXhTGTdIjxipZhmbBRDFjbZjZZOTe
6Oo+VDNPYco4rBexK7umYXJyfTqoY0E8dbiImhTcGTEj7OAB3DbBomgU1AYe+t2D
uwBqh4Y3Eto+Zn4pMVsxGEfUpjzjZDel7bN1/oU/9KWPpDfywfUmjgk=
-----END CERTIFICATE-----
)";
static const char kForgeryPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICZzCCAdCgAwIBAgIIdTlMzQoKkeMwDQYJKoZIhvcNAQELBQAwNzEaMBgGA1UE
ChMRQm9yaW5nU1NMIFRFU1RJTkcxGTAXBgNVBAMTEGV2aWwuZXhhbXBsZS5jb20w
IBcNMTUwMTAxMDAwMDAwWhgPMjEwMDAxMDEwMDAwMDBaMDoxGjAYBgNVBAoTEUJv
cmluZ1NTTCBURVNUSU5HMRwwGgYDVQQDExNmb3JnZXJ5LmV4YW1wbGUuY29tMIGf
MA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDADTwruBQZGb7Ay6s9HiYv5d1lwtEy
xQdA2Sy8Rn8uA20Q4KgqwVY7wzIZ+z5Butrsmwb70gdG1XU+yRaDeE7XVoW6jSpm
0sw35/5vJbTcL4THEFbnX0OPZnvpuZDFUkvVtq5kxpDWsVyM24G8EEq7kPih3Sa3
OMhXVXF8kso6UQIDAQABo3cwdTAOBgNVHQ8BAf8EBAMCBaAwHQYDVR0lBBYwFAYI
KwYBBQUHAwEGCCsGAQUFBwMCMAwGA1UdEwEB/wQCMAAwGQYDVR0OBBIEEEYJ/WHM
8p64erPWIg4/liwwGwYDVR0jBBQwEoAQSXyxFFh6tdu62dQFcdieRjANBgkqhkiG
9w0BAQsFAAOBgQA+zH7bHPElWRWJvjxDqRexmYLn+D3Aivs8XgXQJsM94W0EzSUf
DSLfRgaQwcb2gg2xpDFoG+W0vc6O651uF23WGt5JaFFJJxqjII05IexfCNhuPmp4
4UZAXPttuJXpn74IY1tuouaM06B3vXKZR+/ityKmfJvSwxacmFcK+2ziAg==
-----END CERTIFICATE-----
)";
// kBadPSSCertPEM is a self-signed RSA-PSS certificate with bad parameters.
static const char kBadPSSCertPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIDdjCCAjqgAwIBAgIJANcwZLyfEv7DMD4GCSqGSIb3DQEBCjAxoA0wCwYJYIZI
AWUDBAIBoRowGAYJKoZIhvcNAQEIMAsGCWCGSAFlAwQCAaIEAgIA3jAnMSUwIwYD
VQQDDBxUZXN0IEludmFsaWQgUFNTIGNlcnRpZmljYXRlMB4XDTE1MTEwNDE2MDIz
NVoXDTE1MTIwNDE2MDIzNVowJzElMCMGA1UEAwwcVGVzdCBJbnZhbGlkIFBTUyBj
ZXJ0aWZpY2F0ZTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMTaM7WH
qVCAGAIA+zL1KWvvASTrhlq+1ePdO7wsrWX2KiYoTYrJYTnxhLnn0wrHqApt79nL
IBG7cfShyZqFHOY/IzlYPMVt+gPo293gw96Fds5JBsjhjkyGnOyr9OUntFqvxDbT
IIFU7o9IdxD4edaqjRv+fegVE+B79pDk4s0ujsk6dULtCg9Rst0ucGFo19mr+b7k
dbfn8pZ72ZNDJPueVdrUAWw9oll61UcYfk75XdrLk6JlL41GrYHc8KlfXf43gGQq
QfrpHkg4Ih2cI6Wt2nhFGAzrlcorzLliQIUJRIhM8h4IgDfpBpaPdVQLqS2pFbXa
5eQjqiyJwak2vJ8CAwEAAaNQME4wHQYDVR0OBBYEFCt180N4oGUt5LbzBwQ4Ia+2
4V97MB8GA1UdIwQYMBaAFCt180N4oGUt5LbzBwQ4Ia+24V97MAwGA1UdEwQFMAMB
Af8wMQYJKoZIhvcNAQEKMCSgDTALBglghkgBZQMEAgGhDTALBgkqhkiG9w0BAQii
BAICAN4DggEBAAjBtm90lGxgddjc4Xu/nbXXFHVs2zVcHv/mqOZoQkGB9r/BVgLb
xhHrFZ2pHGElbUYPfifdS9ztB73e1d4J+P29o0yBqfd4/wGAc/JA8qgn6AAEO/Xn
plhFeTRJQtLZVl75CkHXgUGUd3h+ADvKtcBuW9dSUncaUrgNKR8u/h/2sMG38RWY
DzBddC/66YTa3r7KkVUfW7yqRQfELiGKdcm+bjlTEMsvS+EhHup9CzbpoCx2Fx9p
NPtFY3yEObQhmL1JyoCRWqBE75GzFPbRaiux5UpEkns+i3trkGssZzsOuVqHNTNZ
lC9+9hPHIoc9UMmAQNo1vGIW3NWVoeGbaJ8=
-----END CERTIFICATE-----
)";
static const char kRSAKey[] = R"(
-----BEGIN RSA PRIVATE KEY-----
MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92
kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF
KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB
AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe
i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+
WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ
m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj
QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk
aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj
LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk
104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/
tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd
moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==
-----END RSA PRIVATE KEY-----
)";
static const char kP256Key[] = R"(
-----BEGIN PRIVATE KEY-----
MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ
TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N
Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB
-----END PRIVATE KEY-----
)";
// kCRLTestRoot is a test root certificate. It has private key:
//
// -----BEGIN RSA PRIVATE KEY-----
// MIIEpAIBAAKCAQEAo16WiLWZuaymsD8n5SKPmxV1y6jjgr3BS/dUBpbrzd1aeFzN
// lI8l2jfAnzUyp+I21RQ+nh/MhqjGElkTtK9xMn1Y+S9GMRh+5R/Du0iCb1tCZIPY
// 07Tgrb0KMNWe0v2QKVVruuYSgxIWodBfxlKO64Z8AJ5IbnWpuRqO6rctN9qUoMlT
// IAB6dL4G0tDJ/PGFWOJYwOMEIX54bly2wgyYJVBKiRRt4f7n8H922qmvPNA9idmX
// 9G1VAtgV6x97XXi7ULORIQvn9lVQF6nTYDBJhyuPB+mLThbLP2o9orxGx7aCtnnB
// ZUIxUvHNOI0FaSaZH7Fi0xsZ/GkG2HZe7ImPJwIDAQABAoIBAQCJF9MTHfHGkk+/
// DwCXlA0Wg0e6hBuHl10iNobYkMWIl/xXjOknhYiqOqb181py76472SVC5ERprC+r
// Lf0PXzqKuA117mnkwT2bYLCL9Skf8WEhoFLQNbVlloF6wYjqXcYgKYKh8HgQbZl4
// aLg2YQl2NADTNABsUWj/4H2WEelsODVviqfFs725lFg9KHDI8zxAZXLzDt/M9uVL
// GxJiX12tr0AwaeAFZ1oPM/y+LznM3N3+Ht3jHHw3jZ/u8Z1RdAmdpu3bZ6tbwGBr
// 9edsH5rKkm9aBvMrY7eX5VHqaqyRNFyG152ZOJh4XiiFG7EmgTPCpaHo50Y018Re
// grVtk+FBAoGBANY3lY+V8ZOwMxSHes+kTnoimHO5Ob7nxrOC71i27x+4HHsYUeAr
// /zOOghiDIn+oNkuiX5CIOWZKx159Bp65CPpCbTb/fh+HYnSgXFgCw7XptycO7LXM
// 5GwR5jSfpfzBFdYxjxoUzDMFBwTEYRTm0HkUHkH+s+ajjw5wqqbcGLcfAoGBAMM8
// DKW6Tb66xsf708f0jonAjKYTLZ+WOcwsBEWSFHoY8dUjvW5gqx5acHTEsc5ZTeh4
// BCFLa+Mn9cuJWVJNs09k7Xb2PNl92HQ4GN2vbdkJhExbkT6oLDHg1hVD0w8KLfz1
// lTAW6pS+6CdOHMEJpvqx89EgU/1GgIQ1fXYczE75AoGAKeJoXdDFkUjsU+FBhAPu
// TDcjc80Nm2QaF9NMFR5/lsYa236f06MGnQAKM9zADBHJu/Qdl1brUjLg1HrBppsr
// RDNkw1IlSOjhuUf5hkPUHGd8Jijm440SRIcjabqla8wdBupdvo2+d2NOQgJbsQiI
// ToQ+fkzcxAXK3Nnuo/1436UCgYBjLH7UNOZHS8OsVM0I1r8NVKVdu4JCfeJQR8/H
// s2P5ffBir+wLRMnH+nMDreMQiibcPxMCArkERAlE4jlgaJ38Z62E76KLbLTmnJRt
// EC9Bv+bXjvAiHvWMRMUbOj/ddPNVez7Uld+FvdBaHwDWQlvzHzBWfBCOKSEhh7Z6
// qDhUqQKBgQDPMDx2i5rfmQp3imV9xUcCkIRsyYQVf8Eo7NV07IdUy/otmksgn4Zt
// Lbf3v2dvxOpTNTONWjp2c+iUQo8QxJCZr5Sfb21oQ9Ktcrmc/CY7LeBVDibXwxdM
// vRG8kBzvslFWh7REzC3u06GSVhyKDfW93kN2cKVwGoahRlhj7oHuZQ==
// -----END RSA PRIVATE KEY-----
static const char kCRLTestRoot[] = R"(
-----BEGIN CERTIFICATE-----
MIIDbzCCAlegAwIBAgIJAODri7v0dDUFMA0GCSqGSIb3DQEBCwUAME4xCzAJBgNV
BAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRYwFAYDVQQHDA1Nb3VudGFpbiBW
aWV3MRIwEAYDVQQKDAlCb3JpbmdTU0wwHhcNMTYwOTI2MTUwNjI2WhcNMjYwOTI0
MTUwNjI2WjBOMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG
A1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJQm9yaW5nU1NMMIIBIjANBgkq
hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAo16WiLWZuaymsD8n5SKPmxV1y6jjgr3B
S/dUBpbrzd1aeFzNlI8l2jfAnzUyp+I21RQ+nh/MhqjGElkTtK9xMn1Y+S9GMRh+
5R/Du0iCb1tCZIPY07Tgrb0KMNWe0v2QKVVruuYSgxIWodBfxlKO64Z8AJ5IbnWp
uRqO6rctN9qUoMlTIAB6dL4G0tDJ/PGFWOJYwOMEIX54bly2wgyYJVBKiRRt4f7n
8H922qmvPNA9idmX9G1VAtgV6x97XXi7ULORIQvn9lVQF6nTYDBJhyuPB+mLThbL
P2o9orxGx7aCtnnBZUIxUvHNOI0FaSaZH7Fi0xsZ/GkG2HZe7ImPJwIDAQABo1Aw
TjAdBgNVHQ4EFgQUWPt3N5cZ/CRvubbrkqfBnAqhq94wHwYDVR0jBBgwFoAUWPt3
N5cZ/CRvubbrkqfBnAqhq94wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQsFAAOC
AQEAORu6M0MOwXy+3VEBwNilfTxyqDfruQsc1jA4PT8Oe8zora1WxE1JB4q2FJOz
EAuM3H/NXvEnBuN+ITvKZAJUfm4NKX97qmjMJwLKWe1gVv+VQTr63aR7mgWJReQN
XdMztlVeZs2dppV6uEg3ia1X0G7LARxGpA9ETbMyCpb39XxlYuTClcbA5ftDN99B
3Xg9KNdd++Ew22O3HWRDvdDpTO/JkzQfzi3sYwUtzMEonENhczJhGf7bQMmvL/w5
24Wxj4Z7KzzWIHsNqE/RIs6RV3fcW61j/mRgW2XyoWnMVeBzvcJr9NXp4VQYmFPw
amd8GKMZQvP0ufGnUn7D7uartA==
-----END CERTIFICATE-----
)";
static const char kCRLTestLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIDkDCCAnigAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwTjELMAkGA1UEBhMCVVMx
EzARBgNVBAgMCkNhbGlmb3JuaWExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxEjAQ
BgNVBAoMCUJvcmluZ1NTTDAeFw0xNjA5MjYxNTA4MzFaFw0xNzA5MjYxNTA4MzFa
MEsxCzAJBgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRIwEAYDVQQKDAlC
b3JpbmdTU0wxEzARBgNVBAMMCmJvcmluZy5zc2wwggEiMA0GCSqGSIb3DQEBAQUA
A4IBDwAwggEKAoIBAQDc5v1S1M0W+QWM+raWfO0LH8uvqEwuJQgODqMaGnSlWUx9
8iQcnWfjyPja3lWg9K62hSOFDuSyEkysKHDxijz5R93CfLcfnVXjWQDJe7EJTTDP
ozEvxN6RjAeYv7CF000euYr3QT5iyBjg76+bon1p0jHZBJeNPP1KqGYgyxp+hzpx
e0gZmTlGAXd8JQK4v8kpdYwD6PPifFL/jpmQpqOtQmH/6zcLjY4ojmqpEdBqIKIX
+saA29hMq0+NK3K+wgg31RU+cVWxu3tLOIiesETkeDgArjWRS1Vkzbi4v9SJxtNu
OZuAxWiynRJw3JwH/OFHYZIvQqz68ZBoj96cepjPAgMBAAGjezB5MAkGA1UdEwQC
MAAwLAYJYIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVkIENlcnRpZmljYXRl
MB0GA1UdDgQWBBTGn0OVVh/aoYt0bvEKG+PIERqnDzAfBgNVHSMEGDAWgBRY+3c3
lxn8JG+5tuuSp8GcCqGr3jANBgkqhkiG9w0BAQsFAAOCAQEAd2nM8gCQN2Dc8QJw
XSZXyuI3DBGGCHcay/3iXu0JvTC3EiQo8J6Djv7WLI0N5KH8mkm40u89fJAB2lLZ
ShuHVtcC182bOKnePgwp9CNwQ21p0rDEu/P3X46ZvFgdxx82E9xLa0tBB8PiPDWh
lV16jbaKTgX5AZqjnsyjR5o9/mbZVupZJXx5Syq+XA8qiJfstSYJs4KyKK9UOjql
ICkJVKpi2ahDBqX4MOH4SLfzVk8pqSpviS6yaA1RXqjpkxiN45WWaXDldVHMSkhC
5CNXsXi4b1nAntu89crwSLA3rEwzCWeYj+BX7e1T9rr3oJdwOU/2KQtW1js1yQUG
tjJMFw==
-----END CERTIFICATE-----
)";
static const char kBasicCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBpzCBkAIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoA4wDDAKBgNV
HRQEAwIBATANBgkqhkiG9w0BAQsFAAOCAQEAnrBKKgvd9x9zwK9rtUvVeFeJ7+LN
ZEAc+a5oxpPNEsJx6hXoApYEbzXMxuWBQoCs5iEBycSGudct21L+MVf27M38KrWo
eOkq0a2siqViQZO2Fb/SUFR0k9zb8xl86Zf65lgPplALun0bV/HT7MJcl04Tc4os
dsAReBs5nqTGNEd5AlC1iKHvQZkM//MD51DspKnDpsDiUVi54h9C1SpfZmX8H2Vv
diyu0fZ/bPAM3VAGawatf/SyWfBMyKpoPXEG39oAzmjjOj8en82psn7m474IGaho
/vBbhl1ms5qQiLYPjm4YELtnXQoFyC72tBjbdFd/ZE9k4CNKDbxFUXFbkw==
-----END X509 CRL-----
)";
static const char kRevokedCRL[] = R"(
-----BEGIN X509 CRL-----
MIIB6DCB0QIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEyNDRaFw0xNjEwMjYxNTEyNDRaMD8wEwICEAAX
DTE2MDkyNjE1MTIyNlowEwICD/8XDTE2MDkyNjE1MTIyNlowEwICEAEXDTE2MDky
NjE1MTIyNlqgDjAMMAoGA1UdFAQDAgECMA0GCSqGSIb3DQEBCwUAA4IBAQAuepA9
byX4PkpJcYKb+Ofn6f/mgB4Sh1BBRp0HMFm7Q3jryXB6yPZYp7UtwAufZUzbV42U
kOifOtDyQbu+fcpnpb4D9oWoFlr4DGQ+n23wujHizoTEYhhcZMj4U5yooDfmK4lI
GU6zzQZKG+1PaS6Dm4f6+kA+ekVUP+ZVjPqHP/K7Uv6akSKV7gAWs49N5QjrJKMQ
3Igrbg4Et2ipaYgThGj8t1MUZdVY4UPtQ8oltSHkFEvH4PxOW/xKpHT4QQMl/WTT
QsQqOlRJBG2ci7pu1fzOylY35YFEAApkND/MkQjQfylNNgCzDWWAPQx0pDvVKQ0v
WXdfcGJRL1D3xRXk
-----END X509 CRL-----
)";
static const char kBadIssuerCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBwjCBqwIBATANBgkqhkiG9w0BAQsFADBSMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzEWMBQGA1UECgwN
Tm90IEJvcmluZ1NTTBcNMTYwOTI2MTUxMjQ0WhcNMTYxMDI2MTUxMjQ0WjAVMBMC
AhAAFw0xNjA5MjYxNTEyMjZaoA4wDDAKBgNVHRQEAwIBAjANBgkqhkiG9w0BAQsF
AAOCAQEAlBmjOA3Fs5UCq3GbyPEzHkfAabL0HqOQaCP12btmvIf/z8kcjMGHmjjP
t85dHbI4Ak/G9wtRT4E/j9i5KML+6yfhRyUTUJKIK/kbqgkj06uuYWuFipURlpDB
cm81RzZaMQvmlN5YKfzZV/clLX6mJiXpNQg6zjhj6wBAMI9ZfwVHmCjRqnwVmCUL
TybvuTmkryGBqREwmSbHFFjg5ixG/ztwzON/Ly78aJ8Bql6ktCl9+/gh6VJcoZ0q
L8V8aT8+Ghfi+zrXM8S9BmLQ9n0fQe0wzKrDZh14EK4sb7zmOzFHSxm3eEXyS98g
Od4cjsc3ymNk88S4jpnLRtIVxZB+SQ==
-----END X509 CRL-----
)";
// kKnownCriticalCRL is kBasicCRL but with a critical issuing distribution point
// extension.
static const char kKnownCriticalCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBuDCBoQIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoB8wHTAKBgNV
HRQEAwIBATAPBgNVHRwBAf8EBTADgQH/MA0GCSqGSIb3DQEBCwUAA4IBAQAs37Jq
3Htcehm6C2PKXOHekwTqTLOPWsYHfF68kYhdzcopDZBeoKE7jLRkRRGFDaR/tfUs
kwLSDNSQ8EwPb9PT1X8kmFn9QmJgWD6f6BzaH5ZZ9iBUwOcvrydlb/jnjdIZHQxs
fKOAceW5XX3f7DANC3qwYLsQZR/APkfV8nXjPYVUz1kKj04uq/BbQviInjyUYixN
xDx+GDWVVXccehcwAu983kAqP+JDaVQPBVksLuBXz2adrEWwvbLCnZeL3zH1IY9h
6MFO6echpvGbU/H+dRX9UkhdJ7gdwKVD3RjfJl+DRVox9lz8Pbo5H699Tkv9/DQP
9dMWxqhQlv23osLp
-----END X509 CRL-----
)";
// kUnknownCriticalCRL is kBasicCRL but with an unknown critical extension.
static const char kUnknownCriticalCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBvDCBpQIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoCMwITAKBgNV
HRQEAwIBATATBgwqhkiG9xIEAYS3CQABAf8EADANBgkqhkiG9w0BAQsFAAOCAQEA
GvBP0xqL509InMj/3493YVRV+ldTpBv5uTD6jewzf5XdaxEQ/VjTNe5zKnxbpAib
Kf7cwX0PMSkZjx7k7kKdDlEucwVvDoqC+O9aJcqVmM6GDyNb9xENxd0XCXja6MZC
yVgP4AwLauB2vSiEprYJyI1APph3iAEeDm60lTXX/wBM/tupQDDujKh2GPyvBRfJ
+wEDwGg3ICwvu4gO4zeC5qnFR+bpL9t5tOMAQnVZ0NWv+k7mkd2LbHdD44dxrfXC
nhtfERx99SDmC/jtUAJrGhtCO8acr7exCeYcduN7KKCm91OeCJKK6OzWst0Og1DB
kwzzU2rL3G65CrZ7H0SZsQ==
-----END X509 CRL-----
)";
// kUnknownCriticalCRL2 is kBasicCRL but with a critical issuing distribution
// point extension followed by an unknown critical extension
static const char kUnknownCriticalCRL2[] = R"(
-----BEGIN X509 CRL-----
MIIBzTCBtgIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoDQwMjAKBgNV
HRQEAwIBATAPBgNVHRwBAf8EBTADgQH/MBMGDCqGSIb3EgQBhLcJAAEB/wQAMA0G
CSqGSIb3DQEBCwUAA4IBAQBgSogsC5kf2wzr+0hmZtmLXYd0itAiYO0Gh9AyaEOO
myJFuqICHBSLXXUgwNkTUa2x2I/ivyReVFV756VOlWoaV2wJUs0zeCeVBgC9ZFsq
5a+8OGgXwgoYESFV5Y3QRF2a1Ytzfbw/o6xLXzTngvMsLOs12D4B5SkopyEZibF4
tXlRZyvEudTg3CCrjNP+p/GV07nZ3wcMmKJwQeilgzFUV7NaVCCo9jvPBGp0RxAN
KNif7jmjK4hD5mswo/Eq5kxQIc+mTfuUFdgHuAu1hfLYe0YK+Hr4RFf6Qy4hl7Ne
YjqkkSVIcr87u+8AznwdstnQzsyD27Jt7SjVORkYRywi
-----END X509 CRL-----
)";
// kBadExtensionCRL is kBasicCRL but with an incorrectly-encoded issuing
// distribution point extension.
static const char kBadExtensionCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBujCBowIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoCEwHzAKBgNV
HRQEAwIBATARBgNVHRwBAf8EBzAFoQMBAf8wDQYJKoZIhvcNAQELBQADggEBAA+3
i+5e5Ub8sccfgOBs6WVJFI9c8gvJjrJ8/dYfFIAuCyeocs7DFXn1n13CRZ+URR/Q
mVWgU28+xeusuSPYFpd9cyYTcVyNUGNTI3lwgcE/yVjPaOmzSZKdPakApRxtpKKQ
NN/56aQz3bnT/ZSHQNciRB8U6jiD9V30t0w+FDTpGaG+7bzzUH3UVF9xf9Ctp60A
3mfLe0scas7owSt4AEFuj2SPvcE7yvdOXbu+IEv21cEJUVExJAbhvIweHXh6yRW+
7VVeiNzdIjkZjyTmAzoXGha4+wbxXyBRbfH+XWcO/H+8nwyG8Gktdu2QB9S9nnIp
o/1TpfOMSGhMyMoyPrk=
-----END X509 CRL-----
)";
// kAlgorithmMismatchCRL is kBasicCRL but with mismatched AlgorithmIdentifiers
// in the outer structure and signed portion. The signature reflects the signed
// portion.
static const char kAlgorithmMismatchCRL[] = R"(
-----BEGIN X509 CRL-----
MIIBpzCBkAIBATANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoA4wDDAKBgNV
HRQEAwIBATANBgkqhkiG9w0BAQwFAAOCAQEAnrBKKgvd9x9zwK9rtUvVeFeJ7+LN
ZEAc+a5oxpPNEsJx6hXoApYEbzXMxuWBQoCs5iEBycSGudct21L+MVf27M38KrWo
eOkq0a2siqViQZO2Fb/SUFR0k9zb8xl86Zf65lgPplALun0bV/HT7MJcl04Tc4os
dsAReBs5nqTGNEd5AlC1iKHvQZkM//MD51DspKnDpsDiUVi54h9C1SpfZmX8H2Vv
diyu0fZ/bPAM3VAGawatf/SyWfBMyKpoPXEG39oAzmjjOj8en82psn7m474IGaho
/vBbhl1ms5qQiLYPjm4YELtnXQoFyC72tBjbdFd/ZE9k4CNKDbxFUXFbkw==
-----END X509 CRL-----
)";
// kAlgorithmMismatchCRL2 is kBasicCRL but with mismatched AlgorithmIdentifiers
// in the outer structure and signed portion. The signature reflects the outer
// structure.
static const char kAlgorithmMismatchCRL2[] = R"(
-----BEGIN X509 CRL-----
MIIBpzCBkAIBATANBgkqhkiG9w0BAQwFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoA4wDDAKBgNV
HRQEAwIBATANBgkqhkiG9w0BAQsFAAOCAQEAjCWtU7AK8nQ5TCFfzvbU04MWNuLp
iZfqapRSRyMta4pyRomK773rEmJmYOc/ZNeIphVOlupMgGC2wyv5Z/SD1mxccJbv
SlUWciwjskjgvyyU9KnJ5xPgf3e3Fl3G0u9yJEFd4mg6fRavs5pEDX56b0f+SkG+
Vl1FZU94Uylm2kCqk9fRpTxualPGP6dksj3Aitt4x2Vdni4sUfg9vIEEOx2jnisq
iLqpT94IdETCWAciE0dgbogdOOsNzMqSASfHM/XPigYLXpYgfaR8fca6OKDwFsVH
SrkFz8Se3F6mCHnbDzYElbmA46iKU2J12LTrso3Ewq/qHq0mebfp2z0y6g==
-----END X509 CRL-----
)";
// kEd25519Cert is a self-signed Ed25519 certificate.
static const char kEd25519Cert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBkTCCAUOgAwIBAgIJAJwooam0UCDmMAUGAytlcDBFMQswCQYDVQQGEwJBVTET
MBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQ
dHkgTHRkMB4XDTE0MDQyMzIzMjE1N1oXDTE0MDUyMzIzMjE1N1owRTELMAkGA1UE
BhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdp
ZGdpdHMgUHR5IEx0ZDAqMAUGAytlcAMhANdamAGCsQq31Uv+08lkBzoO4XLz2qYj
Ja8CGmj3B1Eao1AwTjAdBgNVHQ4EFgQUoux7eV+fJK2v3ah6QPU/lj1/+7UwHwYD
VR0jBBgwFoAUoux7eV+fJK2v3ah6QPU/lj1/+7UwDAYDVR0TBAUwAwEB/zAFBgMr
ZXADQQBuCzqji8VP9xU8mHEMjXGChX7YP5J664UyVKHKH9Z1u4wEbB8dJ3ScaWSL
r+VHVKUhsrvcdCelnXRrrSD7xWAL
-----END CERTIFICATE-----
)";
// kEd25519CertNull is an invalid self-signed Ed25519 with an explicit NULL in
// the signature algorithm.
static const char kEd25519CertNull[] = R"(
-----BEGIN CERTIFICATE-----
MIIBlTCCAUWgAwIBAgIJAJwooam0UCDmMAcGAytlcAUAMEUxCzAJBgNVBAYTAkFV
MRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRz
IFB0eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQswCQYD
VQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQg
V2lkZ2l0cyBQdHkgTHRkMCowBQYDK2VwAyEA11qYAYKxCrfVS/7TyWQHOg7hcvPa
piMlrwIaaPcHURqjUDBOMB0GA1UdDgQWBBSi7Ht5X58kra/dqHpA9T+WPX/7tTAf
BgNVHSMEGDAWgBSi7Ht5X58kra/dqHpA9T+WPX/7tTAMBgNVHRMEBTADAQH/MAcG
AytlcAUAA0EA70uefNocdJohkKPNROKVyBuBD3LXMyvmdTklsaxSRY3PcZdOohlr
recgVPpVS7B+d9g4EwtZXIh4lodTBDHBBw==
-----END CERTIFICATE-----
)";
// kX25519 is the example X25519 certificate from
// https://tools.ietf.org/html/rfc8410#section-10.2
static const char kX25519Cert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBLDCB36ADAgECAghWAUdKKo3DMDAFBgMrZXAwGTEXMBUGA1UEAwwOSUVURiBUZX
N0IERlbW8wHhcNMTYwODAxMTIxOTI0WhcNNDAxMjMxMjM1OTU5WjAZMRcwFQYDVQQD
DA5JRVRGIFRlc3QgRGVtbzAqMAUGAytlbgMhAIUg8AmJMKdUdIt93LQ+91oNvzoNJj
ga9OukqY6qm05qo0UwQzAPBgNVHRMBAf8EBTADAQEAMA4GA1UdDwEBAAQEAwIDCDAg
BgNVHQ4BAQAEFgQUmx9e7e0EM4Xk97xiPFl1uQvIuzswBQYDK2VwA0EAryMB/t3J5v
/BzKc9dNZIpDmAgs3babFOTQbs+BolzlDUwsPrdGxO3YNGhW7Ibz3OGhhlxXrCe1Cg
w1AH9efZBw==
-----END CERTIFICATE-----
)";
// kSANTypesLeaf is a leaf certificate (signed by |kSANTypesRoot|) which
// contains SANS for example.com, test@example.com, 127.0.0.1, and
// https://example.com/. (The latter is useless for now since crypto/x509
// doesn't deal with URI SANs directly.)
static const char kSANTypesLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIClzCCAgCgAwIBAgIJAOjwnT/iW+qmMA0GCSqGSIb3DQEBCwUAMCsxFzAVBgNV
BAoTDkJvcmluZ1NTTCBUZXN0MRAwDgYDVQQDEwdSb290IENBMB4XDTE1MDEwMTAw
MDAwMFoXDTI1MDEwMTAwMDAwMFowLzEXMBUGA1UEChMOQm9yaW5nU1NMIFRlc3Qx
FDASBgNVBAMTC2V4YW1wbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQDbRn2TLhInBki8Bighq37EtqJd/h5SRYh6NkelCA2SQlvCgcC+l3mYQPtPbRT9
KxOLwqUuZ9jUCZ7WIji3Sgt0cyvCNPHRk+WW2XR781ifbGE8wLBB1NkrKyQjd1sc
O711Xc4gVM+hY4cdHiTE8x0aUIuqthRD7ZendWL0FMhS1wIDAQABo4G+MIG7MA4G
A1UdDwEB/wQEAwIFoDAdBgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwDAYD
VR0TAQH/BAIwADAZBgNVHQ4EEgQQn5EWH0NDPkmm3m22gNefYDAbBgNVHSMEFDAS
gBBAN9cB+0AvuBx+VAQnjFkBMEQGA1UdEQQ9MDuCC2V4YW1wbGUuY29tgRB0ZXN0
QGV4YW1wbGUuY29thwR/AAABhhRodHRwczovL2V4YW1wbGUuY29tLzANBgkqhkiG
9w0BAQsFAAOBgQBtwJvY6+Tk6D6DOtDVaNoJ5y8E25CCuE/Ga4OuIcYJas+yLckf
dZwUV3GUG2oBXl2MrpUFxXd4hKBO1CmlBY+hZEeIx0Yp6QWK9P/vnZeydOTP26mk
jusJ2PqSmtKNU1Zcaba4d29oFejmOAfeguhR8AHpsc/zHEaS5Q9cJsuJcw==
-----END CERTIFICATE-----
)";
// -----BEGIN RSA PRIVATE KEY-----
// MIICWwIBAAKBgQDbRn2TLhInBki8Bighq37EtqJd/h5SRYh6NkelCA2SQlvCgcC+
// l3mYQPtPbRT9KxOLwqUuZ9jUCZ7WIji3Sgt0cyvCNPHRk+WW2XR781ifbGE8wLBB
// 1NkrKyQjd1scO711Xc4gVM+hY4cdHiTE8x0aUIuqthRD7ZendWL0FMhS1wIDAQAB
// AoGACwf7z0i1DxOI2zSwFimLghfyCSp8mgT3fbZ3Wj0SebYu6ZUffjceneM/AVrq
// gGYHYLOVHcWJqfkl7X3hPo9SDhzLx0mM545/q21ZWCwjhswH7WiCEqV2/zeDO9WU
// NIO1VU0VoLm0AQ7ZvwnyB+fpgF9kkkDtbBJW7XWrfNVtlnECQQD97YENpEJ3X1kj
// 3rrkrHWDkKAyoWWY1i8Fm7LnganC9Bv6AVwgn5ZlE/479aWHF8vbOFEA3pFPiNZJ
// t9FTCfpJAkEA3RCXjGI0Y6GALFLwEs+nL/XZAfJaIpJEZVLCVosYQOSaMS4SchfC
// GGYVquT7ZgKk9uvz89Fg87OtBMWS9lrkHwJADGkGLKeBhBoJ3kHtem2fVK3F1pOi
// xoR5SdnhNYVVyaxqjZ5xZTrHe+stOrr3uxGDqhQniVZXXb6/Ul0Egv1y2QJAVg/h
// kAujba4wIhFf2VLyOZ+yjil1ocPj0LZ5Zgvcs1bMGJ1hHP3W2HzVrqRaowoggui1
// HpTC891dXGA2qKYV7QJAFDmT2A7OVvh3y4AEgzVwHrDmCMwMHKjCIntS7fjxrJnF
// YvJUG1zoHwUVrxxbR3DbpTODlktLcl/0b97D0IkH3w==
// -----END RSA PRIVATE KEY-----
static const char kSANTypesRoot[] = R"(
-----BEGIN CERTIFICATE-----
MIICTTCCAbagAwIBAgIIAj5CwoHlWuYwDQYJKoZIhvcNAQELBQAwKzEXMBUGA1UE
ChMOQm9yaW5nU1NMIFRlc3QxEDAOBgNVBAMTB1Jvb3QgQ0EwHhcNMTUwMTAxMDAw
MDAwWhcNMjUwMTAxMDAwMDAwWjArMRcwFQYDVQQKEw5Cb3JpbmdTU0wgVGVzdDEQ
MA4GA1UEAxMHUm9vdCBDQTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA6Q5/
EQzmWuaGg3D2UQcuAngR9bIkkjjuJmICx5TxPqF3asCP1SJotl3iTNrghRE1wpJy
SY2BtIiXa7f8skRb2U0GcPkMxo/ps9+jaoRsQ1m+nbLQdpvD1/qZWcO45fNTA71J
1rPMokP+rcILuQG4VimUAySnDSghKamulFtK+Z8CAwEAAaN6MHgwDgYDVR0PAQH/
BAQDAgIEMB0GA1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjAPBgNVHRMBAf8E
BTADAQH/MBkGA1UdDgQSBBBAN9cB+0AvuBx+VAQnjFkBMBsGA1UdIwQUMBKAEEA3
1wH7QC+4HH5UBCeMWQEwDQYJKoZIhvcNAQELBQADgYEAc4N6hTE62/3gwg+kyc2f
c/Jj1mHrOt+0NRaBnmvbmNpsEjHS96Ef4Wt/ZlPXPkkv1C1VosJnOIMF3Q522wRH
bqaxARldS12VAa3gcWisDWD+SqSyDxjyojz0XDiJkTrFuCTCUiZO+1GLB7SO10Ms
d5YVX0c90VMnUhF/dlrqS9U=
-----END CERTIFICATE-----
)";
// -----BEGIN RSA PRIVATE KEY-----
// MIICXAIBAAKBgQDpDn8RDOZa5oaDcPZRBy4CeBH1siSSOO4mYgLHlPE+oXdqwI/V
// Imi2XeJM2uCFETXCknJJjYG0iJdrt/yyRFvZTQZw+QzGj+mz36NqhGxDWb6dstB2
// m8PX+plZw7jl81MDvUnWs8yiQ/6twgu5AbhWKZQDJKcNKCEpqa6UW0r5nwIDAQAB
// AoGALEF5daZqc+aEsp8X1yky3nsoheyPL0kqSBWii33IFemZgKcSaRnAoqjPWWLS
// 8dHj0I/4rej2MW8iuezVSpDak9tK5boHORC3w4p/wifkizQkLt1DANxTVbzcKvrt
// aZ7LjVaKkhjRJbLddniowFHkkWVbUccjvzcUd7Y2VuLbAhECQQDq4FE88aHio8zg
// bxSd0PwjEFwLYQTR19u812SoR8PmR6ofIL+pDwOV+fVs+OGcAAOgkhIukOrksQ4A
// 1cKtnyhXAkEA/gRI+u3tZ7UE1twIkBfZ6IvCdRodkPqHAYIxMRLzL+MhyZt4MEGc
// Ngb/F6U9/WOBFnoR/PI7IwE3ejutzKcL+QJBAKh+6eilk7QKPETZi1m3/dmNt+p1
// 3EZJ65pqjwxmB3Rg/vs7vCMk4TarTdSyKu+F1xRPFfoP/mK3Xctdjj6NyhsCQAYF
// 7/0TOzfkUPMPUJyqFB6xgbDpJ55ScnUUsznoqx+NkTWInDb4t02IqO/UmT2y6FKy
// Hk8TJ1fTJY+ebqaVp3ECQApx9gQ+n0zIhx97FMUuiRse73xkcW4+pZ8nF+8DmeQL
// /JKuuFGmzkG+rUbXFmo/Zg2ozVplw71NnQJ4znPsf7A=
// -----END RSA PRIVATE KEY-----
// The following four certificates were generated with this Go program, varying
// |includeNetscapeExtension| and defining rootKeyPEM and rootCertPEM to be
// strings containing the kSANTypesRoot, above.
// package main
// import (
// "crypto/ecdsa"
// "crypto/elliptic"
// "crypto/rand"
// "crypto/x509"
// "crypto/x509/pkix"
// "encoding/asn1"
// "encoding/pem"
// "math/big"
// "os"
// "time"
// )
// const includeNetscapeExtension = true
// func main() {
// block, _ := pem.Decode([]byte(rootKeyPEM))
// rootPriv, _ := x509.ParsePKCS1PrivateKey(block.Bytes)
// block, _ = pem.Decode([]byte(rootCertPEM))
// root, _ := x509.ParseCertificate(block.Bytes)
// interTemplate := &x509.Certificate{
// SerialNumber: big.NewInt(2),
// Subject: pkix.Name{
// CommonName: "No Basic Constraints (Netscape)",
// },
// NotBefore: time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC),
// NotAfter: time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC),
// }
// if includeNetscapeExtension {
// interTemplate.ExtraExtensions = []pkix.Extension{
// pkix.Extension{
// Id: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 113730, 1, 1}),
// Value: []byte{0x03, 0x02, 2, 0x04},
// },
// }
// } else {
// interTemplate.KeyUsage = x509.KeyUsageCertSign
// }
// interKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
// interDER, err := x509.CreateCertificate(rand.Reader, interTemplate, root, &interKey.PublicKey, rootPriv)
// if err != nil {
// panic(err)
// }
// pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: interDER})
// inter, _ := x509.ParseCertificate(interDER)
// leafTemplate := &x509.Certificate{
// SerialNumber: big.NewInt(3),
// Subject: pkix.Name{
// CommonName: "Leaf from CA with no Basic Constraints",
// },
// NotBefore: time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC),
// NotAfter: time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC),
// BasicConstraintsValid: true,
// }
// leafKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
// leafDER, err := x509.CreateCertificate(rand.Reader, leafTemplate, inter, &leafKey.PublicKey, interKey)
// if err != nil {
// panic(err)
// }
// pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: leafDER})
// }
// kNoBasicConstraintsCertSignIntermediate doesn't have isCA set, but contains
// certSign in the keyUsage.
static const char kNoBasicConstraintsCertSignIntermediate[] = R"(
-----BEGIN CERTIFICATE-----
MIIBqjCCAROgAwIBAgIBAjANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowHzEdMBsGA1UEAxMUTm8gQmFzaWMgQ29uc3RyYWludHMw
WTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASEFMblfxIEDO8My7wHtHWTuDzNyID1
OsPkMGkn32O/pSyXxXuAqDeFoMVffUMTyfm8JcYugSEbrv2qEXXM4bZRoy8wLTAO
BgNVHQ8BAf8EBAMCAgQwGwYDVR0jBBQwEoAQQDfXAftAL7gcflQEJ4xZATANBgkq
hkiG9w0BAQsFAAOBgQC1Lh6hIAm3K5kRh5iIydU0YAEm7eV6ZSskERDUq3DLJyl9
ZUZCHUzvb464dkwZjeNzaUVS1pdElJslwX3DtGgeJLJGCnk8zUjBjaNrrDm0kzPW
xKt/6oif1ci/KCKqKNXJAIFbc4e+IiBpenwpxHk3If4NM+Ek0nKoO8Uj0NkgTQ==
-----END CERTIFICATE-----
)";
static const char kNoBasicConstraintsCertSignLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBUDCB96ADAgECAgEDMAoGCCqGSM49BAMCMB8xHTAbBgNVBAMTFE5vIEJhc2lj
IENvbnN0cmFpbnRzMCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkwMTAxMDAwMDAwWjAx
MS8wLQYDVQQDEyZMZWFmIGZyb20gQ0Egd2l0aCBubyBCYXNpYyBDb25zdHJhaW50
czBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABEsYPMwzdJKjB+2gpC90ib2ilHoB
w/arQ6ikUX0CNUDDaKaOu/jF39ogzVlg4lDFrjCKShSfCCcrwgONv70IZGijEDAO
MAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDSAAwRQIgbV7R99yM+okXSIs6Fp3o
eCOXiDL60IBxaTOcLS44ywcCIQDbn87Gj5cFgHBYAkzdHqDsyGXkxQTHDq9jmX24
Djy3Zw==
-----END CERTIFICATE-----
)";
// kNoBasicConstraintsNetscapeCAIntermediate doesn't have isCA set, but contains
// a Netscape certificate-type extension that asserts a type of "SSL CA".
static const char kNoBasicConstraintsNetscapeCAIntermediate[] = R"(
-----BEGIN CERTIFICATE-----
MIIBuDCCASGgAwIBAgIBAjANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowKjEoMCYGA1UEAxMfTm8gQmFzaWMgQ29uc3RyYWludHMg
KE5ldHNjYXBlKTBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABCeMbmCaOtMzXBqi
PrCdNOH23CkaawUA+pAezitAN4RXS1O2CGK5sJjGPVVeogROU8G7/b+mU+ciZIzH
1PP8FJKjMjAwMBsGA1UdIwQUMBKAEEA31wH7QC+4HH5UBCeMWQEwEQYJYIZIAYb4
QgEBBAQDAgIEMA0GCSqGSIb3DQEBCwUAA4GBAAgNWjh7cfBTClTAk+Ml//5xb9Ju
tkBhG6Rm+kkMD+qiSMO6t7xS7CsA0+jIBjkdEYaLZ3oxtQCBdZsVNxUvRxZ0AUfF
G3DtRFTsrI1f7IQhpMuqEMF4shPW+5x54hrq0Fo6xMs6XoinJZcTUaaB8EeXRF6M
P9p6HuyLrmn0c/F0
-----END CERTIFICATE-----
)";
static const char kNoBasicConstraintsNetscapeCALeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBXDCCAQKgAwIBAgIBAzAKBggqhkjOPQQDAjAqMSgwJgYDVQQDEx9ObyBCYXNp
YyBDb25zdHJhaW50cyAoTmV0c2NhcGUpMCAXDTAwMDEwMTAwMDAwMFoYDzIwOTkw
MTAxMDAwMDAwWjAxMS8wLQYDVQQDEyZMZWFmIGZyb20gQ0Egd2l0aCBubyBCYXNp
YyBDb25zdHJhaW50czBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABDlJKolDu3R2
tPqSDycr0QJcWhxdBv76V0EEVflcHRxED6vAioTEcnQszt1OfKtBZvjlo0yp6i6Q
DaYit0ZInmWjEDAOMAwGA1UdEwEB/wQCMAAwCgYIKoZIzj0EAwIDSAAwRQIhAJsh
aZL6BHeEfoUBj1oZ2Ln91qzj3UCVMJ+vrmwAFdYyAiA3wp2JphgchvmoUFuzPXwj
XyPwWPbymSTpzKhB4xB7qQ==
-----END CERTIFICATE-----
)";
static const char kSelfSignedMismatchAlgorithms[] = R"(
-----BEGIN CERTIFICATE-----
MIIFMjCCAxqgAwIBAgIJAL0mG5fOeJ7xMA0GCSqGSIb3DQEBDQUAMC0xCzAJBgNV
BAYTAkdCMQ8wDQYDVQQHDAZMb25kb24xDTALBgNVBAoMBFRlc3QwIBcNMTgwOTE3
MTIxNzU3WhgPMjExODA4MjQxMjE3NTdaMC0xCzAJBgNVBAYTAkdCMQ8wDQYDVQQH
DAZMb25kb24xDTALBgNVBAoMBFRlc3QwggIiMA0GCSqGSIb3DQEBAQUAA4ICDwAw
ggIKAoICAQDCMhBrRAGGw+n2GdctBr/cEK4FZA6ajiHjihgpCHoSBdyL4R2jGKLS
g0WgaMXa1HpkKN7LcIySosEBPlmcRkr1RqbEvQStOSvoFCXYvtx3alM6HTbXMcDR
mqoKoABP6LXsPSoMWIgqMtP2X9EOppzHVIK1yFYFfbIlvYUV2Ka+MuMe0Vh5wvD1
4GanPb+cWSKgdRSVQovCCMY3yWtZKVEaxRpCsk/mYYIFWz0tcgMjIKwDx1XXgiAV
nU6NK43xbaw3XhtnaD/pv9lhTTbNrlcln9LjTD097BaK4R+1AEPHnpfxA9Ui3upn
kbsNUdGdOB0ksZi/vd7lh833YgquQUIAhYrbfvq/HFCpVV1gljzlS3sqULYpLE//
i3OsuL2mE+CYIJGpIi2GeJJWXciNMTJDOqTn+fRDtVb4RPp4Y70DJirp7XzaBi3q
H0edANCzPSRCDbZsOhzIXhXshldiXVRX666DDlbMQgLTEnNKrkwv6DmU8o15XQsb
8k1Os2YwXmkEOxUQ7AJZXVTZSf6UK9Znmdq1ZrHjybMfRUkHVxJcnKvrxfryralv
gzfvu+D6HuxrCo3Ojqa+nDgIbxKEBtdrcsMhq1jWPFhjwo1fSadAkKOfdCAuXJRD
THg3b4Sf+W7Cpc570YHrIpBf7WFl2XsPcEM0mJZ5+yATASCubNozQwIDAQABo1Mw
UTAdBgNVHQ4EFgQUES0hupZSqY21JOba10QyZuxm91EwHwYDVR0jBBgwFoAUES0h
upZSqY21JOba10QyZuxm91EwDwYDVR0TAQH/BAUwAwEB/zANBgkqhkiG9w0BAQsF
AAOCAgEABTN5S30ng/RMpBweDm2N561PdpaCdiRXtAFCRVWR2mkDYC/Xj9Vqe6be
PyM7L/5OKYVjzF1yJu67z/dx+ja5o+41g17jdqla7hyPx+9B4uRyDh+1KJTa+duj
mw/aA1LCr6O6W4WizDOsChJ6FaB2Y1+GlFnKWb5nUdhVJqXQE1WOX9dZnw8Y4Npd
VmAsjWot0BZorJrt3fwfcv3QfA896twkbo7Llv/8qzg4sXZXZ4ZtgAOqnPngiSn+
JT/vYCXZ406VvAFpFqMcVz2dO/VGuL8lGIMHRKNyafrsV81EzH1W/XmRWOgvgj6r
yQI63ln/AMY72HQ97xLkE1xKunGz6bK5Ug5+O43Uftc4Mb6MUgzo+ZqEQ3Ob+cAV
cvjmtwDaPO/O39O5Xq0tLTlkn2/cKf4OQ6S++GDxzyRVHh5JXgP4j9+jfZY57Woy
R1bE7N50JjY4cDermBJKdlBIjL7UPhqmLyaG7V0hBitFlgGBUCcJtJOV0xYd5aF3
pxNkvMXhBmh95fjxJ0cJjpO7tN1RAwtMMNgsl7OUbuVRQCHOPW5DgP5qY21jDeRn
BY82382l+9QzykmJLI5MZnmj4BA9uIDCwMtoTTvP++SsvhUAbuvh7MOOUQL0EY4m
KStYq7X9PKseN+PvmfeoffIKc5R/Ha39oi7cGMVHCr8aiEhsf94=
-----END CERTIFICATE-----
)";
// kCommonNameWithSANs is a leaf certificate signed by kSANTypesRoot, with
// *.host1.test as the common name and a SAN list of *.host2.test and
// foo.host3.test.
static const char kCommonNameWithSANs[] = R"(
-----BEGIN CERTIFICATE-----
MIIB2zCCAUSgAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowNzEeMBwGA1UEChMVQ29tbW9uIG5hbWUgd2l0aCBTQU5z
MRUwEwYDVQQDDAwqLmhvc3QxLnRlc3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNC
AASgWzfnFnpQrokSLIC+LhCKJDUAY/2usfIDpOnafYoYCasbYetkmOslgyY4Nn07
zjvjNROprA/0bdULXAkdL9bNo0gwRjAbBgNVHSMEFDASgBBAN9cB+0AvuBx+VAQn
jFkBMCcGA1UdEQQgMB6CDCouaG9zdDIudGVzdIIOZm9vLmhvc3QzLnRlc3QwDQYJ
KoZIhvcNAQELBQADgYEAtv2e3hBhsslXB1HTxgusjoschWOVtvGZUaYlhkKzKTCL
4YpDn50BccnucBU/b9phYvaEZtyzOv4ZXhxTGyLnLrIVB9x5ikfCcfl+LNYNjDwM
enm/h1zOfJ7wXLyscD4kU29Wc/zxBd70thIgLYn16CC1S9NtXKsXXDXv5VVH/bg=
-----END CERTIFICATE-----
)";
// kCommonNameWithSANs is a leaf certificate signed by kSANTypesRoot, with
// *.host1.test as the common name and no SAN list.
static const char kCommonNameWithoutSANs[] = R"(
-----BEGIN CERTIFICATE-----
MIIBtTCCAR6gAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowOjEhMB8GA1UEChMYQ29tbW9uIG5hbWUgd2l0aG91dCBT
QU5zMRUwEwYDVQQDDAwqLmhvc3QxLnRlc3QwWTATBgcqhkjOPQIBBggqhkjOPQMB
BwNCAARt2vjlIrPE+kr11VS1rRP/AYQu4fvf1bNw/K9rwYlVBhmLMPYasEmpCtKE
0bDIFydtDYC3wZDpSS+YiaG40sdAox8wHTAbBgNVHSMEFDASgBBAN9cB+0AvuBx+
VAQnjFkBMA0GCSqGSIb3DQEBCwUAA4GBAHRbIeaCEytOpJpw9O2dlB656AHe1+t5
4JiS5mvtzoVOLn7fFk5EFQtZS7sG1Uc2XjlSw+iyvFoTFEqfKyU/mIdc2vBuPwA2
+YXT8aE4S+UZ9oz5j0gDpikGnkSCW0cyHD8L8fntNjaQRSaM482JpmtdmuxClmWO
pFFXI2B5usgI
-----END CERTIFICATE-----
)";
// kCommonNameWithEmailSAN is a leaf certificate signed by kSANTypesRoot, with
// *.host1.test as the common name and the email address test@host2.test in the
// SAN list.
static const char kCommonNameWithEmailSAN[] = R"(
-----BEGIN CERTIFICATE-----
MIIBvDCCASWgAwIBAgIBAjANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFzEVMBMGA1UEAwwMKi5ob3N0MS50ZXN0MFkwEwYHKoZI
zj0CAQYIKoZIzj0DAQcDQgAEtevOxcTjpPzlNGoUMFfZyr1k03/Hiuh+EsnuScDs
8XLKi6fDkvSaDClI99ycabQZRPIrvyT+dglDC6ugQd+CYqNJMEcwDAYDVR0TAQH/
BAIwADAbBgNVHSMEFDASgBBAN9cB+0AvuBx+VAQnjFkBMBoGA1UdEQQTMBGBD3Rl
c3RAaG9zdDIudGVzdDANBgkqhkiG9w0BAQsFAAOBgQCGbqb78OWJWl4zb+qw0Dz2
HJgZZJt6/+nNG/XJKdaYeS4eofsbwsJI4fuuOF6ZvYCJxVNtGqdfZDgycvFA9hjv
NGosBF1/spP17cmzTahLjxs71jDvHV/EQJbKGl/Zpta1Em1VrzSrwoOFabPXzZTJ
aet/mER21Z/9ZsTUoJQPJw==
-----END CERTIFICATE-----
)";
// kCommonNameWithIPSAN is a leaf certificate signed by kSANTypesRoot, with
// *.host1.test as the common name and the IP address 127.0.0.1 in the
// SAN list.
static const char kCommonNameWithIPSAN[] = R"(
-----BEGIN CERTIFICATE-----
MIIBsTCCARqgAwIBAgIBAjANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFzEVMBMGA1UEAwwMKi5ob3N0MS50ZXN0MFkwEwYHKoZI
zj0CAQYIKoZIzj0DAQcDQgAEFKrgkxm8PysXbwnHQeTD3p8YY0+sY4ssnZgmj8wX
KTyn893fdBHWlz71GO6t82wMTF5d+ZYwI2XU52pfl4SB2aM+MDwwDAYDVR0TAQH/
BAIwADAbBgNVHSMEFDASgBBAN9cB+0AvuBx+VAQnjFkBMA8GA1UdEQQIMAaHBH8A
AAEwDQYJKoZIhvcNAQELBQADgYEAQWZ8Oj059ZjS109V/ijMYT28xuAN5n6HHxCO
DopTP56Zu9+gme5wTETWEfocspZvgecoUOcedTFoKSQ7JafO09NcVLA+D6ddYpju
mgfuiLy9dDhqvX/NHaLBMxOBWWbOLwWE+ibyX+pOzjWRCw1L7eUXOr6PhZAOQsmU
D0+O6KI=
-----END CERTIFICATE-----
)";
// kConstrainedIntermediate is an intermediate signed by kSANTypesRoot, with
// permitted DNS names of permitted1.test and foo.permitted2.test and an
// excluded DNS name of excluded.permitted1.test. Its private key is:
//
// -----BEGIN PRIVATE KEY-----
// MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgTXUM4tJWM7OzATty
// JhNOfIv/d8heWFBeKOfMR+RfaROhRANCAASbbbWYiN6mn+BCpg4XNpibOH0D/DN4
// kZ5C/Ml2YVomC9T83OKk2CzB8fPAabPb4P4Vv+fIabpEfjWS5nzKLY1y
// -----END PRIVATE KEY-----
static const char kConstrainedIntermediate[] = R"(
-----BEGIN CERTIFICATE-----
MIICDjCCAXegAwIBAgIBAjANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowKDEmMCQGA1UEAxMdTmFtZSBDb25zdHJhaW50cyBJbnRl
cm1lZGlhdGUwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASbbbWYiN6mn+BCpg4X
NpibOH0D/DN4kZ5C/Ml2YVomC9T83OKk2CzB8fPAabPb4P4Vv+fIabpEfjWS5nzK
LY1yo4GJMIGGMA8GA1UdEwEB/wQFMAMBAf8wGwYDVR0jBBQwEoAQQDfXAftAL7gc
flQEJ4xZATBWBgNVHR4BAf8ETDBKoCowEYIPcGVybWl0dGVkMS50ZXN0MBWCE2Zv
by5wZXJtaXR0ZWQyLnRlc3ShHDAaghhleGNsdWRlZC5wZXJtaXR0ZWQxLnRlc3Qw
DQYJKoZIhvcNAQELBQADgYEAFq1Ka05hiKREwRpSceQPzIIH4B5a5IVBg5/EvmQI
9V0fXyAE1GmahPt70sIBxIgzNTEaY8P/IoOuCdlZWe0msmyEO3S6YSAzOWR5Van6
cXmFM1uMd95TlkxUMRdV+jKJTvG6R/BM2zltaV7Xt662k5HtzT5Svw0rZlFaggZz
UyM=
-----END CERTIFICATE-----
)";
// kCommonNamePermittedLeaf is a leaf certificate signed by
// kConstrainedIntermediate. Its common name is permitted by the name
// constraints.
static const char kCommonNamePermittedLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBaDCCAQ2gAwIBAgIBAzAKBggqhkjOPQQDAjAoMSYwJAYDVQQDEx1OYW1lIENv
bnN0cmFpbnRzIEludGVybWVkaWF0ZTAgFw0wMDAxMDEwMDAwMDBaGA8yMDk5MDEw
MTAwMDAwMFowPjEeMBwGA1UEChMVQ29tbW9uIG5hbWUgcGVybWl0dGVkMRwwGgYD
VQQDExNmb28ucGVybWl0dGVkMS50ZXN0MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcD
QgAENX5Ycs8q8MRzPYUz6DqLHhJR3wcmniFRgkiEa7MxE/mRe00y0VGwH7xi7Aoc
emXPrtD4JwN5bssbcxWGAKYYzaMQMA4wDAYDVR0TAQH/BAIwADAKBggqhkjOPQQD
AgNJADBGAiEAtsnWuRQXtw2xbieC78Y8SVEtTjcZUx8uZyQe1GPLfGICIQDR4fNY
yg3PC94ydPNQZVsFxAne32CbonWWsokalTFpUQ==
-----END CERTIFICATE-----
)";
static const char kCommonNamePermitted[] = "foo.permitted1.test";
// kCommonNameNotPermittedLeaf is a leaf certificate signed by
// kConstrainedIntermediate. Its common name is not permitted by the name
// constraints.
static const char kCommonNameNotPermittedLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBazCCARCgAwIBAgIBBDAKBggqhkjOPQQDAjAoMSYwJAYDVQQDEx1OYW1lIENv
bnN0cmFpbnRzIEludGVybWVkaWF0ZTAgFw0wMDAxMDEwMDAwMDBaGA8yMDk5MDEw
MTAwMDAwMFowQTEiMCAGA1UEChMZQ29tbW9uIG5hbWUgbm90IHBlcm1pdHRlZDEb
MBkGA1UEAxMSbm90LXBlcm1pdHRlZC50ZXN0MFkwEwYHKoZIzj0CAQYIKoZIzj0D
AQcDQgAEzfghKuWf0JoXb0Drp09C3yXMSQQ1byt+AUaymvsHOWsxQ9v1Q+vkF/IM
HRqGTk2TyxrB2iClVEn/Uu+YtYox1KMQMA4wDAYDVR0TAQH/BAIwADAKBggqhkjO
PQQDAgNJADBGAiEAxaUslxmoWL1tIvnDz7gDkto/HcmdU0jHVuUQLXcCG8wCIQCN
5xZjitlCQU8UB5qSu9wH4B+0JcVO3Ss4Az76HEJWMw==
-----END CERTIFICATE-----
)";
static const char kCommonNameNotPermitted[] = "not-permitted.test";
// kCommonNameNotPermittedWithSANsLeaf is a leaf certificate signed by
// kConstrainedIntermediate. Its common name is not permitted by the name
// constraints but it has a SAN list.
static const char kCommonNameNotPermittedWithSANsLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBqTCCAU+gAwIBAgIBBjAKBggqhkjOPQQDAjAoMSYwJAYDVQQDEx1OYW1lIENv
bnN0cmFpbnRzIEludGVybWVkaWF0ZTAgFw0wMDAxMDEwMDAwMDBaGA8yMDk5MDEw
MTAwMDAwMFowSzEsMCoGA1UEChMjQ29tbW9uIG5hbWUgbm90IHBlcm1pdHRlZCB3
aXRoIFNBTlMxGzAZBgNVBAMTEm5vdC1wZXJtaXR0ZWQudGVzdDBZMBMGByqGSM49
AgEGCCqGSM49AwEHA0IABKsn9wOApXFHrqhLdQgbFSeaSoAIbxgO0zVSRZUb5naR
93zoL3MFOvZEF8xiEqh7le+l3XuUig0fwqpcsZzRNJajRTBDMAwGA1UdEwEB/wQC
MAAwMwYDVR0RBCwwKoITZm9vLnBlcm1pdHRlZDEudGVzdIITZm9vLnBlcm1pdHRl
ZDIudGVzdDAKBggqhkjOPQQDAgNIADBFAiACk+1f184KkKAXuntmrz+Ygcq8MiZl
4delx44FtcNaegIhAIA5nYfzxNcTXxDo3U+x1vSLH6Y7faLvHiFySp7O//q+
-----END CERTIFICATE-----
)";
static const char kCommonNameNotPermittedWithSANs[] = "not-permitted.test";
// kCommonNameNotDNSLeaf is a leaf certificate signed by
// kConstrainedIntermediate. Its common name is not a DNS name.
static const char kCommonNameNotDNSLeaf[] = R"(
-----BEGIN CERTIFICATE-----
MIIBYTCCAQagAwIBAgIBCDAKBggqhkjOPQQDAjAoMSYwJAYDVQQDEx1OYW1lIENv
bnN0cmFpbnRzIEludGVybWVkaWF0ZTAgFw0wMDAxMDEwMDAwMDBaGA8yMDk5MDEw
MTAwMDAwMFowNzEcMBoGA1UEChMTQ29tbW9uIG5hbWUgbm90IEROUzEXMBUGA1UE
AxMOTm90IGEgRE5TIG5hbWUwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAASnueyc
Zxtnw5ke2J2T0/LwAK37auQP/RSFd9mem+BJVbgviawtAlignJmafp7Zw4/GdYEJ
Vm8qlriOJtluvXGcoxAwDjAMBgNVHRMBAf8EAjAAMAoGCCqGSM49BAMCA0kAMEYC
IQChUAmVNI39VHe0zemRE09VDcSEgOxr1nTvjLcg/Q8pVQIhAJYZnJI0YZAi05QH
RHNlAkTK2TnUaVn3fGSylaLiFS1r
-----END CERTIFICATE-----
)";
static const char kCommonNameNotDNS[] = "Not a DNS name";
// The following six certificates are issued by |kSANTypesRoot| and have
// different extended key usage values. They were created with the following
// Go program:
//
// func main() {
// block, _ := pem.Decode([]byte(rootKeyPEM))
// rootPriv, _ := x509.ParsePKCS1PrivateKey(block.Bytes)
// block, _ = pem.Decode([]byte(rootCertPEM))
// root, _ := x509.ParseCertificate(block.Bytes)
//
// leafTemplate := &x509.Certificate{
// SerialNumber: big.NewInt(3),
// Subject: pkix.Name{
// CommonName: "EKU msSGC",
// },
// NotBefore: time.Date(2000, time.January, 1, 0, 0, 0, 0, time.UTC),
// NotAfter: time.Date(2099, time.January, 1, 0, 0, 0, 0, time.UTC),
// BasicConstraintsValid: true,
// ExtKeyUsage: []x509.ExtKeyUsage{FILL IN HERE},
// }
// leafKey, _ := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
// leafDER, err := x509.CreateCertificate(rand.Reader, leafTemplate, root, &leafKey.PublicKey, rootPriv)
// if err != nil {
// panic(err)
// }
// pem.Encode(os.Stdout, &pem.Block{Type: "CERTIFICATE", Bytes: leafDER})
// }
static const char kMicrosoftSGCCert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBtDCCAR2gAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAEEn61v3Vs+q6bTyyRnrJvuKBE8PTNVLbXGB52jig4Qse2
mGygNEysS0uzZ0luz+rn2hDRUFL6sHLUs1d8UMbI/6NEMEIwFQYDVR0lBA4wDAYK
KwYBBAGCNwoDAzAMBgNVHRMBAf8EAjAAMBsGA1UdIwQUMBKAEEA31wH7QC+4HH5U
BCeMWQEwDQYJKoZIhvcNAQELBQADgYEAgDQI9RSo3E3ZVnU71TV/LjG9xwHtfk6I
rlNnlJJ0lsTHAuMc1mwCbzhtsmasetwYlIa9G8GFWB9Gh/QqHA7G649iGGmXShqe
aVDuWgeSEJxBPE2jILoMm4pEYF7jfonTn7XXX6O78yuSlP+NPIU0gUKHkWZ1sWk0
cC4l0r/6jik=
-----END CERTIFICATE-----
)";
static const char kNetscapeSGCCert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBszCCARygAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAE3NbT+TnBfq1DWJCezjaUL52YhDU7cOkI2S2PoWgJ1v7x
kKLwBonUFZjppZs69SyBHeJdti+KoJ3qTW+hCG08EaNDMEEwFAYDVR0lBA0wCwYJ
YIZIAYb4QgQBMAwGA1UdEwEB/wQCMAAwGwYDVR0jBBQwEoAQQDfXAftAL7gcflQE
J4xZATANBgkqhkiG9w0BAQsFAAOBgQBuiyVcfazekHkCWksxdFmjPmMtWCxFjkzc
8VBxFE0CfSHQAfZ8J7tXd1FbAq/eXdZvvo8v0JB4sOM4Ex1ob1fuvDFHdSAHAD7W
dhKIjJyzVojoxjCjyue0XMeEPl7RiqbdxoS/R5HFAqAF0T2OeQAqP9gTpOXoau1M
RQHX6HQJJg==
-----END CERTIFICATE-----
)";
static const char kServerEKUCert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBsjCCARugAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAEDd35i+VWPwIOKLrLWTuP5cqD+yJDB5nujEzPgkXP5LKJ
SZRbHTqTdpYZB2jy6y90RY2Bsjx7FfZ7nN5G2g1GOKNCMEAwEwYDVR0lBAwwCgYI
KwYBBQUHAwEwDAYDVR0TAQH/BAIwADAbBgNVHSMEFDASgBBAN9cB+0AvuBx+VAQn
jFkBMA0GCSqGSIb3DQEBCwUAA4GBAIKmbMBjuivL/rxDu7u7Vr3o3cdmEggBJxwL
iatNW3x1wg0645aNYOktW/iQ7mAAiziTY73GFyfiJDWqnY+CwA94ZWyQidjHdN/I
6BR52sN/dkYEoInYEbmDNMc/if+T0yqeBQLP4BeKLiT8p0qqaimae6LgibS19hDP
2hoEMdz2
-----END CERTIFICATE-----
)";
static const char kServerEKUPlusMicrosoftSGCCert[] = R"(
-----BEGIN CERTIFICATE-----
MIIBvjCCASegAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAEDO1MYPxq+U4oXMIK8UnsS4C696wpcu4UOmcMJJ5CUd5Z
ZpJShN6kYKnrb3GK/6xEgbUGntmrzSRG5FYqk6QgD6NOMEwwHwYDVR0lBBgwFgYI
KwYBBQUHAwEGCisGAQQBgjcKAwMwDAYDVR0TAQH/BAIwADAbBgNVHSMEFDASgBBA
N9cB+0AvuBx+VAQnjFkBMA0GCSqGSIb3DQEBCwUAA4GBAHOu2IBa4lHzVGS36HxS
SejUE87Ji1ysM6BgkYbfxfS9MuV+J3UnqH57JjbH/3CFl4ZDWceF6SGBSCn8LqKa
KHpwoNFU3zA99iQzVJgbUyN0PbKwHEanLyKDJZyFk71R39ToxhSNQgaQYjZYCy1H
5V9oXd1bodEqVsOZ/mur24Ku
-----END CERTIFICATE-----
)";
static const char kAnyEKU[] = R"(
-----BEGIN CERTIFICATE-----
MIIBrjCCARegAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAE9nsLABDporlTvx1OBUc4Hd5vxfX+8nS/OhbHmKtFLYNu
1CLLrImbwMQYD2G+PgLO6sQHmASq2jmJKp6ZWsRkTqM+MDwwDwYDVR0lBAgwBgYE
VR0lADAMBgNVHRMBAf8EAjAAMBsGA1UdIwQUMBKAEEA31wH7QC+4HH5UBCeMWQEw
DQYJKoZIhvcNAQELBQADgYEAxgjgn1SAzQ+2GeCicZ5ndvVhKIeFelGCQ989XTVq
uUbAYBW6v8GXNuVzoXYxDgNSanF6U+w+INrJ6daKVrIxAxdk9QFgBXqJoupuRAA3
/OqnmYux0EqOTLbTK1P8DhaiaD0KV6dWGUwzqsgBmPkZ0lgNaPjvb1mKV3jhBkjz
L6A=
-----END CERTIFICATE-----
)";
static const char kNoEKU[] = R"(
-----BEGIN CERTIFICATE-----
MIIBnTCCAQagAwIBAgIBAzANBgkqhkiG9w0BAQsFADArMRcwFQYDVQQKEw5Cb3Jp
bmdTU0wgVGVzdDEQMA4GA1UEAxMHUm9vdCBDQTAgFw0wMDAxMDEwMDAwMDBaGA8y
MDk5MDEwMTAwMDAwMFowFDESMBAGA1UEAxMJRUtVIG1zU0dDMFkwEwYHKoZIzj0C
AQYIKoZIzj0DAQcDQgAEpSFSqbYY86ZcMamE606dqdyjWlwhSHKOLUFsUUIzkMPz
KHRu/x3Yzi8+Hm8eFK/TnCbkpYsYw4hIw00176dYzaMtMCswDAYDVR0TAQH/BAIw
ADAbBgNVHSMEFDASgBBAN9cB+0AvuBx+VAQnjFkBMA0GCSqGSIb3DQEBCwUAA4GB
AHvYzynIkjLThExHRS+385hfv4vgrQSMmCM1SAnEIjSBGsU7RPgiGAstN06XivuF
T1fNugRmTu4OtOIbfdYkcjavJufw9hR9zWTt77CNMTy9XmOZLgdS5boFTtLCztr3
TXHOSQQD8Dl4BK0wOet+TP6LBEjHlRFjAqK4bu9xpxV2
-----END CERTIFICATE-----
)";
// CertFromPEM parses the given, NUL-terminated PEM block and returns an
// |X509*|.
static bssl::UniquePtr<X509> CertFromPEM(const char *pem) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
return bssl::UniquePtr<X509>(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
// CRLFromPEM parses the given, NUL-terminated PEM block and returns an
// |X509_CRL*|.
static bssl::UniquePtr<X509_CRL> CRLFromPEM(const char *pem) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
return bssl::UniquePtr<X509_CRL>(
PEM_read_bio_X509_CRL(bio.get(), nullptr, nullptr, nullptr));
}
// CSRFromPEM parses the given, NUL-terminated PEM block and returns an
// |X509_REQ*|.
static bssl::UniquePtr<X509_REQ> CSRFromPEM(const char *pem) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
return bssl::UniquePtr<X509_REQ>(
PEM_read_bio_X509_REQ(bio.get(), nullptr, nullptr, nullptr));
}
// PrivateKeyFromPEM parses the given, NUL-terminated PEM block and returns an
// |EVP_PKEY*|.
static bssl::UniquePtr<EVP_PKEY> PrivateKeyFromPEM(const char *pem) {
bssl::UniquePtr<BIO> bio(
BIO_new_mem_buf(const_cast<char *>(pem), strlen(pem)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
// CertsToStack converts a vector of |X509*| to an OpenSSL STACK_OF(X509),
// bumping the reference counts for each certificate in question.
static bssl::UniquePtr<STACK_OF(X509)> CertsToStack(
const std::vector<X509 *> &certs) {
bssl::UniquePtr<STACK_OF(X509)> stack(sk_X509_new_null());
if (!stack) {
return nullptr;
}
for (auto cert : certs) {
if (!bssl::PushToStack(stack.get(), bssl::UpRef(cert))) {
return nullptr;
}
}
return stack;
}
// CRLsToStack converts a vector of |X509_CRL*| to an OpenSSL
// STACK_OF(X509_CRL), bumping the reference counts for each CRL in question.
static bssl::UniquePtr<STACK_OF(X509_CRL)> CRLsToStack(
const std::vector<X509_CRL *> &crls) {
bssl::UniquePtr<STACK_OF(X509_CRL)> stack(sk_X509_CRL_new_null());
if (!stack) {
return nullptr;
}
for (auto crl : crls) {
if (!bssl::PushToStack(stack.get(), bssl::UpRef(crl))) {
return nullptr;
}
}
return stack;
}
static const int64_t kReferenceTime = 1474934400 /* Sep 27th, 2016 */;
static int Verify(
X509 *leaf, const std::vector<X509 *> &roots,
const std::vector<X509 *> &intermediates,
const std::vector<X509_CRL *> &crls, unsigned long flags = 0,
std::function<void(X509_STORE_CTX *)> configure_callback = nullptr) {
bssl::UniquePtr<STACK_OF(X509)> roots_stack(CertsToStack(roots));
bssl::UniquePtr<STACK_OF(X509)> intermediates_stack(
CertsToStack(intermediates));
bssl::UniquePtr<STACK_OF(X509_CRL)> crls_stack(CRLsToStack(crls));
if (!roots_stack ||
!intermediates_stack ||
!crls_stack) {
return X509_V_ERR_UNSPECIFIED;
}
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
if (!ctx ||
!store) {
return X509_V_ERR_UNSPECIFIED;
}
if (!X509_STORE_CTX_init(ctx.get(), store.get(), leaf,
intermediates_stack.get())) {
return X509_V_ERR_UNSPECIFIED;
}
X509_STORE_CTX_set0_trusted_stack(ctx.get(), roots_stack.get());
X509_STORE_CTX_set0_crls(ctx.get(), crls_stack.get());
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx.get());
X509_VERIFY_PARAM_set_time_posix(param, kReferenceTime);
if (configure_callback) {
configure_callback(ctx.get());
}
if (flags) {
X509_VERIFY_PARAM_set_flags(param, flags);
}
ERR_clear_error();
if (X509_verify_cert(ctx.get()) != 1) {
return X509_STORE_CTX_get_error(ctx.get());
}
return X509_V_OK;
}
TEST(X509Test, TestVerify) {
// cross_signing_root
// |
// root_cross_signed root
// \ /
// intermediate
// | |
// leaf leaf_no_key_usage
// |
// forgery
bssl::UniquePtr<X509> cross_signing_root(CertFromPEM(kCrossSigningRootPEM));
bssl::UniquePtr<X509> root(CertFromPEM(kRootCAPEM));
bssl::UniquePtr<X509> root_cross_signed(CertFromPEM(kRootCrossSignedPEM));
bssl::UniquePtr<X509> intermediate(CertFromPEM(kIntermediatePEM));
bssl::UniquePtr<X509> intermediate_self_signed(
CertFromPEM(kIntermediateSelfSignedPEM));
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
bssl::UniquePtr<X509> leaf_no_key_usage(CertFromPEM(kLeafNoKeyUsagePEM));
bssl::UniquePtr<X509> forgery(CertFromPEM(kForgeryPEM));
ASSERT_TRUE(cross_signing_root);
ASSERT_TRUE(root);
ASSERT_TRUE(root_cross_signed);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(intermediate_self_signed);
ASSERT_TRUE(leaf);
ASSERT_TRUE(forgery);
ASSERT_TRUE(leaf_no_key_usage);
// Most of these tests work with or without |X509_V_FLAG_TRUSTED_FIRST|,
// though in different ways.
for (bool trusted_first : {true, false}) {
SCOPED_TRACE(trusted_first);
bool override_depth = false;
int depth = -1;
auto configure_callback = [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
// Note we need the callback to clear the flag. Setting |flags| to zero
// only skips setting new flags.
if (!trusted_first) {
X509_VERIFY_PARAM_clear_flags(param, X509_V_FLAG_TRUSTED_FIRST);
}
if (override_depth) {
X509_VERIFY_PARAM_set_depth(param, depth);
}
};
// No trust anchors configured.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), /*roots=*/{}, /*intermediates=*/{},
/*crls=*/{}, /*flags=*/0, configure_callback));
EXPECT_EQ(
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), /*roots=*/{}, {intermediate.get()}, /*crls=*/{},
/*flags=*/0, configure_callback));
// Each chain works individually.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, /*flags=*/0, configure_callback));
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {cross_signing_root.get()},
{intermediate.get(), root_cross_signed.get()},
/*crls=*/{}, /*flags=*/0, configure_callback));
// When both roots are available, we pick one or the other.
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {cross_signing_root.get(), root.get()},
{intermediate.get(), root_cross_signed.get()}, /*crls=*/{},
/*flags=*/0, configure_callback));
// This is the “altchains” test – we remove the cross-signing CA but include
// the cross-sign in the intermediates. With |trusted_first|, we
// preferentially stop path-building at |intermediate|. Without
// |trusted_first|, the "altchains" logic repairs it.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()},
{intermediate.get(), root_cross_signed.get()},
/*crls=*/{}, /*flags=*/0, configure_callback));
// If |X509_V_FLAG_NO_ALT_CHAINS| is set and |trusted_first| is disabled, we
// get stuck on |root_cross_signed|. If either feature is enabled, we can
// build the path.
//
// This test exists to confirm our current behavior, but these modes are
// just workarounds for not having an actual path-building verifier. If we
// fix it, this test can be removed.
EXPECT_EQ(trusted_first ? X509_V_OK
: X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), {root.get()},
{intermediate.get(), root_cross_signed.get()}, /*crls=*/{},
/*flags=*/X509_V_FLAG_NO_ALT_CHAINS, configure_callback));
// |forgery| is signed by |leaf_no_key_usage|, but is rejected because the
// leaf is not a CA.
EXPECT_EQ(X509_V_ERR_INVALID_CA,
Verify(forgery.get(), {intermediate_self_signed.get()},
{leaf_no_key_usage.get()}, /*crls=*/{}, /*flags=*/0,
configure_callback));
// Test that one cannot skip Basic Constraints checking with a contorted set
// of roots and intermediates. This is a regression test for CVE-2015-1793.
EXPECT_EQ(X509_V_ERR_INVALID_CA,
Verify(forgery.get(),
{intermediate_self_signed.get(), root_cross_signed.get()},
{leaf_no_key_usage.get(), intermediate.get()}, /*crls=*/{},
/*flags=*/0, configure_callback));
// Test depth limits. |configure_callback| looks at |override_depth| and
// |depth|. Negative numbers have historically worked, so test those too.
for (int d : {-4, -3, -2, -1, 0, 1, 2, 3, 4, INT_MAX - 3, INT_MAX - 2,
INT_MAX - 1, INT_MAX}) {
SCOPED_TRACE(d);
override_depth = true;
depth = d;
// A chain with a leaf, two intermediates, and a root is depth two.
EXPECT_EQ(
depth >= 2 ? X509_V_OK : X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), {cross_signing_root.get()},
{intermediate.get(), root_cross_signed.get()},
/*crls=*/{}, /*flags=*/0, configure_callback));
// A chain with a leaf, a root, and no intermediates is depth zero.
EXPECT_EQ(
depth >= 0 ? X509_V_OK : X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(root_cross_signed.get(), {cross_signing_root.get()}, {},
/*crls=*/{}, /*flags=*/0, configure_callback));
// An explicitly trusted self-signed certificate is unaffected by depth
// checks.
EXPECT_EQ(X509_V_OK,
Verify(cross_signing_root.get(), {cross_signing_root.get()}, {},
/*crls=*/{}, /*flags=*/0, configure_callback));
}
}
}
#if defined(OPENSSL_THREADS)
// Verifying the same |X509| objects on two threads should be safe.
TEST(X509Test, VerifyThreads) {
bssl::UniquePtr<X509> root(CertFromPEM(kRootCAPEM));
bssl::UniquePtr<X509> intermediate(CertFromPEM(kIntermediatePEM));
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
ASSERT_TRUE(root);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(leaf);
const size_t kNumThreads = 10;
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] {
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}));
});
}
for (auto &thread : threads) {
thread.join();
}
}
// Using the same CRL on two threads should be safe.
TEST(X509Test, CRLThreads) {
bssl::UniquePtr<X509> root(CertFromPEM(kCRLTestRoot));
bssl::UniquePtr<X509> leaf(CertFromPEM(kCRLTestLeaf));
bssl::UniquePtr<X509_CRL> basic_crl(CRLFromPEM(kBasicCRL));
bssl::UniquePtr<X509_CRL> revoked_crl(CRLFromPEM(kRevokedCRL));
ASSERT_TRUE(root);
ASSERT_TRUE(leaf);
ASSERT_TRUE(basic_crl);
ASSERT_TRUE(revoked_crl);
const size_t kNumThreads = 10;
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] {
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {root.get()},
{basic_crl.get()}, X509_V_FLAG_CRL_CHECK));
});
threads.emplace_back([&] {
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
Verify(leaf.get(), {root.get()}, {root.get()},
{revoked_crl.get()}, X509_V_FLAG_CRL_CHECK));
});
}
for (auto &thread : threads) {
thread.join();
}
// TODO(crbug.com/boringssl/600): Add a thread that iterates
// |X509_CRL_get_REVOKED| and a thread that calls |X509_CRL_print|. Those
// currently do not work correctly.
}
TEST(X509Test, StoreThreads) {
bssl::UniquePtr<X509> root(CertFromPEM(kRootCAPEM));
bssl::UniquePtr<X509> intermediate(CertFromPEM(kIntermediatePEM));
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
ASSERT_TRUE(root);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(leaf);
bssl::UniquePtr<STACK_OF(X509)> intermediates =
CertsToStack({intermediate.get()});
ASSERT_TRUE(intermediates);
// Some unrelated certificates.
bssl::UniquePtr<X509> other1(CertFromPEM(kCRLTestRoot));
bssl::UniquePtr<X509> other2(CertFromPEM(kCRLTestLeaf));
ASSERT_TRUE(other1);
ASSERT_TRUE(other2);
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
ASSERT_TRUE(X509_STORE_add_cert(store.get(), root.get()));
const size_t kNumThreads = 10;
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] {
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(),
intermediates.get()));
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
ASSERT_TRUE(X509_verify_cert(ctx.get()));
ASSERT_EQ(X509_STORE_CTX_get_error(ctx.get()), X509_V_OK);
});
threads.emplace_back([&] {
ASSERT_TRUE(X509_STORE_add_cert(store.get(), other1.get()));
});
threads.emplace_back([&] {
ASSERT_TRUE(X509_STORE_add_cert(store.get(), other2.get()));
});
threads.emplace_back([&] {
bssl::UniquePtr<STACK_OF(X509_OBJECT)> objs(
X509_STORE_get1_objects(store.get()));
ASSERT_TRUE(objs);
});
}
for (auto &thread : threads) {
thread.join();
}
}
#endif // OPENSSL_THREADS
static const char kHostname[] = "example.com";
static const char kWrongHostname[] = "example2.com";
static const char kEmail[] = "test@example.com";
static const char kWrongEmail[] = "test2@example.com";
static const uint8_t kIP[4] = {127, 0, 0, 1};
static const uint8_t kWrongIP[4] = {127, 0, 0, 2};
static const char kIPString[] = "127.0.0.1";
static const char kWrongIPString[] = "127.0.0.2";
TEST(X509Test, ZeroLengthsWithX509PARAM) {
bssl::UniquePtr<X509> leaf(CertFromPEM(kSANTypesLeaf));
bssl::UniquePtr<X509> root(CertFromPEM(kSANTypesRoot));
ASSERT_TRUE(leaf);
ASSERT_TRUE(root);
std::vector<X509_CRL *> empty_crls;
struct X509Test {
const char *correct_value;
size_t correct_value_len;
const char *incorrect_value;
size_t incorrect_value_len;
int (*func)(X509_VERIFY_PARAM *, const char *, size_t);
int mismatch_error;
};
const std::vector<X509Test> kTests = {
{kHostname, strlen(kHostname), kWrongHostname, strlen(kWrongHostname),
X509_VERIFY_PARAM_set1_host, X509_V_ERR_HOSTNAME_MISMATCH},
{kEmail, strlen(kEmail), kWrongEmail, strlen(kWrongEmail),
X509_VERIFY_PARAM_set1_email, X509_V_ERR_EMAIL_MISMATCH},
};
for (size_t i = 0; i < kTests.size(); i++) {
SCOPED_TRACE(i);
const X509Test &test = kTests[i];
// The correct value should work.
ASSERT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[&test](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(test.func(param, test.correct_value,
test.correct_value_len));
}));
// The wrong value should trigger a verification error.
ASSERT_EQ(test.mismatch_error,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[&test](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(test.func(param, test.incorrect_value,
test.incorrect_value_len));
}));
// Passing zero as the length, unlike OpenSSL, should trigger an error and
// should cause verification to fail.
ASSERT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[&test](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_FALSE(test.func(param, test.correct_value, 0));
}));
// Passing an empty value should be an error when setting and should cause
// verification to fail.
ASSERT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[&test](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_FALSE(test.func(param, nullptr, 0));
}));
// Passing a value with embedded NULs should also be an error and should
// also cause verification to fail.
ASSERT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[&test](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_FALSE(test.func(param, "a", 2));
}));
}
// IP addresses work slightly differently:
// The correct value should still work.
ASSERT_EQ(
X509_V_OK,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_ip(param, kIP, sizeof(kIP)));
}));
// Incorrect values should still fail.
ASSERT_EQ(X509_V_ERR_IP_ADDRESS_MISMATCH,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_ip(param, kWrongIP,
sizeof(kWrongIP)));
}));
// Zero length values should trigger an error when setting and cause
// verification to always fail.
ASSERT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_FALSE(X509_VERIFY_PARAM_set1_ip(param, kIP, 0));
}));
// ... and so should NULL values.
ASSERT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {}, empty_crls, 0,
[](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_FALSE(X509_VERIFY_PARAM_set1_ip(param, nullptr, 0));
}));
// Zero bytes in an IP address are, of course, fine. This is tested above
// because |kIP| contains zeros.
}
TEST(X509Test, ZeroLengthsWithCheckFunctions) {
bssl::UniquePtr<X509> leaf(CertFromPEM(kSANTypesLeaf));
ASSERT_TRUE(leaf);
EXPECT_EQ(
1, X509_check_host(leaf.get(), kHostname, strlen(kHostname), 0, nullptr));
EXPECT_NE(1, X509_check_host(leaf.get(), kWrongHostname,
strlen(kWrongHostname), 0, nullptr));
EXPECT_EQ(1, X509_check_email(leaf.get(), kEmail, strlen(kEmail), 0));
EXPECT_NE(1,
X509_check_email(leaf.get(), kWrongEmail, strlen(kWrongEmail), 0));
EXPECT_EQ(1, X509_check_ip(leaf.get(), kIP, sizeof(kIP), 0));
EXPECT_NE(1, X509_check_ip(leaf.get(), kWrongIP, sizeof(kWrongIP), 0));
EXPECT_EQ(1, X509_check_ip_asc(leaf.get(), kIPString, 0));
EXPECT_NE(1, X509_check_ip_asc(leaf.get(), kWrongIPString, 0));
// OpenSSL supports passing zero as the length for host and email. We do not
// and it should always fail.
EXPECT_NE(1, X509_check_host(leaf.get(), kHostname, 0, 0, nullptr));
EXPECT_NE(1, X509_check_host(leaf.get(), kWrongHostname, 0, 0, nullptr));
EXPECT_NE(1, X509_check_email(leaf.get(), kEmail, 0, 0));
EXPECT_NE(1, X509_check_email(leaf.get(), kWrongEmail, 0, 0));
EXPECT_NE(1, X509_check_ip(leaf.get(), kIP, 0, 0));
EXPECT_NE(1, X509_check_ip(leaf.get(), kWrongIP, 0, 0));
// Unlike all the other functions, |X509_check_ip_asc| doesn't take a length,
// so it cannot be zero.
}
TEST(X509Test, TestCRL) {
bssl::UniquePtr<X509> root(CertFromPEM(kCRLTestRoot));
bssl::UniquePtr<X509> leaf(CertFromPEM(kCRLTestLeaf));
bssl::UniquePtr<X509_CRL> basic_crl(CRLFromPEM(kBasicCRL));
bssl::UniquePtr<X509_CRL> revoked_crl(CRLFromPEM(kRevokedCRL));
bssl::UniquePtr<X509_CRL> bad_issuer_crl(CRLFromPEM(kBadIssuerCRL));
bssl::UniquePtr<X509_CRL> known_critical_crl(CRLFromPEM(kKnownCriticalCRL));
bssl::UniquePtr<X509_CRL> unknown_critical_crl(
CRLFromPEM(kUnknownCriticalCRL));
bssl::UniquePtr<X509_CRL> unknown_critical_crl2(
CRLFromPEM(kUnknownCriticalCRL2));
bssl::UniquePtr<X509_CRL> algorithm_mismatch_crl(
CRLFromPEM(kAlgorithmMismatchCRL));
bssl::UniquePtr<X509_CRL> algorithm_mismatch_crl2(
CRLFromPEM(kAlgorithmMismatchCRL2));
ASSERT_TRUE(root);
ASSERT_TRUE(leaf);
ASSERT_TRUE(basic_crl);
ASSERT_TRUE(revoked_crl);
ASSERT_TRUE(bad_issuer_crl);
ASSERT_TRUE(known_critical_crl);
ASSERT_TRUE(unknown_critical_crl);
ASSERT_TRUE(unknown_critical_crl2);
ASSERT_TRUE(algorithm_mismatch_crl);
ASSERT_TRUE(algorithm_mismatch_crl2);
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {root.get()},
{basic_crl.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(
X509_V_ERR_CERT_REVOKED,
Verify(leaf.get(), {root.get()}, {root.get()},
{basic_crl.get(), revoked_crl.get()}, X509_V_FLAG_CRL_CHECK));
std::vector<X509_CRL *> empty_crls;
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_CRL,
Verify(leaf.get(), {root.get()}, {root.get()}, empty_crls,
X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_CRL,
Verify(leaf.get(), {root.get()}, {root.get()},
{bad_issuer_crl.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {root.get()},
{known_critical_crl.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION,
Verify(leaf.get(), {root.get()}, {root.get()},
{unknown_critical_crl.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION,
Verify(leaf.get(), {root.get()}, {root.get()},
{unknown_critical_crl2.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_ERR_CRL_SIGNATURE_FAILURE,
Verify(leaf.get(), {root.get()}, {root.get()},
{algorithm_mismatch_crl.get()}, X509_V_FLAG_CRL_CHECK));
EXPECT_EQ(X509_V_ERR_CRL_SIGNATURE_FAILURE,
Verify(leaf.get(), {root.get()}, {root.get()},
{algorithm_mismatch_crl2.get()}, X509_V_FLAG_CRL_CHECK));
// The CRL is valid for a month.
EXPECT_EQ(X509_V_ERR_CRL_HAS_EXPIRED,
Verify(leaf.get(), {root.get()}, {root.get()}, {basic_crl.get()},
X509_V_FLAG_CRL_CHECK, [](X509_STORE_CTX *ctx) {
X509_STORE_CTX_set_time_posix(
ctx, /*flags=*/0, kReferenceTime + 2 * 30 * 24 * 3600);
}));
// X509_V_FLAG_NO_CHECK_TIME suppresses the validity check.
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {root.get()}, {basic_crl.get()},
X509_V_FLAG_CRL_CHECK | X509_V_FLAG_NO_CHECK_TIME,
[](X509_STORE_CTX *ctx) {
X509_STORE_CTX_set_time_posix(
ctx, /*flags=*/0, kReferenceTime + 2 * 30 * 24 * 3600);
}));
// We no longer support indirect or delta CRLs.
EXPECT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {root.get()}, {basic_crl.get()},
X509_V_FLAG_CRL_CHECK | X509_V_FLAG_EXTENDED_CRL_SUPPORT));
EXPECT_EQ(X509_V_ERR_INVALID_CALL,
Verify(leaf.get(), {root.get()}, {root.get()}, {basic_crl.get()},
X509_V_FLAG_CRL_CHECK | X509_V_FLAG_USE_DELTAS));
// Parsing kBadExtensionCRL should fail.
EXPECT_FALSE(CRLFromPEM(kBadExtensionCRL));
}
TEST(X509Test, ManyNamesAndConstraints) {
bssl::UniquePtr<X509> many_constraints(CertFromPEM(
GetTestData("crypto/x509/test/many_constraints.pem").c_str()));
ASSERT_TRUE(many_constraints);
bssl::UniquePtr<X509> many_names1(
CertFromPEM(GetTestData("crypto/x509/test/many_names1.pem").c_str()));
ASSERT_TRUE(many_names1);
bssl::UniquePtr<X509> many_names2(
CertFromPEM(GetTestData("crypto/x509/test/many_names2.pem").c_str()));
ASSERT_TRUE(many_names2);
bssl::UniquePtr<X509> many_names3(
CertFromPEM(GetTestData("crypto/x509/test/many_names3.pem").c_str()));
ASSERT_TRUE(many_names3);
bssl::UniquePtr<X509> some_names1(
CertFromPEM(GetTestData("crypto/x509/test/some_names1.pem").c_str()));
ASSERT_TRUE(some_names1);
bssl::UniquePtr<X509> some_names2(
CertFromPEM(GetTestData("crypto/x509/test/some_names2.pem").c_str()));
ASSERT_TRUE(some_names2);
bssl::UniquePtr<X509> some_names3(
CertFromPEM(GetTestData("crypto/x509/test/some_names3.pem").c_str()));
ASSERT_TRUE(some_names3);
EXPECT_EQ(X509_V_ERR_UNSPECIFIED,
Verify(many_names1.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
EXPECT_EQ(X509_V_ERR_UNSPECIFIED,
Verify(many_names2.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
EXPECT_EQ(X509_V_ERR_UNSPECIFIED,
Verify(many_names3.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(some_names1.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(some_names2.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(some_names3.get(), {many_constraints.get()},
{many_constraints.get()}, {}));
}
static bssl::UniquePtr<GENERAL_NAME> MakeGeneralName(int type,
const std::string &value) {
if (type != GEN_EMAIL && type != GEN_DNS && type != GEN_URI) {
// This function only supports the IA5String types.
return nullptr;
}
bssl::UniquePtr<ASN1_IA5STRING> str(ASN1_IA5STRING_new());
bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new());
if (!str || !name ||
!ASN1_STRING_set(str.get(), value.data(), value.size())) {
return nullptr;
}
name->type = type;
name->d.ia5 = str.release();
return name;
}
static bssl::UniquePtr<X509_NAME> MakeTestName(const char *common_name) {
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
if (name == nullptr ||
!X509_NAME_add_entry_by_txt(
name.get(), "CN", MBSTRING_UTF8,
reinterpret_cast<const uint8_t *>(common_name), -1, -1, 0)) {
return nullptr;
}
return name;
}
static bssl::UniquePtr<X509> MakeTestCert(const char *issuer,
const char *subject, EVP_PKEY *key,
bool is_ca) {
bssl::UniquePtr<X509_NAME> issuer_name = MakeTestName(issuer);
bssl::UniquePtr<X509_NAME> subject_name = MakeTestName(subject);
bssl::UniquePtr<X509> cert(X509_new());
if (issuer_name == nullptr || subject_name == nullptr || cert == nullptr ||
!X509_set_version(cert.get(), X509_VERSION_3) ||
!X509_set_issuer_name(cert.get(), issuer_name.get()) ||
!X509_set_subject_name(cert.get(), subject_name.get()) ||
!X509_set_pubkey(cert.get(), key) ||
!ASN1_TIME_adj(X509_getm_notBefore(cert.get()), kReferenceTime, -1, 0) ||
!ASN1_TIME_adj(X509_getm_notAfter(cert.get()), kReferenceTime, 1, 0)) {
return nullptr;
}
bssl::UniquePtr<BASIC_CONSTRAINTS> bc(BASIC_CONSTRAINTS_new());
if (!bc) {
return nullptr;
}
bc->ca = is_ca ? ASN1_BOOLEAN_TRUE : ASN1_BOOLEAN_FALSE;
if (!X509_add1_ext_i2d(cert.get(), NID_basic_constraints, bc.get(),
/*crit=*/1, /*flags=*/0)) {
return nullptr;
}
return cert;
}
static bool AddExtendedKeyUsage(X509 *x509, const std::vector<int> &eku_nids) {
bssl::UniquePtr<STACK_OF(ASN1_OBJECT)> objs(sk_ASN1_OBJECT_new_null());
if (objs == nullptr) {
return false;
}
for (int nid : eku_nids) {
if (!sk_ASN1_OBJECT_push(objs.get(), OBJ_nid2obj(nid))) {
return false;
}
}
return X509_add1_ext_i2d(x509, NID_ext_key_usage, objs.get(), /*crit=*/1,
/*flags=*/0);
}
enum class KeyUsage : int {
kDigitalSignature = 0,
kNonRepudiation = 1,
kKeyEncipherment = 2,
kDataEncipherment = 3,
kKeyAgreement = 4,
kKeyCertSign = 5,
kCRLSign = 6,
kEncipherOnly = 7,
kDecipherOnly = 8,
};
static bool AddKeyUsage(X509 *x509, const std::vector<KeyUsage> usages) {
bssl::UniquePtr<ASN1_BIT_STRING> str(ASN1_BIT_STRING_new());
if (str == nullptr) {
return false;
}
for (KeyUsage usage : usages) {
if (!ASN1_BIT_STRING_set_bit(str.get(), static_cast<int>(usage), 1)) {
return false;
}
}
return X509_add1_ext_i2d(x509, NID_key_usage, str.get(), /*crit=*/1,
/*flags=*/0);
}
static bool AddSubjectKeyIdentifier(X509 *x509,
bssl::Span<const uint8_t> key_id) {
bssl::UniquePtr<ASN1_OCTET_STRING> oct(ASN1_OCTET_STRING_new());
return oct != nullptr &&
ASN1_STRING_set(oct.get(), key_id.data(), key_id.size()) &&
X509_add1_ext_i2d(x509, NID_subject_key_identifier, oct.get(),
/*crit=*/0, /*flags=*/0);
}
static bool AddAuthorityKeyIdentifier(X509 *x509,
bssl::Span<const uint8_t> key_id) {
bssl::UniquePtr<AUTHORITY_KEYID> akid(AUTHORITY_KEYID_new());
if (akid == nullptr) {
return false;
}
akid->keyid = ASN1_OCTET_STRING_new();
if (akid->keyid == nullptr ||
!ASN1_STRING_set(akid->keyid, key_id.data(), key_id.size()) ||
!X509_add1_ext_i2d(x509, NID_authority_key_identifier, akid.get(),
/*crit=*/0, /*flags=*/0)) {
return false;
}
return true;
}
static bssl::UniquePtr<X509_CRL> MakeTestCRL(const char *issuer,
int this_update_offset_day,
int next_update_offset_day) {
bssl::UniquePtr<X509_NAME> issuer_name = MakeTestName(issuer);
bssl::UniquePtr<X509_CRL> crl(X509_CRL_new());
bssl::UniquePtr<ASN1_TIME> this_update(ASN1_TIME_adj(
nullptr, kReferenceTime, this_update_offset_day, /*offset_sec=*/0));
bssl::UniquePtr<ASN1_TIME> next_update(ASN1_TIME_adj(
nullptr, kReferenceTime, next_update_offset_day, /*offset_sec=*/0));
if (crl == nullptr || issuer_name == nullptr || this_update == nullptr ||
next_update == nullptr ||
!X509_CRL_set_version(crl.get(), X509_CRL_VERSION_2) ||
!X509_CRL_set_issuer_name(crl.get(), issuer_name.get()) ||
// OpenSSL's API is named incorrectly. The field is called thisUpdate.
!X509_CRL_set1_lastUpdate(crl.get(), this_update.get()) ||
!X509_CRL_set1_nextUpdate(crl.get(), next_update.get())) {
return nullptr;
}
return crl;
}
static bool AddRevokedSerialU64(X509_CRL *crl, uint64_t serial,
int offset_day) {
bssl::UniquePtr<X509_REVOKED> rev(X509_REVOKED_new());
bssl::UniquePtr<ASN1_INTEGER> serial_asn1(ASN1_INTEGER_new());
bssl::UniquePtr<ASN1_TIME> rev_date(
ASN1_TIME_adj(nullptr, kReferenceTime, offset_day, /*offset_sec=*/0));
if (rev == nullptr || serial_asn1 == nullptr || rev_date == nullptr ||
!ASN1_INTEGER_set_uint64(serial_asn1.get(), serial) ||
!X509_REVOKED_set_serialNumber(rev.get(), serial_asn1.get()) ||
!X509_REVOKED_set_revocationDate(rev.get(), rev_date.get()) ||
!X509_CRL_add0_revoked(crl, rev.get())) {
return false;
}
rev.release(); // X509_CRL_add0_revoked takes ownership on success.
return true;
}
static bool AddAuthorityKeyIdentifier(X509_CRL *crl,
bssl::Span<const uint8_t> key_id) {
bssl::UniquePtr<AUTHORITY_KEYID> akid(AUTHORITY_KEYID_new());
if (akid == nullptr) {
return false;
}
akid->keyid = ASN1_OCTET_STRING_new();
if (akid->keyid == nullptr ||
!ASN1_STRING_set(akid->keyid, key_id.data(), key_id.size()) ||
!X509_CRL_add1_ext_i2d(crl, NID_authority_key_identifier, akid.get(),
/*crit=*/0, /*flags=*/0)) {
return false;
}
return true;
}
TEST(X509Test, NameConstraints) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
const struct {
int type;
std::string name;
std::string constraint;
int result;
} kTests[] = {
// Empty string matches everything.
{GEN_DNS, "foo.example.com", "", X509_V_OK},
// Name constraints match the entire subtree.
{GEN_DNS, "foo.example.com", "example.com", X509_V_OK},
{GEN_DNS, "foo.example.com", "EXAMPLE.COM", X509_V_OK},
{GEN_DNS, "foo.example.com", "xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_DNS, "foo.example.com", "unrelated.much.longer.name.example",
X509_V_ERR_PERMITTED_VIOLATION},
// A leading dot means at least one component must be added.
{GEN_DNS, "foo.example.com", ".example.com", X509_V_OK},
{GEN_DNS, "foo.example.com", "foo.example.com", X509_V_OK},
{GEN_DNS, "foo.example.com", ".foo.example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_DNS, "foo.example.com", ".xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_DNS, "foo.example.com", ".unrelated.much.longer.name.example",
X509_V_ERR_PERMITTED_VIOLATION},
// NUL bytes, if not rejected, should not confuse the matching logic.
{GEN_DNS, std::string({'a', '\0', 'a'}), std::string({'a', '\0', 'b'}),
X509_V_ERR_PERMITTED_VIOLATION},
// Names must be emails.
{GEN_EMAIL, "not-an-email.example", "not-an-email.example",
X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
// A leading dot matches all local names and all subdomains
{GEN_EMAIL, "foo@bar.example.com", ".example.com", X509_V_OK},
{GEN_EMAIL, "foo@bar.example.com", ".EXAMPLE.COM", X509_V_OK},
{GEN_EMAIL, "foo@bar.example.com", ".bar.example.com",
X509_V_ERR_PERMITTED_VIOLATION},
// Without a leading dot, the host must match exactly.
{GEN_EMAIL, "foo@example.com", "example.com", X509_V_OK},
{GEN_EMAIL, "foo@example.com", "EXAMPLE.COM", X509_V_OK},
{GEN_EMAIL, "foo@bar.example.com", "example.com",
X509_V_ERR_PERMITTED_VIOLATION},
// If the constraint specifies a mailbox, it specifies the whole thing.
// The halves are compared insensitively.
{GEN_EMAIL, "foo@example.com", "foo@example.com", X509_V_OK},
{GEN_EMAIL, "foo@example.com", "foo@EXAMPLE.COM", X509_V_OK},
{GEN_EMAIL, "foo@example.com", "FOO@example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_EMAIL, "foo@example.com", "bar@example.com",
X509_V_ERR_PERMITTED_VIOLATION},
// OpenSSL ignores a stray leading @.
{GEN_EMAIL, "foo@example.com", "@example.com", X509_V_OK},
{GEN_EMAIL, "foo@example.com", "@EXAMPLE.COM", X509_V_OK},
{GEN_EMAIL, "foo@bar.example.com", "@example.com",
X509_V_ERR_PERMITTED_VIOLATION},
// Basic syntax check.
{GEN_URI, "not-a-url", "not-a-url", X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
{GEN_URI, "foo:not-a-url", "not-a-url",
X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
{GEN_URI, "foo:/not-a-url", "not-a-url",
X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
{GEN_URI, "foo:///not-a-url", "not-a-url",
X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
{GEN_URI, "foo://:not-a-url", "not-a-url",
X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
{GEN_URI, "foo://", "not-a-url", X509_V_ERR_UNSUPPORTED_NAME_SYNTAX},
// Hosts are an exact match.
{GEN_URI, "foo://example.com", "example.com", X509_V_OK},
{GEN_URI, "foo://example.com:443", "example.com", X509_V_OK},
{GEN_URI, "foo://example.com/whatever", "example.com", X509_V_OK},
{GEN_URI, "foo://bar.example.com", "example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com:443", "example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com/whatever", "example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com", "xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com:443", "xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com/whatever", "xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com", "some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com:443", "some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com/whatever", "some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
// A leading dot allows components to be added.
{GEN_URI, "foo://example.com", ".example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com:443", ".example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com/whatever", ".example.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://bar.example.com", ".example.com", X509_V_OK},
{GEN_URI, "foo://bar.example.com:443", ".example.com", X509_V_OK},
{GEN_URI, "foo://bar.example.com/whatever", ".example.com", X509_V_OK},
{GEN_URI, "foo://example.com", ".some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com:443", ".some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com/whatever", ".some-other-name.example",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com", ".xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com:443", ".xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
{GEN_URI, "foo://example.com/whatever", ".xample.com",
X509_V_ERR_PERMITTED_VIOLATION},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.type);
SCOPED_TRACE(t.name);
SCOPED_TRACE(t.constraint);
bssl::UniquePtr<GENERAL_NAME> name = MakeGeneralName(t.type, t.name);
ASSERT_TRUE(name);
bssl::UniquePtr<GENERAL_NAMES> names(GENERAL_NAMES_new());
ASSERT_TRUE(names);
ASSERT_TRUE(bssl::PushToStack(names.get(), std::move(name)));
bssl::UniquePtr<NAME_CONSTRAINTS> nc(NAME_CONSTRAINTS_new());
ASSERT_TRUE(nc);
nc->permittedSubtrees = sk_GENERAL_SUBTREE_new_null();
ASSERT_TRUE(nc->permittedSubtrees);
bssl::UniquePtr<GENERAL_SUBTREE> subtree(GENERAL_SUBTREE_new());
ASSERT_TRUE(subtree);
GENERAL_NAME_free(subtree->base);
subtree->base = MakeGeneralName(t.type, t.constraint).release();
ASSERT_TRUE(subtree->base);
ASSERT_TRUE(bssl::PushToStack(nc->permittedSubtrees, std::move(subtree)));
bssl::UniquePtr<X509> root =
MakeTestCert("Root", "Root", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root);
ASSERT_TRUE(X509_add1_ext_i2d(root.get(), NID_name_constraints, nc.get(),
/*crit=*/1, /*flags=*/0));
ASSERT_TRUE(X509_sign(root.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> leaf =
MakeTestCert("Root", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(X509_add1_ext_i2d(leaf.get(), NID_subject_alt_name, names.get(),
/*crit=*/0, /*flags=*/0));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
int ret = Verify(leaf.get(), {root.get()}, {}, {}, 0);
EXPECT_EQ(t.result, ret) << X509_verify_cert_error_string(ret);
}
}
TEST(X509Test, PrintGeneralName) {
// TODO(https://crbug.com/boringssl/430): Add more tests. Also fix the
// external projects that use this to extract the SAN list and unexport.
bssl::UniquePtr<GENERAL_NAME> gen = MakeGeneralName(GEN_DNS, "example.com");
ASSERT_TRUE(gen);
bssl::UniquePtr<STACK_OF(CONF_VALUE)> values(
i2v_GENERAL_NAME(nullptr, gen.get(), nullptr));
ASSERT_TRUE(values);
ASSERT_EQ(1u, sk_CONF_VALUE_num(values.get()));
const CONF_VALUE *value = sk_CONF_VALUE_value(values.get(), 0);
EXPECT_STREQ(value->name, "DNS");
EXPECT_STREQ(value->value, "example.com");
}
TEST(X509Test, TestPSS) {
static const char *kGoodCerts[] = {
"crypto/x509/test/pss_sha256.pem",
"crypto/x509/test/pss_sha384.pem",
"crypto/x509/test/pss_sha512.pem",
// We accept inputs with and without explicit NULLs. See RFC 4055,
// section 2.1.
"crypto/x509/test/pss_sha256_omit_nulls.pem",
// Although invalid, we tolerate an explicit trailerField value. See the
// certificates in cl/362617931.
"crypto/x509/test/pss_sha256_explicit_trailer.pem",
};
for (const char *path : kGoodCerts) {
SCOPED_TRACE(path);
bssl::UniquePtr<X509> cert = CertFromPEM(GetTestData(path).c_str());
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
EXPECT_TRUE(X509_verify(cert.get(), pkey.get()));
}
static const char *kBadCerts[] = {
"crypto/x509/test/pss_sha1_explicit.pem",
"crypto/x509/test/pss_sha1_mgf1_syntax_error.pem",
"crypto/x509/test/pss_sha1.pem",
"crypto/x509/test/pss_sha224.pem",
"crypto/x509/test/pss_sha256_mgf1_sha384.pem",
"crypto/x509/test/pss_sha256_mgf1_syntax_error.pem",
"crypto/x509/test/pss_sha256_salt_overflow.pem",
"crypto/x509/test/pss_sha256_salt31.pem",
"crypto/x509/test/pss_sha256_unknown_mgf.pem",
"crypto/x509/test/pss_sha256_wrong_trailer.pem",
};
for (const char *path : kBadCerts) {
SCOPED_TRACE(path);
bssl::UniquePtr<X509> cert = CertFromPEM(GetTestData(path).c_str());
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
EXPECT_FALSE(X509_verify(cert.get(), pkey.get()));
}
}
TEST(X509Test, TestPSSBadParameters) {
bssl::UniquePtr<X509> cert(CertFromPEM(kBadPSSCertPEM));
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
ASSERT_FALSE(X509_verify(cert.get(), pkey.get()));
ERR_clear_error();
}
TEST(X509Test, TestEd25519) {
bssl::UniquePtr<X509> cert(CertFromPEM(kEd25519Cert));
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
ASSERT_TRUE(X509_verify(cert.get(), pkey.get()));
}
TEST(X509Test, TestEd25519BadParameters) {
bssl::UniquePtr<X509> cert(CertFromPEM(kEd25519CertNull));
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
ASSERT_FALSE(X509_verify(cert.get(), pkey.get()));
EXPECT_TRUE(
ErrorEquals(ERR_get_error(), ERR_LIB_X509, X509_R_INVALID_PARAMETER));
ERR_clear_error();
}
TEST(X509Test, TestX25519) {
bssl::UniquePtr<X509> cert(CertFromPEM(kX25519Cert));
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_X25519);
constexpr uint8_t kExpectedPublicValue[] = {
0x85, 0x20, 0xf0, 0x09, 0x89, 0x30, 0xa7, 0x54, 0x74, 0x8b, 0x7d,
0xdc, 0xb4, 0x3e, 0xf7, 0x5a, 0x0d, 0xbf, 0x3a, 0x0d, 0x26, 0x38,
0x1a, 0xf4, 0xeb, 0xa4, 0xa9, 0x8e, 0xaa, 0x9b, 0x4e, 0x6a,
};
uint8_t public_value[sizeof(kExpectedPublicValue)];
size_t public_value_size = sizeof(public_value);
ASSERT_TRUE(EVP_PKEY_get_raw_public_key(pkey.get(), public_value,
&public_value_size));
EXPECT_EQ(Bytes(kExpectedPublicValue),
Bytes(public_value, public_value_size));
}
static bssl::UniquePtr<X509> ReencodeCertificate(X509 *cert) {
uint8_t *der = nullptr;
int len = i2d_X509(cert, &der);
bssl::UniquePtr<uint8_t> free_der(der);
if (len <= 0) {
return nullptr;
}
const uint8_t *inp = der;
return bssl::UniquePtr<X509>(d2i_X509(nullptr, &inp, len));
}
static bssl::UniquePtr<X509_CRL> ReencodeCRL(X509_CRL *crl) {
uint8_t *der = nullptr;
int len = i2d_X509_CRL(crl, &der);
bssl::UniquePtr<uint8_t> free_der(der);
if (len <= 0) {
return nullptr;
}
const uint8_t *inp = der;
return bssl::UniquePtr<X509_CRL>(d2i_X509_CRL(nullptr, &inp, len));
}
static bssl::UniquePtr<X509_REQ> ReencodeCSR(X509_REQ *req) {
uint8_t *der = nullptr;
int len = i2d_X509_REQ(req, &der);
bssl::UniquePtr<uint8_t> free_der(der);
if (len <= 0) {
return nullptr;
}
const uint8_t *inp = der;
return bssl::UniquePtr<X509_REQ>(d2i_X509_REQ(nullptr, &inp, len));
}
static bool SignatureRoundTrips(EVP_MD_CTX *md_ctx, EVP_PKEY *pkey) {
// Make a certificate like signed with |md_ctx|'s settings.'
bssl::UniquePtr<X509> cert(CertFromPEM(kLeafPEM));
if (!cert || !X509_sign_ctx(cert.get(), md_ctx)) {
return false;
}
// Ensure that |pkey| may still be used to verify the resulting signature. All
// settings in |md_ctx| must have been serialized appropriately.
if (!X509_verify(cert.get(), pkey)) {
return false;
}
// Re-encode the certificate. X509 objects contain a cached TBSCertificate
// encoding and |X509_sign_ctx| should have dropped that cache.
bssl::UniquePtr<X509> copy = ReencodeCertificate(cert.get());
return copy && X509_verify(copy.get(), pkey);
}
TEST(X509Test, RSASign) {
bssl::UniquePtr<EVP_PKEY> pkey(PrivateKeyFromPEM(kRSAKey));
ASSERT_TRUE(pkey);
// Test PKCS#1 v1.5.
bssl::ScopedEVP_MD_CTX md_ctx;
ASSERT_TRUE(
EVP_DigestSignInit(md_ctx.get(), NULL, EVP_sha256(), NULL, pkey.get()));
ASSERT_TRUE(SignatureRoundTrips(md_ctx.get(), pkey.get()));
// RSA-PSS with salt length matching hash length should work when passing in
// -1 or the value explicitly.
md_ctx.Reset();
EVP_PKEY_CTX *pkey_ctx;
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), &pkey_ctx, EVP_sha256(), NULL,
pkey.get()));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, -1));
ASSERT_TRUE(SignatureRoundTrips(md_ctx.get(), pkey.get()));
md_ctx.Reset();
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), &pkey_ctx, EVP_sha256(), NULL,
pkey.get()));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, 32));
ASSERT_TRUE(SignatureRoundTrips(md_ctx.get(), pkey.get()));
// RSA-PSS with SHA-1 is not supported.
md_ctx.Reset();
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), &pkey_ctx, EVP_sha1(), NULL,
pkey.get()));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, -1));
bssl::UniquePtr<X509> cert = CertFromPEM(kLeafPEM);
ASSERT_TRUE(cert);
EXPECT_FALSE(X509_sign_ctx(cert.get(), md_ctx.get()));
// RSA-PSS with mismatched hashes is not supported.
md_ctx.Reset();
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), &pkey_ctx, EVP_sha256(), NULL,
pkey.get()));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, -1));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pkey_ctx, EVP_sha512()));
cert = CertFromPEM(kLeafPEM);
ASSERT_TRUE(cert);
EXPECT_FALSE(X509_sign_ctx(cert.get(), md_ctx.get()));
// RSA-PSS with the wrong salt length is not supported.
md_ctx.Reset();
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), &pkey_ctx, EVP_sha256(), NULL,
pkey.get()));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pkey_ctx, RSA_PKCS1_PSS_PADDING));
ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkey_ctx, 33));
cert = CertFromPEM(kLeafPEM);
ASSERT_TRUE(cert);
EXPECT_FALSE(X509_sign_ctx(cert.get(), md_ctx.get()));
}
// Test the APIs for signing a certificate, particularly whether they correctly
// handle the TBSCertificate cache.
TEST(X509Test, SignCertificate) {
const int kSignatureNID = NID_sha384WithRSAEncryption;
const EVP_MD *kSignatureHash = EVP_sha384();
bssl::UniquePtr<EVP_PKEY> pkey(PrivateKeyFromPEM(kRSAKey));
ASSERT_TRUE(pkey);
bssl::UniquePtr<X509_ALGOR> algor(X509_ALGOR_new());
ASSERT_TRUE(algor);
ASSERT_TRUE(X509_ALGOR_set0(algor.get(), OBJ_nid2obj(kSignatureNID),
V_ASN1_NULL, nullptr));
// Test both signing with |X509_sign| and constructing a signature manually.
for (bool sign_manual : {true, false}) {
SCOPED_TRACE(sign_manual);
// Test certificates made both from other certificates and |X509_new|, in
// case there are bugs in filling in fields from different states. (Parsed
// certificates contain a TBSCertificate cache, and |X509_new| initializes
// fields based on complex ASN.1 template logic.)
for (bool new_cert : {true, false}) {
SCOPED_TRACE(new_cert);
bssl::UniquePtr<X509> cert;
if (new_cert) {
cert.reset(X509_new());
ASSERT_TRUE(cert);
// Fill in some fields for the certificate arbitrarily.
EXPECT_TRUE(X509_set_version(cert.get(), X509_VERSION_3));
EXPECT_TRUE(
ASN1_INTEGER_set_int64(X509_get_serialNumber(cert.get()), 1));
EXPECT_TRUE(X509_gmtime_adj(X509_getm_notBefore(cert.get()), 0));
EXPECT_TRUE(
X509_gmtime_adj(X509_getm_notAfter(cert.get()), 60 * 60 * 24));
X509_NAME *subject = X509_get_subject_name(cert.get());
X509_NAME_add_entry_by_txt(subject, "CN", MBSTRING_ASC,
reinterpret_cast<const uint8_t *>("Test"),
-1, -1, 0);
EXPECT_TRUE(X509_set_issuer_name(cert.get(), subject));
EXPECT_TRUE(X509_set_pubkey(cert.get(), pkey.get()));
} else {
// Extract fields from a parsed certificate.
cert = CertFromPEM(kLeafPEM);
ASSERT_TRUE(cert);
// We should test with a different algorithm from what is already in the
// certificate.
EXPECT_NE(kSignatureNID, X509_get_signature_nid(cert.get()));
}
if (sign_manual) {
// Fill in the signature algorithm.
ASSERT_TRUE(X509_set1_signature_algo(cert.get(), algor.get()));
// Extract the TBSCertificiate.
uint8_t *tbs_cert = nullptr;
int tbs_cert_len = i2d_re_X509_tbs(cert.get(), &tbs_cert);
bssl::UniquePtr<uint8_t> free_tbs_cert(tbs_cert);
ASSERT_GT(tbs_cert_len, 0);
// Generate a signature externally and fill it in.
bssl::ScopedEVP_MD_CTX md_ctx;
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), nullptr, kSignatureHash,
nullptr, pkey.get()));
size_t sig_len;
ASSERT_TRUE(EVP_DigestSign(md_ctx.get(), nullptr, &sig_len, tbs_cert,
tbs_cert_len));
std::vector<uint8_t> sig(sig_len);
ASSERT_TRUE(EVP_DigestSign(md_ctx.get(), sig.data(), &sig_len, tbs_cert,
tbs_cert_len));
sig.resize(sig_len);
ASSERT_TRUE(
X509_set1_signature_value(cert.get(), sig.data(), sig.size()));
} else {
int ret = X509_sign(cert.get(), pkey.get(), EVP_sha384());
ASSERT_GT(ret, 0);
// |X509_sign| returns the length of the signature on success.
const ASN1_BIT_STRING *sig;
X509_get0_signature(&sig, /*out_alg=*/nullptr, cert.get());
EXPECT_EQ(ret, ASN1_STRING_length(sig));
}
// Check the signature.
EXPECT_TRUE(X509_verify(cert.get(), pkey.get()));
// Re-encode the certificate. X509 objects contain a cached TBSCertificate
// encoding and re-signing should have dropped that cache.
bssl::UniquePtr<X509> copy = ReencodeCertificate(cert.get());
ASSERT_TRUE(copy);
EXPECT_TRUE(X509_verify(copy.get(), pkey.get()));
}
}
}
// Test the APIs for signing a CRL, particularly whether they correctly handle
// the TBSCertList cache.
TEST(X509Test, SignCRL) {
const int kSignatureNID = NID_sha384WithRSAEncryption;
const EVP_MD *kSignatureHash = EVP_sha384();
bssl::UniquePtr<EVP_PKEY> pkey(PrivateKeyFromPEM(kRSAKey));
ASSERT_TRUE(pkey);
bssl::UniquePtr<X509_ALGOR> algor(X509_ALGOR_new());
ASSERT_TRUE(algor);
ASSERT_TRUE(X509_ALGOR_set0(algor.get(), OBJ_nid2obj(kSignatureNID),
V_ASN1_NULL, nullptr));
// Test both signing with |X509_CRL_sign| and constructing a signature
// manually.
for (bool sign_manual : {true, false}) {
SCOPED_TRACE(sign_manual);
// Test CRLs made both from other CRLs and |X509_CRL_new|, in case there are
// bugs in filling in fields from different states. (Parsed CRLs contain a
// TBSCertList cache, and |X509_CRL_new| initializes fields based on complex
// ASN.1 template logic.)
for (bool new_crl : {true, false}) {
SCOPED_TRACE(new_crl);
bssl::UniquePtr<X509_CRL> crl;
if (new_crl) {
crl.reset(X509_CRL_new());
ASSERT_TRUE(crl);
// Fill in some fields for the certificate arbitrarily.
ASSERT_TRUE(X509_CRL_set_version(crl.get(), X509_CRL_VERSION_2));
bssl::UniquePtr<ASN1_TIME> last_update(ASN1_TIME_new());
ASSERT_TRUE(last_update);
ASSERT_TRUE(ASN1_TIME_set_posix(last_update.get(), kReferenceTime));
ASSERT_TRUE(X509_CRL_set1_lastUpdate(crl.get(), last_update.get()));
bssl::UniquePtr<X509_NAME> issuer(X509_NAME_new());
ASSERT_TRUE(issuer);
ASSERT_TRUE(X509_NAME_add_entry_by_txt(
issuer.get(), "CN", MBSTRING_ASC,
reinterpret_cast<const uint8_t *>("Test"), -1, -1, 0));
EXPECT_TRUE(X509_CRL_set_issuer_name(crl.get(), issuer.get()));
} else {
// Extract fields from a parsed CRL.
crl = CRLFromPEM(kBasicCRL);
ASSERT_TRUE(crl);
// We should test with a different algorithm from what is already in the
// CRL.
EXPECT_NE(kSignatureNID, X509_CRL_get_signature_nid(crl.get()));
}
if (sign_manual) {
// Fill in the signature algorithm.
ASSERT_TRUE(X509_CRL_set1_signature_algo(crl.get(), algor.get()));
// Extract the TBSCertList.
uint8_t *tbs = nullptr;
int tbs_len = i2d_re_X509_CRL_tbs(crl.get(), &tbs);
bssl::UniquePtr<uint8_t> free_tbs(tbs);
ASSERT_GT(tbs_len, 0);
// Generate a signature externally and fill it in.
bssl::ScopedEVP_MD_CTX md_ctx;
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), nullptr, kSignatureHash,
nullptr, pkey.get()));
size_t sig_len;
ASSERT_TRUE(
EVP_DigestSign(md_ctx.get(), nullptr, &sig_len, tbs, tbs_len));
std::vector<uint8_t> sig(sig_len);
ASSERT_TRUE(
EVP_DigestSign(md_ctx.get(), sig.data(), &sig_len, tbs, tbs_len));
sig.resize(sig_len);
ASSERT_TRUE(
X509_CRL_set1_signature_value(crl.get(), sig.data(), sig.size()));
} else {
ASSERT_TRUE(X509_CRL_sign(crl.get(), pkey.get(), EVP_sha384()));
}
// Check the signature.
EXPECT_TRUE(X509_CRL_verify(crl.get(), pkey.get()));
// Re-encode the CRL. X509_CRL objects contain a cached TBSCertList
// encoding and re-signing should have dropped that cache.
bssl::UniquePtr<X509_CRL> copy = ReencodeCRL(crl.get());
ASSERT_TRUE(copy);
EXPECT_TRUE(X509_CRL_verify(copy.get(), pkey.get()));
}
}
}
static const char kTestCSR[] = R"(
-----BEGIN CERTIFICATE REQUEST-----
MIICVDCCATwCAQAwDzENMAsGA1UEAwwEVGVzdDCCASIwDQYJKoZIhvcNAQEBBQAD
ggEPADCCAQoCggEBAK+UkwcNJfRhg5MzIQzxDdrqF9a76jNoK/BwCflKYFX7QEqf
rsLkI0J+m60fUD0v50LnKwbGoMFKZ1R/3cBNXLcdXb7ZP/ZJ7A7QwUrL+W9n3sov
U8/HSU3rHbg+V5L6egSZYuhDHoXKi33HDOL4DVUzMoU1ykmP4QwF1wUXHLqvqjbU
teQBoJWO53/XOGQu8bX04muCFnHZWT2Ubqol70JwPU2PqDU1EBlgUFO79NEmflev
b++H8tu42UCDUZXD9k5weftjneO4cud3IsUX6mDsyf7k1e2mxsS4TSZsJcG0iLBX
HSr1udXazQsjlAKjJkoI3cWshF6LGRWssAtbGiUCAwEAAaAAMA0GCSqGSIb3DQEB
CwUAA4IBAQAniYZL+amXu+wED+AwBZz+zPuxY16bveF27/gxcs/jq6hVpEQvMxfO
jfAGeDRtAU7DMxdJPjvWwwNe2JlTMSRoVDMYaiKqB5yxIYa2cjQvp7swSxuFJwbG
T8h7/d7yqem6NYYzgYsNOE5QJyNu/PsIEdvzrysfDAnREiT2ituOcVpiqUZq3DTj
NaTd1GNG3j4E87ZUmayUJD5nH91UNzKvJbpfo+bLyfy73x4QeU0SRitsZmbSBTAi
s9+zmCErxzMlAdJHGzxPkXmtvBnUzGRIsAD5h/DjYNUmQJkB60yplt84ZgThhx54
rZGEJG3+X9OuhczVKGJyg+3gU7oDbecc
-----END CERTIFICATE REQUEST-----
)";
// Test the APIs for signing a CSR, particularly whether they correctly handle
// the CertificationRequestInfo cache.
TEST(X509Test, SignCSR) {
const int kSignatureNID = NID_sha384WithRSAEncryption;
const EVP_MD *kSignatureHash = EVP_sha384();
bssl::UniquePtr<EVP_PKEY> pkey(PrivateKeyFromPEM(kRSAKey));
ASSERT_TRUE(pkey);
bssl::UniquePtr<X509_ALGOR> algor(X509_ALGOR_new());
ASSERT_TRUE(algor);
ASSERT_TRUE(X509_ALGOR_set0(algor.get(), OBJ_nid2obj(kSignatureNID),
V_ASN1_NULL, nullptr));
// Test both signing with |X509_REQ_sign| and constructing a signature
// manually.
for (bool sign_manual : {true, false}) {
SCOPED_TRACE(sign_manual);
// Test CSRs made both from other CSRs and |X509_REQ_new|, in case there are
// bugs in filling in fields from different states. (Parsed CSRs contain a
// CertificationRequestInfo cache, and |X509_REQ_new| initializes fields
// based on complex ASN.1 template logic.)
for (bool new_csr : {true, false}) {
SCOPED_TRACE(new_csr);
bssl::UniquePtr<X509_REQ> csr;
if (new_csr) {
csr.reset(X509_REQ_new());
ASSERT_TRUE(csr);
bssl::UniquePtr<X509_NAME> subject(X509_NAME_new());
ASSERT_TRUE(subject);
ASSERT_TRUE(X509_NAME_add_entry_by_txt(
subject.get(), "CN", MBSTRING_ASC,
reinterpret_cast<const uint8_t *>("New CSR"), -1, -1, 0));
EXPECT_TRUE(X509_REQ_set_subject_name(csr.get(), subject.get()));
} else {
// Extract fields from a parsed CSR.
csr = CSRFromPEM(kTestCSR);
ASSERT_TRUE(csr);
}
// Override the public key from the CSR unconditionally. Unlike
// certificates and CRLs, CSRs do not contain a signed copy of the
// signature algorithm, so we use a different field to confirm
// |i2d_re_X509_REQ_tbs| clears the cache as expected.
EXPECT_TRUE(X509_REQ_set_pubkey(csr.get(), pkey.get()));
if (sign_manual) {
// Fill in the signature algorithm.
ASSERT_TRUE(X509_REQ_set1_signature_algo(csr.get(), algor.get()));
// Extract the CertificationRequestInfo.
uint8_t *tbs = nullptr;
int tbs_len = i2d_re_X509_REQ_tbs(csr.get(), &tbs);
bssl::UniquePtr<uint8_t> free_tbs(tbs);
ASSERT_GT(tbs_len, 0);
// Generate a signature externally and fill it in.
bssl::ScopedEVP_MD_CTX md_ctx;
ASSERT_TRUE(EVP_DigestSignInit(md_ctx.get(), nullptr, kSignatureHash,
nullptr, pkey.get()));
size_t sig_len;
ASSERT_TRUE(
EVP_DigestSign(md_ctx.get(), nullptr, &sig_len, tbs, tbs_len));
std::vector<uint8_t> sig(sig_len);
ASSERT_TRUE(
EVP_DigestSign(md_ctx.get(), sig.data(), &sig_len, tbs, tbs_len));
sig.resize(sig_len);
ASSERT_TRUE(
X509_REQ_set1_signature_value(csr.get(), sig.data(), sig.size()));
} else {
ASSERT_TRUE(X509_REQ_sign(csr.get(), pkey.get(), EVP_sha384()));
}
// Check the signature.
EXPECT_TRUE(X509_REQ_verify(csr.get(), pkey.get()));
// Re-encode the CSR. X509_REQ objects contain a cached
// CertificationRequestInfo encoding and re-signing should have dropped
// that cache.
bssl::UniquePtr<X509_REQ> copy = ReencodeCSR(csr.get());
ASSERT_TRUE(copy);
EXPECT_TRUE(X509_REQ_verify(copy.get(), pkey.get()));
// Check the signature was over the new public key.
bssl::UniquePtr<EVP_PKEY> copy_pubkey(X509_REQ_get_pubkey(copy.get()));
ASSERT_TRUE(copy_pubkey);
EXPECT_EQ(1, EVP_PKEY_cmp(pkey.get(), copy_pubkey.get()));
}
}
}
TEST(X509Test, Ed25519Sign) {
uint8_t pub_bytes[32], priv_bytes[64];
ED25519_keypair(pub_bytes, priv_bytes);
bssl::UniquePtr<EVP_PKEY> pub(
EVP_PKEY_new_raw_public_key(EVP_PKEY_ED25519, nullptr, pub_bytes, 32));
ASSERT_TRUE(pub);
bssl::UniquePtr<EVP_PKEY> priv(
EVP_PKEY_new_raw_private_key(EVP_PKEY_ED25519, nullptr, priv_bytes, 32));
ASSERT_TRUE(priv);
bssl::ScopedEVP_MD_CTX md_ctx;
ASSERT_TRUE(
EVP_DigestSignInit(md_ctx.get(), nullptr, nullptr, nullptr, priv.get()));
ASSERT_TRUE(SignatureRoundTrips(md_ctx.get(), pub.get()));
}
static bool PEMToDER(bssl::UniquePtr<uint8_t> *out, size_t *out_len,
const char *pem) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
if (!bio) {
return false;
}
char *name, *header;
uint8_t *data;
long data_len;
if (!PEM_read_bio(bio.get(), &name, &header, &data, &data_len)) {
fprintf(stderr, "failed to read PEM data.\n");
return false;
}
OPENSSL_free(name);
OPENSSL_free(header);
out->reset(data);
*out_len = data_len;
return true;
}
TEST(X509Test, TestFromBuffer) {
size_t data_len;
bssl::UniquePtr<uint8_t> data;
ASSERT_TRUE(PEMToDER(&data, &data_len, kRootCAPEM));
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(data.get(), data_len, nullptr));
ASSERT_TRUE(buf);
bssl::UniquePtr<X509> root(X509_parse_from_buffer(buf.get()));
ASSERT_TRUE(root);
const uint8_t *enc_pointer = root->cert_info->enc.enc;
const uint8_t *buf_pointer = CRYPTO_BUFFER_data(buf.get());
ASSERT_GE(enc_pointer, buf_pointer);
ASSERT_LT(enc_pointer, buf_pointer + CRYPTO_BUFFER_len(buf.get()));
buf.reset();
/* This ensures the X509 took a reference to |buf|, otherwise this will be a
* reference to free memory and ASAN should notice. */
ASSERT_EQ(0x30, enc_pointer[0]);
}
TEST(X509Test, TestFromBufferWithTrailingData) {
size_t data_len;
bssl::UniquePtr<uint8_t> data;
ASSERT_TRUE(PEMToDER(&data, &data_len, kRootCAPEM));
auto trailing_data = std::make_unique<uint8_t[]>(data_len + 1);
OPENSSL_memcpy(trailing_data.get(), data.get(), data_len);
bssl::UniquePtr<CRYPTO_BUFFER> buf_trailing_data(
CRYPTO_BUFFER_new(trailing_data.get(), data_len + 1, nullptr));
ASSERT_TRUE(buf_trailing_data);
bssl::UniquePtr<X509> root_trailing_data(
X509_parse_from_buffer(buf_trailing_data.get()));
ASSERT_FALSE(root_trailing_data);
}
TEST(X509Test, TestFromBufferModified) {
size_t data_len;
bssl::UniquePtr<uint8_t> data;
ASSERT_TRUE(PEMToDER(&data, &data_len, kRootCAPEM));
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(data.get(), data_len, nullptr));
ASSERT_TRUE(buf);
bssl::UniquePtr<X509> root(X509_parse_from_buffer(buf.get()));
ASSERT_TRUE(root);
bssl::UniquePtr<ASN1_INTEGER> fourty_two(ASN1_INTEGER_new());
ASN1_INTEGER_set_int64(fourty_two.get(), 42);
X509_set_serialNumber(root.get(), fourty_two.get());
ASSERT_EQ(static_cast<long>(data_len), i2d_X509(root.get(), nullptr));
// Re-encode the TBSCertificate.
i2d_re_X509_tbs(root.get(), nullptr);
ASSERT_NE(static_cast<long>(data_len), i2d_X509(root.get(), nullptr));
}
TEST(X509Test, TestFromBufferReused) {
size_t data_len;
bssl::UniquePtr<uint8_t> data;
ASSERT_TRUE(PEMToDER(&data, &data_len, kRootCAPEM));
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(data.get(), data_len, nullptr));
ASSERT_TRUE(buf);
bssl::UniquePtr<X509> root(X509_parse_from_buffer(buf.get()));
ASSERT_TRUE(root);
size_t data2_len;
bssl::UniquePtr<uint8_t> data2;
ASSERT_TRUE(PEMToDER(&data2, &data2_len, kLeafPEM));
EXPECT_TRUE(buffers_alias(root->cert_info->enc.enc, root->cert_info->enc.len,
CRYPTO_BUFFER_data(buf.get()),
CRYPTO_BUFFER_len(buf.get())));
// Historically, this function tested the interaction betweeen
// |X509_parse_from_buffer| and object reuse. We no longer support object
// reuse, so |d2i_X509| will replace |raw| with a new object. However, we
// retain this test to verify that releasing objects from |d2i_X509| works
// correctly.
X509 *raw = root.release();
const uint8_t *inp = data2.get();
X509 *ret = d2i_X509(&raw, &inp, data2_len);
root.reset(raw);
ASSERT_EQ(root.get(), ret);
ASSERT_EQ(nullptr, root->cert_info->enc.buf);
EXPECT_FALSE(buffers_alias(root->cert_info->enc.enc, root->cert_info->enc.len,
CRYPTO_BUFFER_data(buf.get()),
CRYPTO_BUFFER_len(buf.get())));
// Free |data2| and ensure that |root| took its own copy. Otherwise the
// following will trigger a use-after-free.
data2.reset();
uint8_t *i2d = nullptr;
int i2d_len = i2d_X509(root.get(), &i2d);
ASSERT_GE(i2d_len, 0);
bssl::UniquePtr<uint8_t> i2d_storage(i2d);
ASSERT_TRUE(PEMToDER(&data2, &data2_len, kLeafPEM));
ASSERT_EQ(static_cast<long>(data2_len), i2d_len);
ASSERT_EQ(0, OPENSSL_memcmp(data2.get(), i2d, i2d_len));
ASSERT_EQ(nullptr, root->cert_info->enc.buf);
}
TEST(X509Test, TestFailedParseFromBuffer) {
static const uint8_t kNonsense[] = {1, 2, 3, 4, 5};
bssl::UniquePtr<CRYPTO_BUFFER> buf(
CRYPTO_BUFFER_new(kNonsense, sizeof(kNonsense), nullptr));
ASSERT_TRUE(buf);
bssl::UniquePtr<X509> cert(X509_parse_from_buffer(buf.get()));
ASSERT_FALSE(cert);
ERR_clear_error();
// Test a buffer with trailing data.
size_t data_len;
bssl::UniquePtr<uint8_t> data;
ASSERT_TRUE(PEMToDER(&data, &data_len, kRootCAPEM));
auto data_with_trailing_byte = std::make_unique<uint8_t[]>(data_len + 1);
OPENSSL_memcpy(data_with_trailing_byte.get(), data.get(), data_len);
data_with_trailing_byte[data_len] = 0;
bssl::UniquePtr<CRYPTO_BUFFER> buf_with_trailing_byte(
CRYPTO_BUFFER_new(data_with_trailing_byte.get(), data_len + 1, nullptr));
ASSERT_TRUE(buf_with_trailing_byte);
bssl::UniquePtr<X509> root(
X509_parse_from_buffer(buf_with_trailing_byte.get()));
ASSERT_FALSE(root);
ERR_clear_error();
}
TEST(X509Test, TestPrintUTCTIME) {
static const struct {
const char *val, *want;
} asn1_utctime_tests[] = {
{"", "Bad time value"},
// Correct RFC 5280 form. Test years < 2000 and > 2000.
{"090303125425Z", "Mar 3 12:54:25 2009 GMT"},
{"900303125425Z", "Mar 3 12:54:25 1990 GMT"},
{"000303125425Z", "Mar 3 12:54:25 2000 GMT"},
// Correct form, bad values.
{"000000000000Z", "Bad time value"},
{"999999999999Z", "Bad time value"},
// Missing components.
{"090303125425", "Bad time value"},
{"9003031254", "Bad time value"},
{"9003031254Z", "Bad time value"},
// GENERALIZEDTIME confused for UTCTIME.
{"20090303125425Z", "Bad time value"},
// Legal ASN.1, but not legal RFC 5280.
{"9003031254+0800", "Bad time value"},
{"9003031254-0800", "Bad time value"},
// Trailing garbage.
{"9003031254Z ", "Bad time value"},
};
for (auto t : asn1_utctime_tests) {
SCOPED_TRACE(t.val);
bssl::UniquePtr<ASN1_UTCTIME> tm(ASN1_UTCTIME_new());
ASSERT_TRUE(tm);
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
// Use this instead of ASN1_UTCTIME_set() because some callers get
// type-confused and pass ASN1_GENERALIZEDTIME to ASN1_UTCTIME_print().
// ASN1_UTCTIME_set_string() is stricter, and would reject the inputs in
// question.
ASSERT_TRUE(ASN1_STRING_set(tm.get(), t.val, strlen(t.val)));
const int ok = ASN1_UTCTIME_print(bio.get(), tm.get());
const uint8_t *contents;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &contents, &len));
EXPECT_EQ(ok, (strcmp(t.want, "Bad time value") != 0) ? 1 : 0);
EXPECT_EQ(t.want,
std::string(reinterpret_cast<const char *>(contents), len));
}
}
TEST(X509Test, PrettyPrintIntegers) {
static const char *kTests[] = {
// Small numbers are pretty-printed in decimal.
"0",
"-1",
"1",
"42",
"-42",
"256",
"-256",
// Large numbers are pretty-printed in hex to avoid taking quadratic time.
"0x0123456789",
"-0x0123456789",
};
for (const char *in : kTests) {
SCOPED_TRACE(in);
BIGNUM *bn = nullptr;
ASSERT_TRUE(BN_asc2bn(&bn, in));
bssl::UniquePtr<BIGNUM> free_bn(bn);
{
bssl::UniquePtr<ASN1_INTEGER> asn1(BN_to_ASN1_INTEGER(bn, nullptr));
ASSERT_TRUE(asn1);
bssl::UniquePtr<char> out(i2s_ASN1_INTEGER(nullptr, asn1.get()));
ASSERT_TRUE(out.get());
EXPECT_STREQ(in, out.get());
}
{
bssl::UniquePtr<ASN1_ENUMERATED> asn1(BN_to_ASN1_ENUMERATED(bn, nullptr));
ASSERT_TRUE(asn1);
bssl::UniquePtr<char> out(i2s_ASN1_ENUMERATED(nullptr, asn1.get()));
ASSERT_TRUE(out.get());
EXPECT_STREQ(in, out.get());
}
}
}
TEST(X509Test, X509AlgorSetMd) {
bssl::UniquePtr<X509_ALGOR> alg(X509_ALGOR_new());
ASSERT_TRUE(alg);
EXPECT_TRUE(X509_ALGOR_set_md(alg.get(), EVP_sha256()));
const ASN1_OBJECT *obj;
const void *pval;
int ptype = 0;
X509_ALGOR_get0(&obj, &ptype, &pval, alg.get());
EXPECT_TRUE(obj);
EXPECT_EQ(OBJ_obj2nid(obj), NID_sha256);
EXPECT_EQ(ptype, V_ASN1_NULL); // OpenSSL has V_ASN1_UNDEF
EXPECT_EQ(pval, nullptr);
EXPECT_TRUE(X509_ALGOR_set_md(alg.get(), EVP_md5()));
X509_ALGOR_get0(&obj, &ptype, &pval, alg.get());
EXPECT_EQ(OBJ_obj2nid(obj), NID_md5);
EXPECT_EQ(ptype, V_ASN1_NULL);
EXPECT_EQ(pval, nullptr);
}
TEST(X509Test, X509NameSet) {
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
ASSERT_TRUE(name);
EXPECT_TRUE(X509_NAME_add_entry_by_txt(
name.get(), "C", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("US"),
-1, -1, 0));
EXPECT_EQ(X509_NAME_entry_count(name.get()), 1);
EXPECT_TRUE(X509_NAME_add_entry_by_txt(
name.get(), "C", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("CA"),
-1, -1, 0));
EXPECT_EQ(X509_NAME_entry_count(name.get()), 2);
EXPECT_TRUE(X509_NAME_add_entry_by_txt(
name.get(), "C", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("UK"),
-1, -1, 0));
EXPECT_EQ(X509_NAME_entry_count(name.get()), 3);
EXPECT_TRUE(X509_NAME_add_entry_by_txt(
name.get(), "C", MBSTRING_ASC, reinterpret_cast<const uint8_t *>("JP"),
-1, 1, 0));
EXPECT_EQ(X509_NAME_entry_count(name.get()), 4);
// Check that the correct entries get incremented when inserting new entry.
EXPECT_EQ(X509_NAME_ENTRY_set(X509_NAME_get_entry(name.get(), 1)), 1);
EXPECT_EQ(X509_NAME_ENTRY_set(X509_NAME_get_entry(name.get(), 2)), 2);
}
// Tests that |X509_NAME_hash| and |X509_NAME_hash_old|'s values never change.
// These functions figure into |X509_LOOKUP_hash_dir|'s on-disk format, so they
// must remain stable. In particular, if we ever remove name canonicalization,
// we'll need to preserve it for |X509_NAME_hash|.
TEST(X509Test, NameHash) {
struct {
std::vector<uint8_t> name_der;
uint32_t hash;
uint32_t hash_old;
} kTests[] = {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "Test Name" }
// }
// }
// }
{{0x30, 0x14, 0x31, 0x12, 0x30, 0x10, 0x06, 0x03, 0x55, 0x04, 0x03,
0x0c, 0x09, 0x54, 0x65, 0x73, 0x74, 0x20, 0x4e, 0x61, 0x6d, 0x65},
0xc90fba01,
0x8c0d4fea},
// This name canonicalizes to the same value, with OpenSSL's algorithm, as
// the above input, so |hash| matches. |hash_old| doesn't use
// canonicalization and does not match.
//
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// BMPString {
// u"\x09\n\x0b\x0c\x0d tEST\x09\n\x0b\x0c\x0d "
// u"\x09\n\x0b\x0c\x0d nAME\x09\n\x0b\x0c\x0d "
// }
// }
// }
// }
{{0x30, 0x4b, 0x31, 0x49, 0x30, 0x47, 0x06, 0x03, 0x55, 0x04, 0x03,
0x1e, 0x40, 0x00, 0x09, 0x00, 0x0a, 0x00, 0x0b, 0x00, 0x0c, 0x00,
0x0d, 0x00, 0x20, 0x00, 0x74, 0x00, 0x45, 0x00, 0x53, 0x00, 0x54,
0x00, 0x09, 0x00, 0x0a, 0x00, 0x0b, 0x00, 0x0c, 0x00, 0x0d, 0x00,
0x20, 0x00, 0x09, 0x00, 0x0a, 0x00, 0x0b, 0x00, 0x0c, 0x00, 0x0d,
0x00, 0x20, 0x00, 0x6e, 0x00, 0x41, 0x00, 0x4d, 0x00, 0x45, 0x00,
0x09, 0x00, 0x0a, 0x00, 0x0b, 0x00, 0x0c, 0x00, 0x0d, 0x00, 0x20},
0xc90fba01,
0xbe2dd8c8},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.name_der));
const uint8_t *der = t.name_der.data();
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &der, t.name_der.size()));
ASSERT_TRUE(name);
EXPECT_EQ(t.hash, X509_NAME_hash(name.get()));
EXPECT_EQ(t.hash_old, X509_NAME_hash_old(name.get()));
}
}
TEST(X509Test, NoBasicConstraintsCertSign) {
bssl::UniquePtr<X509> root(CertFromPEM(kSANTypesRoot));
bssl::UniquePtr<X509> intermediate(
CertFromPEM(kNoBasicConstraintsCertSignIntermediate));
bssl::UniquePtr<X509> leaf(CertFromPEM(kNoBasicConstraintsCertSignLeaf));
ASSERT_TRUE(root);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(leaf);
// The intermediate has keyUsage certSign, but is not marked as a CA in the
// basicConstraints.
EXPECT_EQ(X509_V_ERR_INVALID_CA,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0));
// |X509_check_purpose| with |X509_PURPOSE_ANY| and purpose -1 do not check
// basicConstraints, but other purpose types do. (This is redundant with the
// actual basicConstraints check, but |X509_check_purpose| is public API.)
EXPECT_TRUE(X509_check_purpose(intermediate.get(), -1, /*ca=*/1));
EXPECT_TRUE(
X509_check_purpose(intermediate.get(), X509_PURPOSE_ANY, /*ca=*/1));
EXPECT_FALSE(X509_check_purpose(intermediate.get(), X509_PURPOSE_SSL_SERVER,
/*ca=*/1));
}
TEST(X509Test, NoBasicConstraintsNetscapeCA) {
bssl::UniquePtr<X509> root(CertFromPEM(kSANTypesRoot));
bssl::UniquePtr<X509> intermediate(
CertFromPEM(kNoBasicConstraintsNetscapeCAIntermediate));
bssl::UniquePtr<X509> leaf(CertFromPEM(kNoBasicConstraintsNetscapeCALeaf));
ASSERT_TRUE(root);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(leaf);
// The intermediate has a Netscape certificate type of "SSL CA", but is not
// marked as a CA in the basicConstraints.
EXPECT_EQ(X509_V_ERR_INVALID_CA,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0));
}
TEST(X509Test, MismatchAlgorithms) {
bssl::UniquePtr<X509> cert(CertFromPEM(kSelfSignedMismatchAlgorithms));
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(cert.get()));
ASSERT_TRUE(pkey);
EXPECT_FALSE(X509_verify(cert.get(), pkey.get()));
EXPECT_TRUE(ErrorEquals(ERR_get_error(), ERR_LIB_X509,
X509_R_SIGNATURE_ALGORITHM_MISMATCH));
}
TEST(X509Test, PEMX509Info) {
std::string cert = kRootCAPEM;
auto cert_obj = CertFromPEM(kRootCAPEM);
ASSERT_TRUE(cert_obj);
std::string rsa = kRSAKey;
auto rsa_obj = PrivateKeyFromPEM(kRSAKey);
ASSERT_TRUE(rsa_obj);
std::string crl = kBasicCRL;
auto crl_obj = CRLFromPEM(kBasicCRL);
ASSERT_TRUE(crl_obj);
std::string unknown =
"-----BEGIN UNKNOWN-----\n"
"AAAA\n"
"-----END UNKNOWN-----\n";
std::string invalid =
"-----BEGIN CERTIFICATE-----\n"
"AAAA\n"
"-----END CERTIFICATE-----\n";
// Each X509_INFO contains at most one certificate, CRL, etc. The format
// creates a new X509_INFO when a repeated type is seen.
std::string pem =
// The first few entries have one of everything in different orders.
cert + rsa + crl +
rsa + crl + cert +
// Unknown types are ignored.
crl + unknown + cert + rsa +
// Seeing a new certificate starts a new entry, so now we have a bunch of
// certificate-only entries.
cert + cert + cert +
// The key folds into the certificate's entry.
cert + rsa +
// Doubled keys also start new entries.
rsa + rsa + rsa + rsa + crl +
// As do CRLs.
crl + crl;
const struct ExpectedInfo {
const X509 *cert;
const EVP_PKEY *key;
const X509_CRL *crl;
} kExpected[] = {
{cert_obj.get(), rsa_obj.get(), crl_obj.get()},
{cert_obj.get(), rsa_obj.get(), crl_obj.get()},
{cert_obj.get(), rsa_obj.get(), crl_obj.get()},
{cert_obj.get(), nullptr, nullptr},
{cert_obj.get(), nullptr, nullptr},
{cert_obj.get(), nullptr, nullptr},
{cert_obj.get(), rsa_obj.get(), nullptr},
{nullptr, rsa_obj.get(), nullptr},
{nullptr, rsa_obj.get(), nullptr},
{nullptr, rsa_obj.get(), nullptr},
{nullptr, rsa_obj.get(), crl_obj.get()},
{nullptr, nullptr, crl_obj.get()},
{nullptr, nullptr, crl_obj.get()},
};
auto check_info = [](const ExpectedInfo *expected, const X509_INFO *info) {
if (expected->cert != nullptr) {
EXPECT_EQ(0, X509_cmp(expected->cert, info->x509));
} else {
EXPECT_EQ(nullptr, info->x509);
}
if (expected->crl != nullptr) {
EXPECT_EQ(0, X509_CRL_cmp(expected->crl, info->crl));
} else {
EXPECT_EQ(nullptr, info->crl);
}
if (expected->key != nullptr) {
ASSERT_NE(nullptr, info->x_pkey);
// EVP_PKEY_cmp returns one if the keys are equal.
EXPECT_EQ(1, EVP_PKEY_cmp(expected->key, info->x_pkey->dec_pkey));
} else {
EXPECT_EQ(nullptr, info->x_pkey);
}
};
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem.data(), pem.size()));
ASSERT_TRUE(bio);
bssl::UniquePtr<STACK_OF(X509_INFO)> infos(
PEM_X509_INFO_read_bio(bio.get(), nullptr, nullptr, nullptr));
ASSERT_TRUE(infos);
ASSERT_EQ(OPENSSL_ARRAY_SIZE(kExpected), sk_X509_INFO_num(infos.get()));
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kExpected); i++) {
SCOPED_TRACE(i);
check_info(&kExpected[i], sk_X509_INFO_value(infos.get(), i));
}
// Passing an existing stack appends to it.
bio.reset(BIO_new_mem_buf(pem.data(), pem.size()));
ASSERT_TRUE(bio);
ASSERT_EQ(infos.get(),
PEM_X509_INFO_read_bio(bio.get(), infos.get(), nullptr, nullptr));
ASSERT_EQ(2 * OPENSSL_ARRAY_SIZE(kExpected), sk_X509_INFO_num(infos.get()));
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kExpected); i++) {
SCOPED_TRACE(i);
check_info(&kExpected[i], sk_X509_INFO_value(infos.get(), i));
check_info(
&kExpected[i],
sk_X509_INFO_value(infos.get(), i + OPENSSL_ARRAY_SIZE(kExpected)));
}
// Gracefully handle errors in both the append and fresh cases.
std::string bad_pem = cert + cert + invalid;
bio.reset(BIO_new_mem_buf(bad_pem.data(), bad_pem.size()));
ASSERT_TRUE(bio);
bssl::UniquePtr<STACK_OF(X509_INFO)> infos2(
PEM_X509_INFO_read_bio(bio.get(), nullptr, nullptr, nullptr));
EXPECT_FALSE(infos2);
bio.reset(BIO_new_mem_buf(bad_pem.data(), bad_pem.size()));
ASSERT_TRUE(bio);
EXPECT_FALSE(
PEM_X509_INFO_read_bio(bio.get(), infos.get(), nullptr, nullptr));
EXPECT_EQ(2 * OPENSSL_ARRAY_SIZE(kExpected), sk_X509_INFO_num(infos.get()));
}
TEST(X509Test, ReadBIOEmpty) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(nullptr, 0));
ASSERT_TRUE(bio);
// CPython expects |ASN1_R_HEADER_TOO_LONG| on EOF, to terminate a series of
// certificates.
bssl::UniquePtr<X509> x509(d2i_X509_bio(bio.get(), nullptr));
EXPECT_FALSE(x509);
EXPECT_TRUE(
ErrorEquals(ERR_get_error(), ERR_LIB_ASN1, ASN1_R_HEADER_TOO_LONG));
}
TEST(X509Test, ReadBIOOneByte) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf("\x30", 1));
ASSERT_TRUE(bio);
// CPython expects |ASN1_R_HEADER_TOO_LONG| on EOF, to terminate a series of
// certificates. This EOF appeared after some data, however, so we do not wish
// to signal EOF.
bssl::UniquePtr<X509> x509(d2i_X509_bio(bio.get(), nullptr));
EXPECT_FALSE(x509);
EXPECT_TRUE(
ErrorEquals(ERR_get_error(), ERR_LIB_ASN1, ASN1_R_NOT_ENOUGH_DATA));
}
TEST(X509Test, PartialBIOReturn) {
// Create a filter BIO that only reads and writes one byte at a time.
bssl::UniquePtr<BIO_METHOD> method(BIO_meth_new(0, nullptr));
ASSERT_TRUE(method);
ASSERT_TRUE(BIO_meth_set_create(method.get(), [](BIO *b) -> int {
BIO_set_init(b, 1);
return 1;
}));
ASSERT_TRUE(
BIO_meth_set_read(method.get(), [](BIO *b, char *out, int len) -> int {
return BIO_read(BIO_next(b), out, std::min(len, 1));
}));
ASSERT_TRUE(BIO_meth_set_write(
method.get(), [](BIO *b, const char *in, int len) -> int {
return BIO_write(BIO_next(b), in, std::min(len, 1));
}));
bssl::UniquePtr<BIO> bio(BIO_new(method.get()));
ASSERT_TRUE(bio);
BIO *mem_bio = BIO_new(BIO_s_mem());
ASSERT_TRUE(mem_bio);
BIO_push(bio.get(), mem_bio); // BIO_push takes ownership.
bssl::UniquePtr<X509> cert(CertFromPEM(kLeafPEM));
ASSERT_TRUE(cert);
uint8_t *der = nullptr;
int der_len = i2d_X509(cert.get(), &der);
ASSERT_GT(der_len, 0);
bssl::UniquePtr<uint8_t> free_der(der);
// Write the certificate into the BIO. Though we only write one byte at a
// time, the write should succeed.
ASSERT_EQ(1, i2d_X509_bio(bio.get(), cert.get()));
const uint8_t *der2;
size_t der2_len;
ASSERT_TRUE(BIO_mem_contents(mem_bio, &der2, &der2_len));
EXPECT_EQ(Bytes(der, static_cast<size_t>(der_len)), Bytes(der2, der2_len));
// Read the certificate back out of the BIO. Though we only read one byte at a
// time, the read should succeed.
bssl::UniquePtr<X509> cert2(d2i_X509_bio(bio.get(), nullptr));
ASSERT_TRUE(cert2);
EXPECT_EQ(0, X509_cmp(cert.get(), cert2.get()));
}
TEST(X509Test, CommonNameFallback) {
bssl::UniquePtr<X509> root = CertFromPEM(kSANTypesRoot);
ASSERT_TRUE(root);
bssl::UniquePtr<X509> with_sans = CertFromPEM(kCommonNameWithSANs);
ASSERT_TRUE(with_sans);
bssl::UniquePtr<X509> without_sans = CertFromPEM(kCommonNameWithoutSANs);
ASSERT_TRUE(without_sans);
bssl::UniquePtr<X509> with_email = CertFromPEM(kCommonNameWithEmailSAN);
ASSERT_TRUE(with_email);
bssl::UniquePtr<X509> with_ip = CertFromPEM(kCommonNameWithIPSAN);
ASSERT_TRUE(with_ip);
auto verify_cert = [&](X509 *leaf, unsigned flags, const char *host) {
return Verify(leaf, {root.get()}, {}, {}, 0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(param, host, strlen(host)));
X509_VERIFY_PARAM_set_hostflags(param, flags);
});
};
// By default, the common name is ignored if the SAN list is present but
// otherwise is checked.
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_sans.get(), 0 /* no flags */, "foo.host1.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), 0 /* no flags */, "foo.host2.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), 0 /* no flags */, "foo.host3.test"));
EXPECT_EQ(X509_V_OK, verify_cert(without_sans.get(), 0 /* no flags */,
"foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_email.get(), 0 /* no flags */, "foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_ip.get(), 0 /* no flags */, "foo.host1.test"));
// X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT is ignored.
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_sans.get(), X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host2.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host3.test"));
EXPECT_EQ(X509_V_OK, verify_cert(without_sans.get(),
X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_email.get(), X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_ip.get(), X509_CHECK_FLAG_ALWAYS_CHECK_SUBJECT,
"foo.host1.test"));
// X509_CHECK_FLAG_NEVER_CHECK_SUBJECT implements the correct behavior: the
// common name is never checked.
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_sans.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host2.test"));
EXPECT_EQ(X509_V_OK,
verify_cert(with_sans.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host3.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(without_sans.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_email.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host1.test"));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(with_ip.get(), X509_CHECK_FLAG_NEVER_CHECK_SUBJECT,
"foo.host1.test"));
}
TEST(X509Test, LooksLikeDNSName) {
static const char *kValid[] = {
"example.com",
"eXample123-.com",
"*.example.com",
"exa_mple.com",
"example.com.",
"project-dev:us-central1:main",
};
static const char *kInvalid[] = {
"-eXample123-.com",
"",
".",
"*",
"*.",
"example..com",
".example.com",
"example.com..",
"*foo.example.com",
"foo.*.example.com",
"foo,bar",
};
for (const char *str : kValid) {
SCOPED_TRACE(str);
EXPECT_TRUE(x509v3_looks_like_dns_name(
reinterpret_cast<const uint8_t *>(str), strlen(str)));
}
for (const char *str : kInvalid) {
SCOPED_TRACE(str);
EXPECT_FALSE(x509v3_looks_like_dns_name(
reinterpret_cast<const uint8_t *>(str), strlen(str)));
}
}
TEST(X509Test, CommonNameAndNameConstraints) {
bssl::UniquePtr<X509> root = CertFromPEM(kSANTypesRoot);
ASSERT_TRUE(root);
bssl::UniquePtr<X509> intermediate = CertFromPEM(kConstrainedIntermediate);
ASSERT_TRUE(intermediate);
bssl::UniquePtr<X509> permitted = CertFromPEM(kCommonNamePermittedLeaf);
ASSERT_TRUE(permitted);
bssl::UniquePtr<X509> not_permitted =
CertFromPEM(kCommonNameNotPermittedLeaf);
ASSERT_TRUE(not_permitted);
bssl::UniquePtr<X509> not_permitted_with_sans =
CertFromPEM(kCommonNameNotPermittedWithSANsLeaf);
ASSERT_TRUE(not_permitted_with_sans);
bssl::UniquePtr<X509> not_dns = CertFromPEM(kCommonNameNotDNSLeaf);
ASSERT_TRUE(not_dns);
auto verify_cert = [&](X509 *leaf, unsigned flags, const char *host) {
return Verify(
leaf, {root.get()}, {intermediate.get()}, {}, 0,
[&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(param, host, strlen(host)));
X509_VERIFY_PARAM_set_hostflags(param, flags);
});
};
// Certificates which would otherwise trigger the common name fallback are
// rejected whenever there are name constraints. We do this whether or not
// the common name matches the constraints.
EXPECT_EQ(
X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS,
verify_cert(permitted.get(), 0 /* no flags */, kCommonNamePermitted));
EXPECT_EQ(X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS,
verify_cert(not_permitted.get(), 0 /* no flags */,
kCommonNameNotPermitted));
// This occurs even if the built-in name checks aren't used. The caller may
// separately call |X509_check_host|.
EXPECT_EQ(X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS,
Verify(not_permitted.get(), {root.get()}, {intermediate.get()}, {},
0 /* no flags */, nullptr));
// If the leaf certificate has SANs, the common name fallback is always
// disabled, so the name constraints do not apply.
EXPECT_EQ(X509_V_OK, Verify(not_permitted_with_sans.get(), {root.get()},
{intermediate.get()}, {}, 0, nullptr));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(not_permitted_with_sans.get(), 0 /* no flags */,
kCommonNameNotPermittedWithSANs));
// If the common name does not look like a DNS name, we apply neither name
// constraints nor common name fallback.
EXPECT_EQ(X509_V_OK, Verify(not_dns.get(), {root.get()}, {intermediate.get()},
{}, 0, nullptr));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
verify_cert(not_dns.get(), 0 /* no flags */, kCommonNameNotDNS));
}
TEST(X509Test, ServerGatedCryptoEKUs) {
bssl::UniquePtr<X509> root = CertFromPEM(kSANTypesRoot);
ASSERT_TRUE(root);
bssl::UniquePtr<X509> ms_sgc = CertFromPEM(kMicrosoftSGCCert);
ASSERT_TRUE(ms_sgc);
bssl::UniquePtr<X509> ns_sgc = CertFromPEM(kNetscapeSGCCert);
ASSERT_TRUE(ns_sgc);
bssl::UniquePtr<X509> server_eku = CertFromPEM(kServerEKUCert);
ASSERT_TRUE(server_eku);
bssl::UniquePtr<X509> server_eku_plus_ms_sgc =
CertFromPEM(kServerEKUPlusMicrosoftSGCCert);
ASSERT_TRUE(server_eku_plus_ms_sgc);
bssl::UniquePtr<X509> any_eku = CertFromPEM(kAnyEKU);
ASSERT_TRUE(any_eku);
bssl::UniquePtr<X509> no_eku = CertFromPEM(kNoEKU);
ASSERT_TRUE(no_eku);
auto verify_cert = [&root](X509 *leaf) {
return Verify(leaf, {root.get()}, /*intermediates=*/{}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set_purpose(
param, X509_PURPOSE_SSL_SERVER));
});
};
// Neither the Microsoft nor Netscape SGC EKU should be sufficient for
// |X509_PURPOSE_SSL_SERVER|. The "any" EKU probably, technically, should be.
// However, we've never accepted it and it's not acceptable in leaf
// certificates by the Baseline, so perhaps we don't need this complexity.
for (X509 *leaf : {ms_sgc.get(), ns_sgc.get(), any_eku.get()}) {
EXPECT_EQ(X509_V_ERR_INVALID_PURPOSE, verify_cert(leaf));
}
// The server-auth EKU is sufficient, and it doesn't matter if an SGC EKU is
// also included. Lastly, not specifying an EKU is also valid.
for (X509 *leaf : {server_eku.get(), server_eku_plus_ms_sgc.get(),
no_eku.get()}) {
EXPECT_EQ(X509_V_OK, verify_cert(leaf));
}
}
// Test that invalid extensions are rejected by, if not the parser, at least the
// verifier.
TEST(X509Test, InvalidExtensions) {
bssl::UniquePtr<X509> root = CertFromPEM(
GetTestData("crypto/x509/test/invalid_extension_root.pem").c_str());
ASSERT_TRUE(root);
bssl::UniquePtr<X509> intermediate = CertFromPEM(
GetTestData("crypto/x509/test/invalid_extension_intermediate.pem")
.c_str());
ASSERT_TRUE(intermediate);
bssl::UniquePtr<X509> leaf = CertFromPEM(
GetTestData("crypto/x509/test/invalid_extension_leaf.pem").c_str());
ASSERT_TRUE(leaf);
// Sanity-check that the baseline chain is accepted.
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}));
static const char *kExtensions[] = {
"authority_key_identifier",
"basic_constraints",
"ext_key_usage",
"key_usage",
"name_constraints",
"subject_alt_name",
"subject_key_identifier",
};
for (const char *ext : kExtensions) {
SCOPED_TRACE(ext);
bssl::UniquePtr<X509> invalid_root = CertFromPEM(
GetTestData((std::string("crypto/x509/test/invalid_extension_root_") +
ext + ".pem")
.c_str())
.c_str());
ASSERT_TRUE(invalid_root);
bssl::UniquePtr<X509> invalid_intermediate = CertFromPEM(
GetTestData(
(std::string("crypto/x509/test/invalid_extension_intermediate_") +
ext + ".pem")
.c_str())
.c_str());
ASSERT_TRUE(invalid_intermediate);
bssl::UniquePtr<X509> invalid_leaf = CertFromPEM(
GetTestData((std::string("crypto/x509/test/invalid_extension_leaf_") +
ext + ".pem")
.c_str())
.c_str());
ASSERT_TRUE(invalid_leaf);
bssl::UniquePtr<X509> trailing_leaf = CertFromPEM(
GetTestData((std::string("crypto/x509/test/trailing_data_leaf_") +
ext + ".pem")
.c_str())
.c_str());
ASSERT_TRUE(trailing_leaf);
EXPECT_EQ(
X509_V_ERR_INVALID_EXTENSION,
Verify(invalid_leaf.get(), {root.get()}, {intermediate.get()}, {}));
EXPECT_EQ(
X509_V_ERR_INVALID_EXTENSION,
Verify(trailing_leaf.get(), {root.get()}, {intermediate.get()}, {}));
// If the invalid extension is on an intermediate or root,
// |X509_verify_cert| notices by way of being unable to build a path to
// a valid issuer.
EXPECT_EQ(
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), {root.get()}, {invalid_intermediate.get()}, {}));
EXPECT_EQ(
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), {invalid_root.get()}, {intermediate.get()}, {}));
}
}
// kExplicitDefaultVersionPEM is an X.509v1 certificate with the version number
// encoded explicitly, rather than omitted as required by DER.
static const char kExplicitDefaultVersionPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBfTCCASSgAwIBAAIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC
QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp
dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ
BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l
dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni
v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa
HPUdfvGULUvPciLBMAkGByqGSM49BAEDSAAwRQIhAPKgNV5ROjbDgnmb7idQhY5w
BnSVV9IpdAD0vhWHXcQHAiB8HnkUaiGD8Hp0aHlfFJmaaLTxy54VXuYfMlJhXnXJ
FA==
-----END CERTIFICATE-----
)";
// kNegativeVersionPEM is an X.509 certificate with a negative version number.
static const char kNegativeVersionPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBfTCCASSgAwIB/wIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC
QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp
dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ
BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l
dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni
v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa
HPUdfvGULUvPciLBMAkGByqGSM49BAEDSAAwRQIhAPKgNV5ROjbDgnmb7idQhY5w
BnSVV9IpdAD0vhWHXcQHAiB8HnkUaiGD8Hp0aHlfFJmaaLTxy54VXuYfMlJhXnXJ
FA==
-----END CERTIFICATE-----
)";
// kFutureVersionPEM is an X.509 certificate with a version number value of
// three, which is not defined. (v3 has value two).
static const char kFutureVersionPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBfTCCASSgAwIBAwIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC
QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp
dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ
BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l
dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni
v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa
HPUdfvGULUvPciLBMAkGByqGSM49BAEDSAAwRQIhAPKgNV5ROjbDgnmb7idQhY5w
BnSVV9IpdAD0vhWHXcQHAiB8HnkUaiGD8Hp0aHlfFJmaaLTxy54VXuYfMlJhXnXJ
FA==
-----END CERTIFICATE-----
)";
// kOverflowVersionPEM is an X.509 certificate with a version field which
// overflows |uint64_t|.
static const char kOverflowVersionPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBoDCCAUegJgIkAP//////////////////////////////////////////////
AgkA2UwE2kl9v+swCQYHKoZIzj0EATBFMQswCQYDVQQGEwJBVTETMBEGA1UECAwK
U29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMB4X
DTE0MDQyMzIzMjE1N1oXDTE0MDUyMzIzMjE1N1owRTELMAkGA1UEBhMCQVUxEzAR
BgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5
IEx0ZDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWX
a7epHg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsEw
CQYHKoZIzj0EAQNIADBFAiEA8qA1XlE6NsOCeZvuJ1CFjnAGdJVX0il0APS+FYdd
xAcCIHweeRRqIYPwenRoeV8UmZpotPHLnhVe5h8yUmFedckU
-----END CERTIFICATE-----
)";
// kV1WithExtensionsPEM is an X.509v1 certificate with extensions.
static const char kV1WithExtensionsPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIByjCCAXECCQDZTATaSX2/6zAJBgcqhkjOPQQBMEUxCzAJBgNVBAYTAkFVMRMw
EQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0
eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQswCQYDVQQG
EwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lk
Z2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+
Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7x
lC1Lz3IiwaNQME4wHQYDVR0OBBYEFKuE0qyrlfCCThZ4B1VXX+QmjYLRMB8GA1Ud
IwQYMBaAFKuE0qyrlfCCThZ4B1VXX+QmjYLRMAwGA1UdEwQFMAMBAf8wCQYHKoZI
zj0EAQNIADBFAiEA8qA1XlE6NsOCeZvuJ1CFjnAGdJVX0il0APS+FYddxAcCIHwe
eRRqIYPwenRoeV8UmZpotPHLnhVe5h8yUmFedckU
-----END CERTIFICATE-----
)";
// kV2WithExtensionsPEM is an X.509v2 certificate with extensions.
static const char kV2WithExtensionsPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBzzCCAXagAwIBAQIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC
QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp
dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ
BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l
dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni
v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa
HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw
HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ
BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E
BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=
-----END CERTIFICATE-----
)";
// kV1WithIssuerUniqueIDPEM is an X.509v1 certificate with an issuerUniqueID.
static const char kV1WithIssuerUniqueIDPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBgzCCASoCCQDZTATaSX2/6zAJBgcqhkjOPQQBMEUxCzAJBgNVBAYTAkFVMRMw
EQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0
eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQswCQYDVQQG
EwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lk
Z2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+
Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7x
lC1Lz3IiwYEJAAEjRWeJq83vMAkGByqGSM49BAEDSAAwRQIhAPKgNV5ROjbDgnmb
7idQhY5wBnSVV9IpdAD0vhWHXcQHAiB8HnkUaiGD8Hp0aHlfFJmaaLTxy54VXuYf
MlJhXnXJFA==
-----END CERTIFICATE-----
)";
// kV1WithSubjectUniqueIDPEM is an X.509v1 certificate with an issuerUniqueID.
static const char kV1WithSubjectUniqueIDPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIIBgzCCASoCCQDZTATaSX2/6zAJBgcqhkjOPQQBMEUxCzAJBgNVBAYTAkFVMRMw
EQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0
eSBMdGQwHhcNMTQwNDIzMjMyMTU3WhcNMTQwNTIzMjMyMTU3WjBFMQswCQYDVQQG
EwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50ZXJuZXQgV2lk
Z2l0cyBQdHkgTHRkMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+
Lx4NlIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7x
lC1Lz3IiwYIJAAEjRWeJq83vMAkGByqGSM49BAEDSAAwRQIhAPKgNV5ROjbDgnmb
7idQhY5wBnSVV9IpdAD0vhWHXcQHAiB8HnkUaiGD8Hp0aHlfFJmaaLTxy54VXuYf
MlJhXnXJFA==
-----END CERTIFICATE-----
)";
// kV1CRLWithExtensionsPEM is a v1 CRL with extensions.
static const char kV1CRLWithExtensionsPEM[] = R"(
-----BEGIN X509 CRL-----
MIIBpDCBjTANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UECAwK
Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJQm9y
aW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoA4wDDAKBgNVHRQE
AwIBATANBgkqhkiG9w0BAQsFAAOCAQEAnrBKKgvd9x9zwK9rtUvVeFeJ7+LNZEAc
+a5oxpPNEsJx6hXoApYEbzXMxuWBQoCs5iEBycSGudct21L+MVf27M38KrWoeOkq
0a2siqViQZO2Fb/SUFR0k9zb8xl86Zf65lgPplALun0bV/HT7MJcl04Tc4osdsAR
eBs5nqTGNEd5AlC1iKHvQZkM//MD51DspKnDpsDiUVi54h9C1SpfZmX8H2Vvdiyu
0fZ/bPAM3VAGawatf/SyWfBMyKpoPXEG39oAzmjjOj8en82psn7m474IGaho/vBb
hl1ms5qQiLYPjm4YELtnXQoFyC72tBjbdFd/ZE9k4CNKDbxFUXFbkw==
-----END X509 CRL-----
)";
// kExplicitDefaultVersionCRLPEM is a v1 CRL with an explicitly-encoded version
// field.
static const char kExplicitDefaultVersionCRLPEM[] = R"(
-----BEGIN X509 CRL-----
MIIBlzCBgAIBADANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaMA0GCSqGSIb3
DQEBCwUAA4IBAQCesEoqC933H3PAr2u1S9V4V4nv4s1kQBz5rmjGk80SwnHqFegC
lgRvNczG5YFCgKzmIQHJxIa51y3bUv4xV/bszfwqtah46SrRrayKpWJBk7YVv9JQ
VHST3NvzGXzpl/rmWA+mUAu6fRtX8dPswlyXThNziix2wBF4GzmepMY0R3kCULWI
oe9BmQz/8wPnUOykqcOmwOJRWLniH0LVKl9mZfwfZW92LK7R9n9s8AzdUAZrBq1/
9LJZ8EzIqmg9cQbf2gDOaOM6Px6fzamyfubjvggZqGj+8FuGXWazmpCItg+ObhgQ
u2ddCgXILva0GNt0V39kT2TgI0oNvEVRcVuT
-----END X509 CRL-----
)";
// kV3CRLPEM is a v3 CRL. CRL versions only go up to v2.
static const char kV3CRLPEM[] = R"(
-----BEGIN X509 CRL-----
MIIBpzCBkAIBAjANBgkqhkiG9w0BAQsFADBOMQswCQYDVQQGEwJVUzETMBEGA1UE
CAwKQ2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzESMBAGA1UECgwJ
Qm9yaW5nU1NMFw0xNjA5MjYxNTEwNTVaFw0xNjEwMjYxNTEwNTVaoA4wDDAKBgNV
HRQEAwIBATANBgkqhkiG9w0BAQsFAAOCAQEAnrBKKgvd9x9zwK9rtUvVeFeJ7+LN
ZEAc+a5oxpPNEsJx6hXoApYEbzXMxuWBQoCs5iEBycSGudct21L+MVf27M38KrWo
eOkq0a2siqViQZO2Fb/SUFR0k9zb8xl86Zf65lgPplALun0bV/HT7MJcl04Tc4os
dsAReBs5nqTGNEd5AlC1iKHvQZkM//MD51DspKnDpsDiUVi54h9C1SpfZmX8H2Vv
diyu0fZ/bPAM3VAGawatf/SyWfBMyKpoPXEG39oAzmjjOj8en82psn7m474IGaho
/vBbhl1ms5qQiLYPjm4YELtnXQoFyC72tBjbdFd/ZE9k4CNKDbxFUXFbkw==
-----END X509 CRL-----
)";
// kV2CSRPEM is a v2 CSR. CSR versions only go up to v1.
static const char kV2CSRPEM[] = R"(
-----BEGIN CERTIFICATE REQUEST-----
MIHJMHECAQEwDzENMAsGA1UEAwwEVGVzdDBZMBMGByqGSM49AgEGCCqGSM49AwEH
A0IABJjsayyAQod1J7UJYNT8AH4WWxLdKV0ozhrIz6hCzBAze7AqXWOSH8G+1EWC
pSfL3oMQNtBdJS0kpXXaUqEAgTSgADAKBggqhkjOPQQDAgNIADBFAiAUXVaEYATg
4Cc917T73KBImxh6xyhsA5pKuYpq1S4m9wIhAK+G93HR4ur7Ghel6+zUTvIAsj9e
rsn4lSYsqI4OI4ei
-----END CERTIFICATE REQUEST-----
)";
// kV3CSRPEM is a v3 CSR. CSR versions only go up to v1.
static const char kV3CSRPEM[] = R"(
-----BEGIN CERTIFICATE REQUEST-----
MIHJMHECAQIwDzENMAsGA1UEAwwEVGVzdDBZMBMGByqGSM49AgEGCCqGSM49AwEH
A0IABJjsayyAQod1J7UJYNT8AH4WWxLdKV0ozhrIz6hCzBAze7AqXWOSH8G+1EWC
pSfL3oMQNtBdJS0kpXXaUqEAgTSgADAKBggqhkjOPQQDAgNIADBFAiAUXVaEYATg
4Cc917T73KBImxh6xyhsA5pKuYpq1S4m9wIhAK+G93HR4ur7Ghel6+zUTvIAsj9e
rsn4lSYsqI4OI4ei
-----END CERTIFICATE REQUEST-----
)";
// Test that the library enforces versions are valid and match the fields
// present.
TEST(X509Test, InvalidVersion) {
// kExplicitDefaultVersionPEM is invalid but, for now, we accept it. See
// https://crbug.com/boringssl/364.
EXPECT_TRUE(CertFromPEM(kExplicitDefaultVersionPEM));
EXPECT_TRUE(CRLFromPEM(kExplicitDefaultVersionCRLPEM));
EXPECT_FALSE(CertFromPEM(kNegativeVersionPEM));
EXPECT_FALSE(CertFromPEM(kFutureVersionPEM));
EXPECT_FALSE(CertFromPEM(kOverflowVersionPEM));
EXPECT_FALSE(CertFromPEM(kV1WithExtensionsPEM));
EXPECT_FALSE(CertFromPEM(kV2WithExtensionsPEM));
EXPECT_FALSE(CertFromPEM(kV1WithIssuerUniqueIDPEM));
EXPECT_FALSE(CertFromPEM(kV1WithSubjectUniqueIDPEM));
EXPECT_FALSE(CRLFromPEM(kV1CRLWithExtensionsPEM));
EXPECT_FALSE(CRLFromPEM(kV3CRLPEM));
EXPECT_FALSE(CSRFromPEM(kV2CSRPEM));
// kV3CSRPEM is invalid but, for now, we accept it. See
// https://github.com/certbot/certbot/pull/9334
EXPECT_TRUE(CSRFromPEM(kV3CSRPEM));
bssl::UniquePtr<X509> x509(X509_new());
ASSERT_TRUE(x509);
EXPECT_FALSE(X509_set_version(x509.get(), -1));
EXPECT_FALSE(X509_set_version(x509.get(), X509_VERSION_3 + 1));
EXPECT_FALSE(X509_set_version(x509.get(), 9999));
bssl::UniquePtr<X509_CRL> crl(X509_CRL_new());
ASSERT_TRUE(crl);
EXPECT_FALSE(X509_CRL_set_version(crl.get(), -1));
EXPECT_FALSE(X509_CRL_set_version(crl.get(), X509_CRL_VERSION_2 + 1));
EXPECT_FALSE(X509_CRL_set_version(crl.get(), 9999));
bssl::UniquePtr<X509_REQ> req(X509_REQ_new());
ASSERT_TRUE(req);
EXPECT_FALSE(X509_REQ_set_version(req.get(), -1));
EXPECT_FALSE(X509_REQ_set_version(req.get(), X509_REQ_VERSION_1 + 1));
EXPECT_FALSE(X509_REQ_set_version(req.get(), 9999));
}
// Unlike upstream OpenSSL, we require a non-null store in
// |X509_STORE_CTX_init|.
TEST(X509Test, NullStore) {
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
ASSERT_TRUE(leaf);
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
EXPECT_FALSE(X509_STORE_CTX_init(ctx.get(), nullptr, leaf.get(), nullptr));
}
TEST(X509Test, StoreCtxReuse) {
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
ASSERT_TRUE(leaf);
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(), nullptr));
// Re-initializing |ctx| should not leak memory.
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(), nullptr));
}
TEST(X509Test, BasicConstraints) {
const uint32_t kFlagMask = EXFLAG_CA | EXFLAG_BCONS | EXFLAG_INVALID;
static const struct {
const char *file;
uint32_t flags;
int path_len;
} kTests[] = {
{"basic_constraints_none.pem", 0, -1},
{"basic_constraints_ca.pem", EXFLAG_CA | EXFLAG_BCONS, -1},
{"basic_constraints_ca_pathlen_0.pem", EXFLAG_CA | EXFLAG_BCONS, 0},
{"basic_constraints_ca_pathlen_1.pem", EXFLAG_CA | EXFLAG_BCONS, 1},
{"basic_constraints_ca_pathlen_10.pem", EXFLAG_CA | EXFLAG_BCONS, 10},
{"basic_constraints_leaf.pem", EXFLAG_BCONS, -1},
{"invalid_extension_leaf_basic_constraints.pem", EXFLAG_INVALID, -1},
};
for (const auto &test : kTests) {
SCOPED_TRACE(test.file);
std::string path = "crypto/x509/test/";
path += test.file;
bssl::UniquePtr<X509> cert = CertFromPEM(GetTestData(path.c_str()).c_str());
ASSERT_TRUE(cert);
EXPECT_EQ(test.flags, X509_get_extension_flags(cert.get()) & kFlagMask);
EXPECT_EQ(test.path_len, X509_get_pathlen(cert.get()));
}
}
// The following strings are test certificates signed by kP256Key and kRSAKey,
// with missing, NULL, or invalid algorithm parameters.
static const char kP256NoParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBIDCBxqADAgECAgIE0jAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDEwRUZXN0MCAX
DTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYDVQQDEwRUZXN0
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4NlIpM1Zdrt6ke
DUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1Lz3IiwaMQMA4w
DAYDVR0TBAUwAwEB/zAKBggqhkjOPQQDAgNJADBGAiEAqdIiF+bN9Cl44oUeICpy
aXd7HqhpVUaglYKw9ChmNUACIQCpMdL0fNkFNDbRww9dSl/y7kBdk/tp16HiqeSy
gGzFYg==
-----END CERTIFICATE-----
)";
static const char kP256NullParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBJDCByKADAgECAgIE0jAMBggqhkjOPQQDAgUAMA8xDTALBgNVBAMTBFRlc3Qw
IBcNMDAwMTAxMDAwMDAwWhgPMjEwMDAxMDEwMDAwMDBaMA8xDTALBgNVBAMTBFRl
c3QwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2niv2Wfl74vHg2UikzVl2u3
qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLBoxAw
DjAMBgNVHRMEBTADAQH/MAwGCCqGSM49BAMCBQADSQAwRgIhAKILHmyo+F3Cn/VX
UUeSXOQQKX5aLzsQitwwmNF3ZgH3AiEAsYHcrVj/ftmoQIORARkQ/+PrqntXev8r
t6uPxHrmpUY=
-----END CERTIFICATE-----
)";
static const char kP256InvalidParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBMTCBz6ADAgECAgIE0jATBggqhkjOPQQDAgQHZ2FyYmFnZTAPMQ0wCwYDVQQD
EwRUZXN0MCAXDTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYD
VQQDEwRUZXN0MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4N
lIpM1Zdrt6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1L
z3IiwaMQMA4wDAYDVR0TBAUwAwEB/zATBggqhkjOPQQDAgQHZ2FyYmFnZQNIADBF
AiAglpDf/YhN89LeJ2WAs/F0SJIrsuhS4uoInIz6WXUiuQIhAIu5Pwhp5E3Pbo8y
fLULTZnynuQUULQkRcF7S7T2WpIL
-----END CERTIFICATE-----
)";
static const char kRSANoParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBWzCBx6ADAgECAgIE0jALBgkqhkiG9w0BAQswDzENMAsGA1UEAxMEVGVzdDAg
Fw0wMDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsGA1UEAxMEVGVz
dDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWXa7ep
Hg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsGjEDAO
MAwGA1UdEwQFMAMBAf8wCwYJKoZIhvcNAQELA4GBAC1f8W3W0Ao7CPfIBQYDSbPh
brZpbxdBU5x27JOS7iSa+Lc9pEH5VCX9vIypHVHXLPEfZ38yIt11eiyrmZB6w62N
l9kIeZ6FVPmC30d3sXx70Jjs+ZX9yt7kD1gLyNAQQfeYfa4rORAZT1n2YitD74NY
TWUH2ieFP3l+ecj1SeQR
-----END CERTIFICATE-----
)";
static const char kRSANullParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBXzCByaADAgECAgIE0jANBgkqhkiG9w0BAQsFADAPMQ0wCwYDVQQDEwRUZXN0
MCAXDTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYDVQQDEwRU
ZXN0MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4NlIpM1Zdr
t6keDUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1Lz3IiwaMQ
MA4wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQsFAAOBgQAzVcfIv+Rq1KrMXqIL
fPq/cWZjgqFZA1RGaGElNaqp+rkJfamq5tDGzckWpebrK+jjRN7yIlcWDtPpy3Gy
seZfvtBDR0TwJm0S/pQl8prKB4wgALcwe3bmi56Rq85nzY5ZLNcP16LQxL+jAAua
SwmQUz4bRpckRBj+sIyp1We+pg==
-----END CERTIFICATE-----
)";
static const char kRSAInvalidParam[] = R"(
-----BEGIN CERTIFICATE-----
MIIBbTCB0KADAgECAgIE0jAUBgkqhkiG9w0BAQsEB2dhcmJhZ2UwDzENMAsGA1UE
AxMEVGVzdDAgFw0wMDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsG
A1UEAxMEVGVzdDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8e
DZSKTNWXa7epHg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQt
S89yIsGjEDAOMAwGA1UdEwQFMAMBAf8wFAYJKoZIhvcNAQELBAdnYXJiYWdlA4GB
AHTJ6cWWjCNrZhqiWWVI3jdK+h5xpRG8jGMXxR4JnjtoYRRusJLOXhmapwCB6fA0
4vc+66O27v36yDmQX+tIc/hDrTpKNJptU8q3n2VagREvoHhkOTYkcCeS8vmnMtn8
5OMNZ/ajVwOssw61GcAlScRqEHkZFBoGp7e+QpgB2tf9
-----END CERTIFICATE-----
)";
TEST(X509Test, AlgorithmParameters) {
// P-256 parameters should be omitted, but we accept NULL ones.
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
bssl::UniquePtr<X509> cert = CertFromPEM(kP256NoParam);
ASSERT_TRUE(cert);
EXPECT_TRUE(X509_verify(cert.get(), key.get()));
cert = CertFromPEM(kP256NullParam);
ASSERT_TRUE(cert);
EXPECT_TRUE(X509_verify(cert.get(), key.get()));
cert = CertFromPEM(kP256InvalidParam);
ASSERT_TRUE(cert);
EXPECT_FALSE(X509_verify(cert.get(), key.get()));
EXPECT_TRUE(
ErrorEquals(ERR_get_error(), ERR_LIB_X509, X509_R_INVALID_PARAMETER));
// RSA parameters should be NULL, but we accept omitted ones.
key = PrivateKeyFromPEM(kRSAKey);
ASSERT_TRUE(key);
cert = CertFromPEM(kRSANoParam);
ASSERT_TRUE(cert);
EXPECT_TRUE(X509_verify(cert.get(), key.get()));
cert = CertFromPEM(kRSANullParam);
ASSERT_TRUE(cert);
EXPECT_TRUE(X509_verify(cert.get(), key.get()));
cert = CertFromPEM(kRSAInvalidParam);
ASSERT_TRUE(cert);
EXPECT_FALSE(X509_verify(cert.get(), key.get()));
EXPECT_TRUE(
ErrorEquals(ERR_get_error(), ERR_LIB_X509, X509_R_INVALID_PARAMETER));
}
TEST(X509Test, GeneralName) {
const std::vector<uint8_t> kNames[] = {
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// SEQUENCE {}
// }
// }
{0xa0, 0x13, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x02, 0x30, 0x00},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// [APPLICATION 0] {}
// }
// }
{0xa0, 0x13, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x02, 0x60, 0x00},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// UTF8String { "a" }
// }
// }
{0xa0, 0x14, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x03, 0x0c, 0x01, 0x61},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.2 }
// [0] {
// UTF8String { "a" }
// }
// }
{0xa0, 0x14, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x02, 0xa0, 0x03, 0x0c, 0x01, 0x61},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// UTF8String { "b" }
// }
// }
{0xa0, 0x14, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x03, 0x0c, 0x01, 0x62},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// BOOLEAN { TRUE }
// }
// }
{0xa0, 0x14, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x03, 0x01, 0x01, 0xff},
// [0] {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2.1 }
// [0] {
// BOOLEAN { FALSE }
// }
// }
{0xa0, 0x14, 0x06, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x01, 0xa0, 0x03, 0x01, 0x01, 0x00},
// [1 PRIMITIVE] { "a" }
{0x81, 0x01, 0x61},
// [1 PRIMITIVE] { "b" }
{0x81, 0x01, 0x62},
// [2 PRIMITIVE] { "a" }
{0x82, 0x01, 0x61},
// [2 PRIMITIVE] { "b" }
{0x82, 0x01, 0x62},
// [3] {}
{0xa3, 0x00},
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "a" }
// }
// }
// }
// }
{0xa4, 0x0e, 0x30, 0x0c, 0x31, 0x0a, 0x30, 0x08, 0x06, 0x03, 0x55, 0x04,
0x03, 0x0c, 0x01, 0x61},
// [4] {
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "b" }
// }
// }
// }
// }
{0xa4, 0x0e, 0x30, 0x0c, 0x31, 0x0a, 0x30, 0x08, 0x06, 0x03, 0x55, 0x04,
0x03, 0x0c, 0x01, 0x62},
// [5] {
// [1] {
// UTF8String { "a" }
// }
// }
{0xa5, 0x05, 0xa1, 0x03, 0x0c, 0x01, 0x61},
// [5] {
// [1] {
// UTF8String { "b" }
// }
// }
{0xa5, 0x05, 0xa1, 0x03, 0x0c, 0x01, 0x62},
// [5] {
// [0] {
// UTF8String {}
// }
// [1] {
// UTF8String { "a" }
// }
// }
{0xa5, 0x09, 0xa0, 0x02, 0x0c, 0x00, 0xa1, 0x03, 0x0c, 0x01, 0x61},
// [5] {
// [0] {
// UTF8String { "a" }
// }
// [1] {
// UTF8String { "a" }
// }
// }
{0xa5, 0x0a, 0xa0, 0x03, 0x0c, 0x01, 0x61, 0xa1, 0x03, 0x0c, 0x01, 0x61},
// [5] {
// [0] {
// UTF8String { "b" }
// }
// [1] {
// UTF8String { "a" }
// }
// }
{0xa5, 0x0a, 0xa0, 0x03, 0x0c, 0x01, 0x62, 0xa1, 0x03, 0x0c, 0x01, 0x61},
// [6 PRIMITIVE] { "a" }
{0x86, 0x01, 0x61},
// [6 PRIMITIVE] { "b" }
{0x86, 0x01, 0x62},
// [7 PRIMITIVE] { `11111111` }
{0x87, 0x04, 0x11, 0x11, 0x11, 0x11},
// [7 PRIMITIVE] { `22222222`}
{0x87, 0x04, 0x22, 0x22, 0x22, 0x22},
// [7 PRIMITIVE] { `11111111111111111111111111111111` }
{0x87, 0x10, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x11, 0x11, 0x11, 0x11},
// [7 PRIMITIVE] { `22222222222222222222222222222222` }
{0x87, 0x10, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
0x22, 0x22, 0x22, 0x22, 0x22, 0x22},
// [8 PRIMITIVE] { 1.2.840.113554.4.1.72585.2.1 }
{0x88, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02, 0x01},
// [8 PRIMITIVE] { 1.2.840.113554.4.1.72585.2.2 }
{0x88, 0x0d, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02, 0x02},
};
// Every name should be equal to itself and not equal to any others.
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kNames); i++) {
SCOPED_TRACE(Bytes(kNames[i]));
const uint8_t *ptr = kNames[i].data();
bssl::UniquePtr<GENERAL_NAME> a(
d2i_GENERAL_NAME(nullptr, &ptr, kNames[i].size()));
ASSERT_TRUE(a);
ASSERT_EQ(ptr, kNames[i].data() + kNames[i].size());
uint8_t *enc = nullptr;
int enc_len = i2d_GENERAL_NAME(a.get(), &enc);
ASSERT_GE(enc_len, 0);
bssl::UniquePtr<uint8_t> free_enc(enc);
EXPECT_EQ(Bytes(enc, enc_len), Bytes(kNames[i]));
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kNames); j++) {
SCOPED_TRACE(Bytes(kNames[j]));
ptr = kNames[j].data();
bssl::UniquePtr<GENERAL_NAME> b(
d2i_GENERAL_NAME(nullptr, &ptr, kNames[j].size()));
ASSERT_TRUE(b);
ASSERT_EQ(ptr, kNames[j].data() + kNames[j].size());
if (i == j) {
EXPECT_EQ(GENERAL_NAME_cmp(a.get(), b.get()), 0);
} else {
EXPECT_NE(GENERAL_NAME_cmp(a.get(), b.get()), 0);
}
}
}
}
// Test that extracting fields of an |X509_ALGOR| works correctly.
TEST(X509Test, X509AlgorExtract) {
static const char kTestOID[] = "1.2.840.113554.4.1.72585.2";
const struct {
int param_type;
std::vector<uint8_t> param_der;
} kTests[] = {
// No parameter.
{V_ASN1_UNDEF, {}},
// BOOLEAN { TRUE }
{V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}},
// BOOLEAN { FALSE }
{V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}},
// OCTET_STRING { "a" }
{V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}},
// BIT_STRING { `01` `00` }
{V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}},
// INTEGER { -1 }
{V_ASN1_INTEGER, {0x02, 0x01, 0xff}},
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 }
{V_ASN1_OBJECT,
{0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02}},
// NULL {}
{V_ASN1_NULL, {0x05, 0x00}},
// SEQUENCE {}
{V_ASN1_SEQUENCE, {0x30, 0x00}},
// SET {}
{V_ASN1_SET, {0x31, 0x00}},
// [0] { UTF8String { "a" } }
{V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.param_der));
// Assemble an AlgorithmIdentifier with the parameter.
bssl::ScopedCBB cbb;
CBB seq, oid;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&seq, &oid, CBS_ASN1_OBJECT));
ASSERT_TRUE(CBB_add_asn1_oid_from_text(&oid, kTestOID, strlen(kTestOID)));
ASSERT_TRUE(CBB_add_bytes(&seq, t.param_der.data(), t.param_der.size()));
ASSERT_TRUE(CBB_flush(cbb.get()));
const uint8_t *ptr = CBB_data(cbb.get());
bssl::UniquePtr<X509_ALGOR> alg(
d2i_X509_ALGOR(nullptr, &ptr, CBB_len(cbb.get())));
ASSERT_TRUE(alg);
const ASN1_OBJECT *obj;
int param_type;
const void *param_value;
X509_ALGOR_get0(&obj, &param_type, &param_value, alg.get());
EXPECT_EQ(param_type, t.param_type);
char oid_buf[sizeof(kTestOID)];
ASSERT_EQ(int(sizeof(oid_buf) - 1),
OBJ_obj2txt(oid_buf, sizeof(oid_buf), obj,
/*always_return_oid=*/1));
EXPECT_STREQ(oid_buf, kTestOID);
// |param_type| and |param_value| must be consistent with |ASN1_TYPE|.
if (param_type == V_ASN1_UNDEF) {
EXPECT_EQ(nullptr, param_value);
} else {
bssl::UniquePtr<ASN1_TYPE> param(ASN1_TYPE_new());
ASSERT_TRUE(param);
ASSERT_TRUE(ASN1_TYPE_set1(param.get(), param_type, param_value));
uint8_t *param_der = nullptr;
int param_len = i2d_ASN1_TYPE(param.get(), &param_der);
ASSERT_GE(param_len, 0);
bssl::UniquePtr<uint8_t> free_param_der(param_der);
EXPECT_EQ(Bytes(param_der, param_len), Bytes(t.param_der));
}
}
}
// Test the various |X509_ATTRIBUTE| creation functions.
TEST(X509Test, Attribute) {
// The expected attribute values are:
// 1. BMPString U+2603
// 2. BMPString "test"
// 3. INTEGER -1 (not valid for friendlyName)
static const uint8_t kTest1[] = {0x26, 0x03}; // U+2603 SNOWMAN
static const uint8_t kTest1UTF8[] = {0xe2, 0x98, 0x83};
static const uint8_t kTest2[] = {0, 't', 0, 'e', 0, 's', 0, 't'};
constexpr uint32_t kTest1Mask = 1 << 0;
constexpr uint32_t kTest2Mask = 1 << 1;
constexpr uint32_t kTest3Mask = 1 << 2;
auto check_attribute = [&](X509_ATTRIBUTE *attr, uint32_t mask) {
EXPECT_EQ(NID_friendlyName, OBJ_obj2nid(X509_ATTRIBUTE_get0_object(attr)));
int idx = 0;
if (mask & kTest1Mask) {
// The first attribute should contain |kTest1|.
const ASN1_TYPE *value = X509_ATTRIBUTE_get0_type(attr, idx);
ASSERT_TRUE(value);
EXPECT_EQ(V_ASN1_BMPSTRING, value->type);
EXPECT_EQ(Bytes(kTest1),
Bytes(ASN1_STRING_get0_data(value->value.bmpstring),
ASN1_STRING_length(value->value.bmpstring)));
// |X509_ATTRIBUTE_get0_data| requires the type match.
EXPECT_FALSE(
X509_ATTRIBUTE_get0_data(attr, idx, V_ASN1_OCTET_STRING, nullptr));
const ASN1_BMPSTRING *bmpstring = static_cast<const ASN1_BMPSTRING *>(
X509_ATTRIBUTE_get0_data(attr, idx, V_ASN1_BMPSTRING, nullptr));
ASSERT_TRUE(bmpstring);
EXPECT_EQ(Bytes(kTest1), Bytes(ASN1_STRING_get0_data(bmpstring),
ASN1_STRING_length(bmpstring)));
idx++;
}
if (mask & kTest2Mask) {
const ASN1_TYPE *value = X509_ATTRIBUTE_get0_type(attr, idx);
ASSERT_TRUE(value);
EXPECT_EQ(V_ASN1_BMPSTRING, value->type);
EXPECT_EQ(Bytes(kTest2),
Bytes(ASN1_STRING_get0_data(value->value.bmpstring),
ASN1_STRING_length(value->value.bmpstring)));
idx++;
}
if (mask & kTest3Mask) {
const ASN1_TYPE *value = X509_ATTRIBUTE_get0_type(attr, idx);
ASSERT_TRUE(value);
EXPECT_EQ(V_ASN1_INTEGER, value->type);
int64_t v;
ASSERT_TRUE(ASN1_INTEGER_get_int64(&v, value->value.integer));
EXPECT_EQ(v, -1);
idx++;
}
EXPECT_FALSE(X509_ATTRIBUTE_get0_type(attr, idx));
};
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(V_ASN1_BMPSTRING));
ASSERT_TRUE(str);
ASSERT_TRUE(ASN1_STRING_set(str.get(), kTest1, sizeof(kTest1)));
// Test |X509_ATTRIBUTE_create|.
bssl::UniquePtr<X509_ATTRIBUTE> attr(
X509_ATTRIBUTE_create(NID_friendlyName, V_ASN1_BMPSTRING, str.get()));
ASSERT_TRUE(attr);
str.release(); // |X509_ATTRIBUTE_create| takes ownership on success.
check_attribute(attr.get(), kTest1Mask);
// Test the |MBSTRING_*| form of |X509_ATTRIBUTE_set1_data|.
attr.reset(X509_ATTRIBUTE_new());
ASSERT_TRUE(attr);
ASSERT_TRUE(
X509_ATTRIBUTE_set1_object(attr.get(), OBJ_nid2obj(NID_friendlyName)));
ASSERT_TRUE(X509_ATTRIBUTE_set1_data(attr.get(), MBSTRING_UTF8, kTest1UTF8,
sizeof(kTest1UTF8)));
check_attribute(attr.get(), kTest1Mask);
// Test the |ASN1_STRING| form of |X509_ATTRIBUTE_set1_data|.
ASSERT_TRUE(X509_ATTRIBUTE_set1_data(attr.get(), V_ASN1_BMPSTRING, kTest2,
sizeof(kTest2)));
check_attribute(attr.get(), kTest1Mask | kTest2Mask);
// The |ASN1_STRING| form of |X509_ATTRIBUTE_set1_data| should correctly
// handle negative integers.
const uint8_t kOne = 1;
ASSERT_TRUE(
X509_ATTRIBUTE_set1_data(attr.get(), V_ASN1_NEG_INTEGER, &kOne, 1));
check_attribute(attr.get(), kTest1Mask | kTest2Mask | kTest3Mask);
// Test the |ASN1_TYPE| form of |X509_ATTRIBUTE_set1_data|.
attr.reset(X509_ATTRIBUTE_new());
ASSERT_TRUE(attr);
ASSERT_TRUE(
X509_ATTRIBUTE_set1_object(attr.get(), OBJ_nid2obj(NID_friendlyName)));
str.reset(ASN1_STRING_type_new(V_ASN1_BMPSTRING));
ASSERT_TRUE(str);
ASSERT_TRUE(ASN1_STRING_set(str.get(), kTest1, sizeof(kTest1)));
ASSERT_TRUE(
X509_ATTRIBUTE_set1_data(attr.get(), V_ASN1_BMPSTRING, str.get(), -1));
check_attribute(attr.get(), kTest1Mask);
// An |attrtype| of zero leaves the attribute empty.
attr.reset(X509_ATTRIBUTE_create_by_NID(
nullptr, NID_friendlyName, /*attrtype=*/0, /*data=*/nullptr, /*len=*/0));
ASSERT_TRUE(attr);
check_attribute(attr.get(), 0);
}
// Test that, by default, |X509_V_FLAG_TRUSTED_FIRST| is set, which means we'll
// skip over server-sent expired intermediates when there is a local trust
// anchor that works better.
TEST(X509Test, TrustedFirst) {
// Generate the following certificates:
//
// Root 2 (in store, expired)
// |
// Root 1 (in store) Root 1 (cross-sign)
// \ /
// Intermediate
// |
// Leaf
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
bssl::UniquePtr<X509> root2 =
MakeTestCert("Root 2", "Root 2", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root2);
ASSERT_TRUE(ASN1_TIME_adj(X509_getm_notAfter(root2.get()), kReferenceTime,
/*offset_day=*/0,
/*offset_sec=*/-1));
ASSERT_TRUE(X509_sign(root2.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> root1 =
MakeTestCert("Root 1", "Root 1", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root1);
ASSERT_TRUE(X509_sign(root1.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> root1_cross =
MakeTestCert("Root 2", "Root 1", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root1_cross);
ASSERT_TRUE(X509_sign(root1_cross.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> intermediate =
MakeTestCert("Root 1", "Intermediate", key.get(), /*is_ca=*/true);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(X509_sign(intermediate.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> leaf =
MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
// As a control, confirm that |leaf| -> |intermediate| -> |root1| is valid,
// but the path through |root1_cross| is expired.
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root1.get()}, {intermediate.get()}, {}));
EXPECT_EQ(X509_V_ERR_CERT_HAS_EXPIRED,
Verify(leaf.get(), {root2.get()},
{intermediate.get(), root1_cross.get()}, {}));
// By default, we should find the |leaf| -> |intermediate| -> |root2| chain,
// skipping |root1_cross|.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root1.get(), root2.get()},
{intermediate.get(), root1_cross.get()}, {}));
// When |X509_V_FLAG_TRUSTED_FIRST| is disabled, we get stuck on the expired
// intermediate. Note we need the callback to clear the flag. Setting |flags|
// to zero only skips setting new flags.
//
// This test exists to confirm our current behavior, but these modes are just
// workarounds for not having an actual path-building verifier. If we fix it,
// this test can be removed.
EXPECT_EQ(X509_V_ERR_CERT_HAS_EXPIRED,
Verify(leaf.get(), {root1.get(), root2.get()},
{intermediate.get(), root1_cross.get()}, {}, /*flags=*/0,
[&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
X509_VERIFY_PARAM_clear_flags(param,
X509_V_FLAG_TRUSTED_FIRST);
}));
// Even when |X509_V_FLAG_TRUSTED_FIRST| is disabled, if |root2| is not
// trusted, the alt chains logic recovers the path.
EXPECT_EQ(
X509_V_OK,
Verify(leaf.get(), {root1.get()}, {intermediate.get(), root1_cross.get()},
{}, /*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
X509_VERIFY_PARAM_clear_flags(param, X509_V_FLAG_TRUSTED_FIRST);
}));
}
// Test that notBefore and notAfter checks work correctly.
TEST(X509Test, Expiry) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
auto make_cert = [&](const char *issuer, const char *subject, bool is_ca,
int not_before_offset,
int not_after_offset) -> bssl::UniquePtr<X509> {
bssl::UniquePtr<X509> cert =
MakeTestCert(issuer, subject, key.get(), is_ca);
if (cert == nullptr ||
!ASN1_TIME_adj(X509_getm_notBefore(cert.get()), kReferenceTime,
/*offset_day=*/not_before_offset,
/*offset_sec=*/0) ||
!ASN1_TIME_adj(X509_getm_notAfter(cert.get()), kReferenceTime,
/*offset_day=*/not_after_offset,
/*offset_sec=*/0) ||
!X509_sign(cert.get(), key.get(), EVP_sha256())) {
return nullptr;
}
return cert;
};
struct Certs {
bssl::UniquePtr<X509> not_yet_valid, valid, expired;
};
auto make_certs = [&](const char *issuer, const char *subject,
bool is_ca) -> Certs {
Certs certs;
certs.not_yet_valid =
make_cert(issuer, subject, is_ca, /*not_before_offset=*/1,
/*not_after_offset=*/2);
certs.valid = make_cert(issuer, subject, is_ca, /*not_before_offset=*/-1,
/*not_after_offset=*/1);
certs.expired = make_cert(issuer, subject, is_ca, /*not_before_offset=*/-2,
/*not_after_offset=*/-1);
if (certs.not_yet_valid == nullptr || certs.valid == nullptr ||
certs.expired == nullptr) {
return Certs{};
}
return certs;
};
Certs root = make_certs("Root", "Root", /*is_ca=*/true);
ASSERT_TRUE(root.valid);
Certs root_cross = make_certs("Root 2", "Root", /*is_ca=*/true);
ASSERT_TRUE(root_cross.valid);
Certs intermediate = make_certs("Root", "Intermediate", /*is_ca=*/true);
ASSERT_TRUE(intermediate.valid);
Certs leaf = make_certs("Intermediate", "Leaf", /*is_ca=*/false);
ASSERT_TRUE(leaf.valid);
for (bool check_time : {true, false}) {
SCOPED_TRACE(check_time);
for (bool partial_chain : {true, false}) {
SCOPED_TRACE(partial_chain);
unsigned long flags = 0;
if (!check_time) {
flags |= X509_V_FLAG_NO_CHECK_TIME;
}
if (partial_chain) {
flags |= X509_V_FLAG_PARTIAL_CHAIN;
}
int not_yet_valid =
check_time ? X509_V_ERR_CERT_NOT_YET_VALID : X509_V_OK;
int has_expired = check_time ? X509_V_ERR_CERT_HAS_EXPIRED : X509_V_OK;
EXPECT_EQ(not_yet_valid,
Verify(leaf.not_yet_valid.get(), {root.valid.get()},
{intermediate.valid.get()}, {}, flags));
EXPECT_EQ(not_yet_valid,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.not_yet_valid.get()}, {}, flags));
EXPECT_EQ(not_yet_valid,
Verify(leaf.valid.get(), {root.not_yet_valid.get()},
{intermediate.valid.get()}, {}, flags));
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.valid.get()}, {}, flags));
EXPECT_EQ(has_expired, Verify(leaf.expired.get(), {root.valid.get()},
{intermediate.valid.get()}, {}, flags));
EXPECT_EQ(has_expired, Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.expired.get()}, {}, flags));
EXPECT_EQ(has_expired, Verify(leaf.valid.get(), {root.expired.get()},
{intermediate.valid.get()}, {}, flags));
if (!partial_chain) {
// By default, non-self-signed certificates are not valid trust anchors.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT,
Verify(leaf.valid.get(), {root_cross.valid.get()},
{intermediate.valid.get()}, {}, flags));
} else {
// |X509_V_FLAG_PARTIAL_CHAIN| allows non-self-signed trust anchors.
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {root_cross.valid.get()},
{intermediate.valid.get()}, {}, flags));
// Expiry of the trust anchor must still be checked.
EXPECT_EQ(not_yet_valid,
Verify(leaf.valid.get(), {root_cross.not_yet_valid.get()},
{intermediate.valid.get()}, {}, flags));
EXPECT_EQ(has_expired,
Verify(leaf.valid.get(), {root_cross.expired.get()},
{intermediate.valid.get()}, {}, flags));
}
// When the trust anchor is the target certificate, expiry should also be
// checked.
EXPECT_EQ(X509_V_OK,
Verify(root.valid.get(), {root.valid.get()}, {}, {}, flags));
EXPECT_EQ(not_yet_valid,
Verify(root.not_yet_valid.get(), {root.not_yet_valid.get()}, {},
{}, flags));
EXPECT_EQ(has_expired, Verify(root.expired.get(), {root.expired.get()},
{}, {}, flags));
}
}
// X509_V_FLAG_USE_CHECK_TIME is an internal flag, but one caller relies on
// being able to clear it to restore the system time. Using the system time,
// all certificates in this test should read as expired.
EXPECT_EQ(X509_V_ERR_CERT_HAS_EXPIRED,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.valid.get()}, {}, 0, [](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
X509_VERIFY_PARAM_clear_flags(param,
X509_V_FLAG_USE_CHECK_TIME);
}));
}
TEST(X509Test, SignatureVerification) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
struct Certs {
bssl::UniquePtr<X509> valid;
bssl::UniquePtr<X509> bad_key_type, bad_key;
bssl::UniquePtr<X509> bad_sig_type, bad_sig;
};
auto make_certs = [&](const char *issuer, const char *subject,
bool is_ca) -> Certs {
Certs certs;
certs.valid = MakeTestCert(issuer, subject, key.get(), is_ca);
if (certs.valid == nullptr ||
!X509_sign(certs.valid.get(), key.get(), EVP_sha256())) {
return Certs{};
}
static const uint8_t kInvalid[] = {'i', 'n', 'v', 'a', 'l', 'i', 'd'};
// Extracting the algorithm identifier from |certs.valid|'s SPKI, with
// OpenSSL's API, is very tedious. Instead, we'll just rely on knowing it is
// ecPublicKey with P-256 as parameters.
const ASN1_BIT_STRING *pubkey = X509_get0_pubkey_bitstr(certs.valid.get());
int pubkey_len = ASN1_STRING_length(pubkey);
// Sign a copy of the certificate where the key type is an unsupported OID.
bssl::UniquePtr<uint8_t> pubkey_data(static_cast<uint8_t *>(
OPENSSL_memdup(ASN1_STRING_get0_data(pubkey), pubkey_len)));
certs.bad_key_type = MakeTestCert(issuer, subject, key.get(), is_ca);
if (pubkey_data == nullptr || certs.bad_key_type == nullptr ||
!X509_PUBKEY_set0_param(X509_get_X509_PUBKEY(certs.bad_key_type.get()),
OBJ_nid2obj(NID_subject_alt_name), V_ASN1_UNDEF,
/*param_value=*/nullptr, pubkey_data.release(),
pubkey_len) ||
!X509_sign(certs.bad_key_type.get(), key.get(), EVP_sha256())) {
return Certs{};
}
// Sign a copy of the certificate where the key data is unparsable.
pubkey_data.reset(
static_cast<uint8_t *>(OPENSSL_memdup(kInvalid, sizeof(kInvalid))));
certs.bad_key = MakeTestCert(issuer, subject, key.get(), is_ca);
if (pubkey_data == nullptr || certs.bad_key == nullptr ||
!X509_PUBKEY_set0_param(X509_get_X509_PUBKEY(certs.bad_key.get()),
OBJ_nid2obj(NID_X9_62_id_ecPublicKey),
V_ASN1_OBJECT,
OBJ_nid2obj(NID_X9_62_prime256v1),
pubkey_data.release(), sizeof(kInvalid)) ||
!X509_sign(certs.bad_key.get(), key.get(), EVP_sha256())) {
return Certs{};
}
bssl::UniquePtr<X509_ALGOR> wrong_algo(X509_ALGOR_new());
if (wrong_algo == nullptr ||
!X509_ALGOR_set0(wrong_algo.get(), OBJ_nid2obj(NID_subject_alt_name),
V_ASN1_NULL, nullptr)) {
return Certs{};
}
certs.bad_sig_type.reset(X509_dup(certs.valid.get()));
if (certs.bad_sig_type == nullptr ||
!X509_set1_signature_algo(certs.bad_sig_type.get(), wrong_algo.get())) {
return Certs{};
}
certs.bad_sig.reset(X509_dup(certs.valid.get()));
if (certs.bad_sig == nullptr ||
!X509_set1_signature_value(certs.bad_sig.get(), kInvalid,
sizeof(kInvalid))) {
return Certs{};
}
return certs;
};
Certs root(make_certs("Root", "Root", /*is_ca=*/true));
ASSERT_TRUE(root.valid);
Certs intermediate(make_certs("Root", "Intermediate", /*is_ca=*/true));
ASSERT_TRUE(intermediate.valid);
Certs leaf(make_certs("Intermediate", "Leaf", /*is_ca=*/false));
ASSERT_TRUE(leaf.valid);
// Check the base chain.
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.valid.get()}, {}));
// An invalid or unsupported signature in the leaf or intermediate is noticed.
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.bad_sig.get(), {root.valid.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.bad_sig_type.get(), {root.valid.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.bad_sig.get()}, {}));
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.bad_sig_type.get()}, {}));
// By default, the redundant root signature is not checked.
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {root.bad_sig.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {root.bad_sig_type.get()},
{intermediate.valid.get()}, {}));
// The caller can request checking it, although it's pointless.
EXPECT_EQ(
X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.valid.get(), {root.bad_sig.get()}, {intermediate.valid.get()},
{}, X509_V_FLAG_CHECK_SS_SIGNATURE));
EXPECT_EQ(
X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(leaf.valid.get(), {root.bad_sig_type.get()},
{intermediate.valid.get()}, {}, X509_V_FLAG_CHECK_SS_SIGNATURE));
// The above also applies when accepting a trusted, self-signed root as the
// target certificate.
EXPECT_EQ(X509_V_OK,
Verify(root.bad_sig.get(), {root.bad_sig.get()}, {}, {}));
EXPECT_EQ(X509_V_OK,
Verify(root.bad_sig_type.get(), {root.bad_sig_type.get()}, {}, {}));
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(root.bad_sig.get(), {root.bad_sig.get()}, {}, {},
X509_V_FLAG_CHECK_SS_SIGNATURE));
EXPECT_EQ(X509_V_ERR_CERT_SIGNATURE_FAILURE,
Verify(root.bad_sig_type.get(), {root.bad_sig_type.get()}, {}, {},
X509_V_FLAG_CHECK_SS_SIGNATURE));
// If an intermediate is a trust anchor, the redundant signature is always
// ignored, even with |X509_V_FLAG_CHECK_SS_SIGNATURE|. (We cannot check the
// signature without the key.)
EXPECT_EQ(X509_V_OK,
Verify(leaf.valid.get(), {intermediate.bad_sig.get()}, {}, {},
X509_V_FLAG_CHECK_SS_SIGNATURE | X509_V_FLAG_PARTIAL_CHAIN));
EXPECT_EQ(X509_V_OK,
Verify(leaf.valid.get(), {intermediate.bad_sig_type.get()}, {}, {},
X509_V_FLAG_CHECK_SS_SIGNATURE | X509_V_FLAG_PARTIAL_CHAIN));
EXPECT_EQ(X509_V_OK, Verify(leaf.valid.get(), {intermediate.bad_sig.get()},
{}, {}, X509_V_FLAG_PARTIAL_CHAIN));
EXPECT_EQ(X509_V_OK,
Verify(leaf.valid.get(), {intermediate.bad_sig_type.get()}, {}, {},
X509_V_FLAG_PARTIAL_CHAIN));
// Bad keys in the root and intermediate are rejected.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY,
Verify(leaf.valid.get(), {root.bad_key.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY,
Verify(leaf.valid.get(), {root.bad_key_type.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.bad_key.get()}, {}));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY,
Verify(leaf.valid.get(), {root.valid.get()},
{intermediate.bad_key_type.get()}, {}));
// Bad keys in the leaf are ignored. The leaf's key is used by the caller.
EXPECT_EQ(X509_V_OK, Verify(leaf.bad_key.get(), {root.valid.get()},
{intermediate.valid.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.bad_key_type.get(), {root.valid.get()},
{intermediate.valid.get()}, {}));
// At the time we go to verify signatures, it is possible that we have a
// single-element certificate chain with a certificate that isn't self-signed.
// This does not seem to be reachable except if missing trust anchors are
// suppressed with the verify callback, but exercise this codepath anyway.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE,
Verify(leaf.valid.get(), {}, {}, {}, 0, [](X509_STORE_CTX *ctx) {
X509_STORE_CTX_set_verify_cb(
ctx, [](int ok, X509_STORE_CTX *ctx_inner) -> int {
if (ok) {
return ok;
}
// Suppress the missing issuer certificate.
int err = X509_STORE_CTX_get_error(ctx_inner);
return err == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY;
});
}));
}
// kConstructedBitString is an X.509 certificate where the signature is encoded
// as a BER constructed BIT STRING. Note that, while OpenSSL's parser accepts
// this input, it interprets the value incorrectly.
static const char kConstructedBitString[] = R"(
-----BEGIN CERTIFICATE-----
MIIBJTCBxqADAgECAgIE0jAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDEwRUZXN0MCAX
DTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYDVQQDEwRUZXN0
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4NlIpM1Zdrt6ke
DUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1Lz3IiwaMQMA4w
DAYDVR0TBAUwAwEB/zAKBggqhkjOPQQDAiNOAyQAMEYCIQCp0iIX5s30KXjihR4g
KnJpd3seqGlVRqCVgrD0KGYDJgA1QAIhAKkx0vR82QU0NtHDD11KX/LuQF2T+2nX
oeKp5LKAbMVi
-----END CERTIFICATE-----
)";
// kConstructedOctetString is an X.509 certificate where an extension is encoded
// as a BER constructed OCTET STRING.
static const char kConstructedOctetString[] = R"(
-----BEGIN CERTIFICATE-----
MIIBJDCByqADAgECAgIE0jAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDEwRUZXN0MCAX
DTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYDVQQDEwRUZXN0
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4NlIpM1Zdrt6ke
DUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1Lz3IiwaMUMBIw
EAYDVR0TJAkEAzADAQQCAf8wCgYIKoZIzj0EAwIDSQAwRgIhAKnSIhfmzfQpeOKF
HiAqcml3ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh
4qnksoBsxWI=
-----END CERTIFICATE-----
)";
// kIndefiniteLength is an X.509 certificate where the outermost SEQUENCE uses
// BER indefinite-length encoding.
static const char kIndefiniteLength[] = R"(
-----BEGIN CERTIFICATE-----
MIAwgcagAwIBAgICBNIwCgYIKoZIzj0EAwIwDzENMAsGA1UEAxMEVGVzdDAgFw0w
MDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsGA1UEAxMEVGVzdDBZ
MBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWXa7epHg1G
+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsGjEDAOMAwG
A1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSQAwRgIhAKnSIhfmzfQpeOKFHiAqcml3
ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh4qnksoBs
xWIAAA==
-----END CERTIFICATE-----
)";
// kNonZeroPadding is an X.09 certificate where the BIT STRING signature field
// has non-zero padding values.
static const char kNonZeroPadding[] = R"(
-----BEGIN CERTIFICATE-----
MIIB0DCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC
QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp
dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ
BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l
dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni
v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa
HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw
HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ
BgcqhkjOPQQBA0kBMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E
BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQB
-----END CERTIFICATE-----
)";
// kHighTagNumber is an X.509 certificate where the outermost SEQUENCE tag uses
// high tag number form.
static const char kHighTagNumber[] = R"(
-----BEGIN CERTIFICATE-----
PxCCASAwgcagAwIBAgICBNIwCgYIKoZIzj0EAwIwDzENMAsGA1UEAxMEVGVzdDAg
Fw0wMDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsGA1UEAxMEVGVz
dDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWXa7ep
Hg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsGjEDAO
MAwGA1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSQAwRgIhAKnSIhfmzfQpeOKFHiAq
cml3ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh4qnk
soBsxWI=
-----END CERTIFICATE-----
)";
// kNonMinimalLengthOuter is an X.509 certificate where the outermost SEQUENCE
// has a non-minimal length.
static const char kNonMinimalLengthOuter[] = R"(
-----BEGIN CERTIFICATE-----
MIMAASAwgcagAwIBAgICBNIwCgYIKoZIzj0EAwIwDzENMAsGA1UEAxMEVGVzdDAg
Fw0wMDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsGA1UEAxMEVGVz
dDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWXa7ep
Hg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsGjEDAO
MAwGA1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSQAwRgIhAKnSIhfmzfQpeOKFHiAq
cml3ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh4qnk
soBsxWI=
-----END CERTIFICATE-----
)";
// kNonMinimalLengthSignature is an X.509 certificate where the signature has a
// non-minimal length.
static const char kNonMinimalLengthSignature[] = R"(
-----BEGIN CERTIFICATE-----
MIIBITCBxqADAgECAgIE0jAKBggqhkjOPQQDAjAPMQ0wCwYDVQQDEwRUZXN0MCAX
DTAwMDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAPMQ0wCwYDVQQDEwRUZXN0
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE5itp4r9ln5e+Lx4NlIpM1Zdrt6ke
DUb73ampHp3culoB59aXqAoY+cPEox5W4nyDSNsWGhz1HX7xlC1Lz3IiwaMQMA4w
DAYDVR0TBAUwAwEB/zAKBggqhkjOPQQDAgOBSQAwRgIhAKnSIhfmzfQpeOKFHiAq
cml3ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh4qnk
soBsxWI=
-----END CERTIFICATE-----
)";
// kNonMinimalLengthSerial is an X.509 certificate where the serial number has a
// non-minimal length.
static const char kNonMinimalLengthSerial[] = R"(
-----BEGIN CERTIFICATE-----
MIIBITCBx6ADAgECAoECBNIwCgYIKoZIzj0EAwIwDzENMAsGA1UEAxMEVGVzdDAg
Fw0wMDAxMDEwMDAwMDBaGA8yMTAwMDEwMTAwMDAwMFowDzENMAsGA1UEAxMEVGVz
dDBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABOYraeK/ZZ+Xvi8eDZSKTNWXa7ep
Hg1G+92pqR6d3LpaAefWl6gKGPnDxKMeVuJ8g0jbFhoc9R1+8ZQtS89yIsGjEDAO
MAwGA1UdEwQFMAMBAf8wCgYIKoZIzj0EAwIDSQAwRgIhAKnSIhfmzfQpeOKFHiAq
cml3ex6oaVVGoJWCsPQoZjVAAiEAqTHS9HzZBTQ20cMPXUpf8u5AXZP7adeh4qnk
soBsxWI=
-----END CERTIFICATE-----
)";
TEST(X509Test, BER) {
// Constructed strings are forbidden in DER.
EXPECT_FALSE(CertFromPEM(kConstructedBitString));
EXPECT_FALSE(CertFromPEM(kConstructedOctetString));
// Indefinite lengths are forbidden in DER.
EXPECT_FALSE(CertFromPEM(kIndefiniteLength));
// Padding bits in BIT STRINGs must be zero in BER.
EXPECT_FALSE(CertFromPEM(kNonZeroPadding));
// Tags must be minimal in both BER and DER, though many BER decoders
// incorrectly support non-minimal tags.
EXPECT_FALSE(CertFromPEM(kHighTagNumber));
// Lengths must be minimal in DER.
EXPECT_FALSE(CertFromPEM(kNonMinimalLengthOuter));
EXPECT_FALSE(CertFromPEM(kNonMinimalLengthSerial));
// We, for now, accept a non-minimal length in the signature field. See
// b/18228011.
EXPECT_TRUE(CertFromPEM(kNonMinimalLengthSignature));
}
TEST(X509Test, Names) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
bssl::UniquePtr<X509> root =
MakeTestCert("Root", "Root", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root);
ASSERT_TRUE(X509_sign(root.get(), key.get(), EVP_sha256()));
struct {
std::vector<std::pair<int, std::string>> cert_subject;
std::vector<std::string> cert_dns_names;
std::vector<std::string> cert_emails;
std::vector<std::string> valid_dns_names;
std::vector<std::string> invalid_dns_names;
std::vector<std::string> valid_emails;
std::vector<std::string> invalid_emails;
unsigned flags;
} kTests[] = {
// DNS names only match DNS names and do so case-insensitively.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{"example.com", "WWW.EXAMPLE.COM"},
/*cert_emails=*/{},
/*valid_dns_names=*/
{"example.com", "EXAMPLE.COM", "www.example.com", "WWW.EXAMPLE.COM"},
/*invalid_dns_names=*/{"test.example.com", "example.org"},
/*valid_emails=*/{},
/*invalid_emails=*/{"test@example.com", "example.com"},
/*flags=*/0,
},
// DNS wildcards match exactly one component.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{"*.example.com", "*.EXAMPLE.ORG"},
/*cert_emails=*/{},
/*valid_dns_names=*/
{"www.example.com", "WWW.EXAMPLE.COM", "www.example.org",
"WWW.EXAMPLE.ORG"},
/*invalid_dns_names=*/{"example.com", "test.www.example.com"},
/*valid_emails=*/{},
/*invalid_emails=*/{"test@example.com", "www.example.com"},
/*flags=*/0,
},
// DNS wildcards can be disabled.
// TODO(davidben): Can we remove this feature? Does anyone use it?
{
/*cert_subject=*/{},
/*cert_dns_names=*/{"example.com", "*.example.com"},
/*cert_emails=*/{},
/*valid_dns_names=*/{"example.com"},
/*invalid_dns_names=*/{"www.example.com"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/X509_CHECK_FLAG_NO_WILDCARDS,
},
// Invalid DNS wildcards do not match.
{
/*cert_subject=*/{},
/*cert_dns_names=*/
{"a.*", "**.b.example", "*c.example", "d*.example", "e*e.example",
"*", ".", "..", "*."},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/
{"a.example", "test.b.example", "cc.example", "dd.example",
"eee.example", "f", "g."},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// IDNs match like any other DNS labels.
{
/*cert_subject=*/{},
/*cert_dns_names=*/
{"xn--rger-koa.a.example", "*.xn--rger-koa.b.example",
"www.xn--rger-koa.c.example"},
/*cert_emails=*/{},
/*valid_dns_names=*/
{"xn--rger-koa.a.example", "www.xn--rger-koa.b.example",
"www.xn--rger-koa.c.example"},
/*invalid_dns_names=*/
{"www.xn--rger-koa.a.example", "xn--rger-koa.b.example",
"www.xn--rger-koa.d.example"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// For now, DNS names are also extracted out of the common name, but only
// there is no SAN list.
// TODO(https://crbug.com/boringssl/464): Remove this.
{
/*cert_subject=*/{{NID_commonName, "a.example"},
{NID_commonName, "*.b.example"}},
/*cert_dns_names=*/{},
/*cert_emails=*/{},
/*valid_dns_names=*/
{"a.example", "A.EXAMPLE", "test.b.example", "TEST.B.EXAMPLE"},
/*invalid_dns_names=*/{},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
{
/*cert_subject=*/{{NID_commonName, "a.example"},
{NID_commonName, "*.b.example"}},
/*cert_dns_names=*/{"example.com"},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/
{"a.example", "A.EXAMPLE", "test.b.example", "TEST.B.EXAMPLE"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// Other subject RDNs do not provide DNS names.
{
/*cert_subject=*/{{NID_organizationName, "example.com"}},
/*cert_dns_names=*/{},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/{"example.com"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// Input DNS names cannot have wildcards.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{"www.example.com"},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/{"*.example.com"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// OpenSSL has some non-standard wildcard syntax for input DNS names. We
// do not support this.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{"www.a.example", "*.b.test"},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/
{".www.a.example", ".www.b.test", ".a.example", ".b.test", ".example",
".test"},
/*valid_emails=*/{},
/*invalid_emails=*/{},
/*flags=*/0,
},
// Emails match case-sensitively before the '@' and case-insensitively
// after. They do not match DNS names.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{},
/*cert_emails=*/{"test@a.example", "TEST@B.EXAMPLE"},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/{"a.example", "b.example"},
/*valid_emails=*/
{"test@a.example", "test@A.EXAMPLE", "TEST@b.example",
"TEST@B.EXAMPLE"},
/*invalid_emails=*/
{"TEST@a.example", "test@B.EXAMPLE", "another-test@a.example",
"est@a.example"},
/*flags=*/0,
},
// Emails may also be found in the subject.
{
/*cert_subject=*/{{NID_pkcs9_emailAddress, "test@a.example"},
{NID_pkcs9_emailAddress, "TEST@B.EXAMPLE"}},
/*cert_dns_names=*/{},
/*cert_emails=*/{},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/{"a.example", "b.example"},
/*valid_emails=*/
{"test@a.example", "test@A.EXAMPLE", "TEST@b.example",
"TEST@B.EXAMPLE"},
/*invalid_emails=*/
{"TEST@a.example", "test@B.EXAMPLE", "another-test@a.example",
"est@a.example"},
/*flags=*/0,
},
// There are no email wildcard names.
{
/*cert_subject=*/{},
/*cert_dns_names=*/{},
/*cert_emails=*/{"test@*.a.example", "@b.example", "*@c.example"},
/*valid_dns_names=*/{},
/*invalid_dns_names=*/{},
/*valid_emails=*/{},
/*invalid_emails=*/
{"test@test.a.example", "test@b.example", "test@c.example"},
/*flags=*/0,
},
// Unrelated RDNs can be skipped when looking in the subject.
{
/*cert_subject=*/{{NID_organizationName, "Acme Corporation"},
{NID_commonName, "a.example"},
{NID_pkcs9_emailAddress, "test@b.example"},
{NID_countryName, "US"}},
/*cert_dns_names=*/{},
/*cert_emails=*/{},
/*valid_dns_names=*/{"a.example"},
/*invalid_dns_names=*/{},
/*valid_emails=*/{"test@b.example"},
/*invalid_emails=*/{},
/*flags=*/0,
},
};
size_t i = 0;
for (const auto &t : kTests) {
SCOPED_TRACE(i++);
// Issue a test certificate.
bssl::UniquePtr<X509> cert =
MakeTestCert("Root", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(cert);
if (!t.cert_subject.empty()) {
bssl::UniquePtr<X509_NAME> subject(X509_NAME_new());
ASSERT_TRUE(subject);
for (const auto &entry : t.cert_subject) {
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
subject.get(), entry.first, MBSTRING_ASC,
reinterpret_cast<const unsigned char *>(entry.second.data()),
entry.second.size(), /*loc=*/-1, /*set=*/0));
}
ASSERT_TRUE(X509_set_subject_name(cert.get(), subject.get()));
}
bssl::UniquePtr<GENERAL_NAMES> sans(sk_GENERAL_NAME_new_null());
ASSERT_TRUE(sans);
for (const auto &dns : t.cert_dns_names) {
bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new());
ASSERT_TRUE(name);
name->type = GEN_DNS;
name->d.dNSName = ASN1_IA5STRING_new();
ASSERT_TRUE(name->d.dNSName);
ASSERT_TRUE(ASN1_STRING_set(name->d.dNSName, dns.data(), dns.size()));
ASSERT_TRUE(bssl::PushToStack(sans.get(), std::move(name)));
}
for (const auto &email : t.cert_emails) {
bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new());
ASSERT_TRUE(name);
name->type = GEN_EMAIL;
name->d.rfc822Name = ASN1_IA5STRING_new();
ASSERT_TRUE(name->d.rfc822Name);
ASSERT_TRUE(
ASN1_STRING_set(name->d.rfc822Name, email.data(), email.size()));
ASSERT_TRUE(bssl::PushToStack(sans.get(), std::move(name)));
}
if (sk_GENERAL_NAME_num(sans.get()) != 0) {
ASSERT_TRUE(X509_add1_ext_i2d(cert.get(), NID_subject_alt_name,
sans.get(), /*crit=*/0, /*flags=*/0));
}
ASSERT_TRUE(X509_sign(cert.get(), key.get(), EVP_sha256()));
for (const auto &dns : t.valid_dns_names) {
SCOPED_TRACE(dns);
EXPECT_EQ(1, X509_check_host(cert.get(), dns.data(), dns.size(), t.flags,
/*peername=*/nullptr));
EXPECT_EQ(X509_V_OK,
Verify(cert.get(), {root.get()}, /*intermediates=*/{},
/*crls=*/{}, /*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(
param, dns.data(), dns.size()));
X509_VERIFY_PARAM_set_hostflags(param, t.flags);
}));
}
for (const auto &dns : t.invalid_dns_names) {
SCOPED_TRACE(dns);
EXPECT_EQ(0, X509_check_host(cert.get(), dns.data(), dns.size(), t.flags,
/*peername=*/nullptr));
EXPECT_EQ(X509_V_ERR_HOSTNAME_MISMATCH,
Verify(cert.get(), {root.get()}, /*intermediates=*/{},
/*crls=*/{}, /*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_host(
param, dns.data(), dns.size()));
X509_VERIFY_PARAM_set_hostflags(param, t.flags);
}));
}
for (const auto &email : t.valid_emails) {
SCOPED_TRACE(email);
EXPECT_EQ(
1, X509_check_email(cert.get(), email.data(), email.size(), t.flags));
EXPECT_EQ(X509_V_OK,
Verify(cert.get(), {root.get()}, /*intermediates=*/{},
/*crls=*/{}, /*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_email(
param, email.data(), email.size()));
X509_VERIFY_PARAM_set_hostflags(param, t.flags);
}));
}
for (const auto &email : t.invalid_emails) {
SCOPED_TRACE(email);
EXPECT_EQ(
0, X509_check_email(cert.get(), email.data(), email.size(), t.flags));
EXPECT_EQ(X509_V_ERR_EMAIL_MISMATCH,
Verify(cert.get(), {root.get()}, /*intermediates=*/{},
/*crls=*/{}, /*flags=*/0, [&](X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *param =
X509_STORE_CTX_get0_param(ctx);
ASSERT_TRUE(X509_VERIFY_PARAM_set1_email(
param, email.data(), email.size()));
X509_VERIFY_PARAM_set_hostflags(param, t.flags);
}));
}
}
}
TEST(X509Test, AddDuplicates) {
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
bssl::UniquePtr<X509> a(CertFromPEM(kCrossSigningRootPEM));
bssl::UniquePtr<X509> b(CertFromPEM(kRootCAPEM));
ASSERT_TRUE(store);
ASSERT_TRUE(a);
ASSERT_TRUE(b);
EXPECT_TRUE(X509_STORE_add_cert(store.get(), a.get()));
EXPECT_TRUE(X509_STORE_add_cert(store.get(), b.get()));
EXPECT_TRUE(X509_STORE_add_cert(store.get(), a.get()));
EXPECT_TRUE(X509_STORE_add_cert(store.get(), b.get()));
EXPECT_TRUE(X509_STORE_add_cert(store.get(), a.get()));
EXPECT_TRUE(X509_STORE_add_cert(store.get(), b.get()));
EXPECT_EQ(sk_X509_OBJECT_num(X509_STORE_get0_objects(store.get())), 2u);
}
TEST(X509Test, BytesToHex) {
struct {
std::vector<uint8_t> bytes;
const char *hex;
} kTests[] = {
{{}, ""},
{{0x00}, "00"},
{{0x00, 0x11, 0x22}, "00:11:22"},
{{0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef},
"01:23:45:67:89:AB:CD:EF"},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.bytes));
bssl::UniquePtr<char> hex(
x509v3_bytes_to_hex(t.bytes.data(), t.bytes.size()));
ASSERT_TRUE(hex);
EXPECT_STREQ(hex.get(), t.hex);
}
}
TEST(X509Test, NamePrint) {
// kTestName is a DER-encoded X.509 that covers many cases.
//
// SEQUENCE {
// SET {
// SEQUENCE {
// # countryName
// OBJECT_IDENTIFIER { 2.5.4.6 }
// PrintableString { "US" }
// }
// }
// # Sets may be multi-valued, with different attributes. Try to keep this
// # in DER set order, in case we ever enforce this in the parser.
// SET {
// SEQUENCE {
// # stateOrProvinceName
// OBJECT_IDENTIFIER { 2.5.4.8 }
// PrintableString { "Some State" }
// }
// SEQUENCE {
// # stateOrProvinceName
// OBJECT_IDENTIFIER { 2.5.4.8 }
// UTF8String { "Some Other State \xe2\x98\x83" }
// }
// SEQUENCE {
// # stateOrProvinceName
// OBJECT_IDENTIFIER { 2.5.4.8 }
// BMPString { u"Another State \u2603" }
// }
// SEQUENCE {
// # A custom OID
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 }
// UniversalString { U"\u2603" }
// }
// }
// # Custom OIDs may have non-string values.
// SET {
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.3 }
// SEQUENCE { INTEGER { 1 } INTEGER { 2 } }
// }
// }
// SET {
// SEQUENCE {
// # organizationName
// OBJECT_IDENTIFIER { 2.5.4.10 }
// PrintableString { "Org Name" }
// }
// }
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// # Embed common delimiter forms to test how well they get escaped.
// UTF8String { "Common
// Name/CN=A/CN=B,CN=A,CN=B+CN=A+CN=B;CN=A;CN=B\nCN=A\n" }
// }
// }
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// # Test escaping of leading and trailing spaces.
// UTF8String { " spaces " }
// }
// }
static const uint8_t kTestName[] = {
0x30, 0x82, 0x01, 0x00, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04,
0x06, 0x13, 0x02, 0x55, 0x53, 0x31, 0x6d, 0x30, 0x11, 0x06, 0x03, 0x55,
0x04, 0x08, 0x13, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x20, 0x53, 0x74, 0x61,
0x74, 0x65, 0x30, 0x1b, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c, 0x14, 0x53,
0x6f, 0x6d, 0x65, 0x20, 0x4f, 0x74, 0x68, 0x65, 0x72, 0x20, 0x53, 0x74,
0x61, 0x74, 0x65, 0x20, 0xe2, 0x98, 0x83, 0x30, 0x25, 0x06, 0x03, 0x55,
0x04, 0x08, 0x1e, 0x1e, 0x00, 0x41, 0x00, 0x6e, 0x00, 0x6f, 0x00, 0x74,
0x00, 0x68, 0x00, 0x65, 0x00, 0x72, 0x00, 0x20, 0x00, 0x53, 0x00, 0x74,
0x00, 0x61, 0x00, 0x74, 0x00, 0x65, 0x00, 0x20, 0x26, 0x03, 0x30, 0x14,
0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02, 0x1c, 0x04, 0x00, 0x00, 0x26, 0x03, 0x31, 0x18, 0x30, 0x16,
0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x03, 0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x02, 0x31, 0x11,
0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x13, 0x08, 0x4f, 0x72, 0x67,
0x20, 0x4e, 0x61, 0x6d, 0x65, 0x31, 0x42, 0x30, 0x40, 0x06, 0x03, 0x55,
0x04, 0x03, 0x0c, 0x39, 0x43, 0x6f, 0x6d, 0x6d, 0x6f, 0x6e, 0x20, 0x4e,
0x61, 0x6d, 0x65, 0x2f, 0x43, 0x4e, 0x3d, 0x41, 0x2f, 0x43, 0x4e, 0x3d,
0x42, 0x2c, 0x43, 0x4e, 0x3d, 0x41, 0x2c, 0x43, 0x4e, 0x3d, 0x42, 0x2b,
0x43, 0x4e, 0x3d, 0x41, 0x2b, 0x43, 0x4e, 0x3d, 0x42, 0x3b, 0x43, 0x4e,
0x3d, 0x41, 0x3b, 0x43, 0x4e, 0x3d, 0x42, 0x0a, 0x43, 0x4e, 0x3d, 0x41,
0x0a, 0x31, 0x11, 0x30, 0x0f, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x08,
0x20, 0x73, 0x70, 0x61, 0x63, 0x65, 0x73, 0x20};
const uint8_t *ptr = kTestName;
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &ptr, sizeof(kTestName)));
ASSERT_TRUE(name);
EXPECT_EQ(ptr, kTestName + sizeof(kTestName));
struct {
int indent;
unsigned long flags;
std::string printed;
} kTests[] = {
// RFC 2253 uses , and + separators and encodes the RDNs in reverse.
// OpenSSL's implementation additionally happens to reverse the values
// within each RDN. RFC 2253 says any order is permissible.
{/*indent=*/0,
/*flags=*/XN_FLAG_RFC2253,
"CN=\\ spaces\\ ,"
"CN=Common "
"Name/CN=A/CN=B\\,CN=A\\,CN=B\\+CN=A\\+CN=B\\;CN=A\\;CN=B\\0ACN=A\\0A,"
"O=Org Name,"
"1.2.840.113554.4.1.72585.3=#3006020101020102,"
"1.2.840.113554.4.1.72585.2=#1C0400002603+"
"ST=Another State \\E2\\98\\83+"
"ST=Some Other State \\E2\\98\\83+"
"ST=Some State,"
"C=US"},
{/*indent=*/2,
/*flags=*/XN_FLAG_RFC2253,
" "
"CN=\\ spaces\\ ,"
"CN=Common "
"Name/CN=A/CN=B\\,CN=A\\,CN=B\\+CN=A\\+CN=B\\;CN=A\\;CN=B\\0ACN=A\\0A,"
"O=Org Name,"
"1.2.840.113554.4.1.72585.3=#3006020101020102,"
"1.2.840.113554.4.1.72585.2=#1C0400002603+"
"ST=Another State \\E2\\98\\83+"
"ST=Some Other State \\E2\\98\\83+"
"ST=Some State,"
"C=US"},
// |XN_FLAG_ONELINE| is an OpenSSL-specific single-line format. It also
// omits |XN_FLAG_DUMP_UNKNOWN_FIELDS|, so unknown OIDs that use known
// string types will still be decoded. (This may drop important
// information if the unknown OID distinguishes between string types.) It
// also passes |ASN1_STRFLGS_ESC_QUOTE|.
{/*indent=*/0,
/*flags=*/XN_FLAG_ONELINE,
"C = US, "
"ST = Some State + "
"ST = Some Other State \\E2\\98\\83 + "
"ST = Another State \\E2\\98\\83 + "
"1.2.840.113554.4.1.72585.2 = \\E2\\98\\83, "
"1.2.840.113554.4.1.72585.3 = #3006020101020102, "
"O = Org Name, "
"CN = \"Common "
"Name/CN=A/CN=B,CN=A,CN=B+CN=A+CN=B;CN=A;CN=B\\0ACN=A\\0A\", "
"CN = \" spaces \""},
// Callers can also customize the output, with both |XN_FLAG_*| and
// |ASN1_STRFLGS_*|. |XN_FLAG_SEP_SPLUS_SPC| uses semicolon separators.
{/*indent=*/0,
/*flags=*/XN_FLAG_SEP_SPLUS_SPC | ASN1_STRFLGS_RFC2253 |
ASN1_STRFLGS_ESC_QUOTE,
"C=US; "
"ST=Some State + "
"ST=Some Other State \\E2\\98\\83 + "
"ST=Another State \\E2\\98\\83 + "
"1.2.840.113554.4.1.72585.2=\\E2\\98\\83; "
"1.2.840.113554.4.1.72585.3=#3006020101020102; "
"O=Org Name; "
"CN=\"Common "
"Name/CN=A/CN=B,CN=A,CN=B+CN=A+CN=B;CN=A;CN=B\\0ACN=A\\0A\"; "
"CN=\" spaces \""},
// Node uses these parameters.
{/*indent=*/0,
/*flags=*/ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL |
ASN1_STRFLGS_UTF8_CONVERT | XN_FLAG_SEP_MULTILINE | XN_FLAG_FN_SN,
"C=US\n"
"ST=Some State + "
"ST=Some Other State \xE2\x98\x83 + "
"ST=Another State \xE2\x98\x83 + "
"1.2.840.113554.4.1.72585.2=\xE2\x98\x83\n"
"1.2.840.113554.4.1.72585.3=0\\06\\02\\01\\01\\02\\01\\02\n"
"O=Org Name\n"
"CN=Common "
"Name/CN=A/CN=B\\,CN=A\\,CN=B\\+CN=A\\+CN=B\\;CN=A\\;CN=B\\0ACN=A\\0A\n"
"CN=\\ spaces\\ "},
// |XN_FLAG_COMPAT| matches |X509_NAME_print|, rather than
// |X509_NAME_print_ex|.
//
// TODO(davidben): This works by post-processing the output of
// |X509_NAME_oneline|, which uses "/"" separators, and replacing with
// ", ". The escaping is ambiguous and the post-processing is buggy, so
// some of the trailing slashes are still present and some internal
// slashes are mis-converted.
{/*indent=*/0,
/*flags=*/XN_FLAG_COMPAT,
"C=US, "
"ST=Some State, "
"ST=Some Other State \\xE2\\x98\\x83, "
"ST=\\x00A\\x00n\\x00o\\x00t\\x00h\\x00e\\x00r\\x00 "
"\\x00S\\x00t\\x00a\\x00t\\x00e\\x00 &\\x03/"
"1.2.840.113554.4.1.72585.2=\\x00\\x00&\\x03/"
"1.2.840.113554.4.1.72585.3=0\\x06\\x02\\x01\\x01\\x02\\x01\\x02, "
"O=Org Name, "
"CN=Common Name, "
"CN=A, CN=B,CN=A,CN=B+CN=A+CN=B;CN=A;CN=B\\x0ACN=A\\x0A, "
"CN= spaces "},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.printed);
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
int len = X509_NAME_print_ex(bio.get(), name.get(), t.indent, t.flags);
ASSERT_GT(len, 0);
const uint8_t *printed;
size_t printed_len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &printed, &printed_len));
EXPECT_EQ(std::string(printed, printed + printed_len), t.printed);
if (t.flags != XN_FLAG_COMPAT) {
// TODO(davidben): |XN_FLAG_COMPAT| does not return the length.
EXPECT_EQ(static_cast<size_t>(len), printed_len);
// Passing a null |BIO| measures the output instead.
len = X509_NAME_print_ex(nullptr, name.get(), t.indent, t.flags);
EXPECT_GT(len, 0);
EXPECT_EQ(static_cast<size_t>(len), printed_len);
}
}
// TODO(davidben): This escapes the underlying bytes in the string, but that
// is ambiguous without capturing the type. Should this escape like
// |ASN1_STRFLGS_UTF8_CONVERT| instead?
static const char *kOnelineComponents[] = {
"/C=US",
"/ST=Some State",
"/ST=Some Other State \\xE2\\x98\\x83",
("/ST=\\x00A\\x00n\\x00o\\x00t\\x00h\\x00e\\x00r\\x00 "
"\\x00S\\x00t\\x00a\\x00t\\x00e\\x00 &\\x03"),
"/1.2.840.113554.4.1.72585.2=\\x00\\x00&\\x03",
"/1.2.840.113554.4.1.72585.3=0\\x06\\x02\\x01\\x01\\x02\\x01\\x02",
"/O=Org Name",
"/CN=Common Name/CN=A/CN=B,CN=A,CN=B+CN=A+CN=B;CN=A;CN=B\\x0ACN=A\\x0A",
"/CN= spaces ",
};
std::string oneline_expected;
for (const auto& component : kOnelineComponents) {
oneline_expected += component;
}
// Given null buffer, |X509_NAME_oneline| allocates a new output.
bssl::UniquePtr<char> oneline(X509_NAME_oneline(name.get(), nullptr, 0));
ASSERT_TRUE(oneline);
EXPECT_EQ(oneline.get(), oneline_expected);
// Otherwise it writes to the specified buffer. Note one extra byte is needed
// for the trailing NUL.
char buf[1024];
ASSERT_GE(sizeof(buf), oneline_expected.size() + 2);
ASSERT_EQ(buf,
X509_NAME_oneline(name.get(), buf, oneline_expected.size() + 1));
EXPECT_EQ(buf, oneline_expected);
memset(buf, 'a', sizeof(buf));
ASSERT_EQ(buf,
X509_NAME_oneline(name.get(), buf, oneline_expected.size() + 2));
EXPECT_EQ(buf, oneline_expected);
// If the length is too small, |X509_NAME_oneline| truncates at name
// entry boundaries.
EXPECT_EQ(nullptr, X509_NAME_oneline(name.get(), buf, 0));
for (size_t len = 1; len < oneline_expected.size(); len++) {
SCOPED_TRACE(len);
memset(buf, 'a', sizeof(buf));
EXPECT_EQ(buf, X509_NAME_oneline(name.get(), buf, len));
std::string truncated;
for (const auto& component : kOnelineComponents) {
if (truncated.size() + strlen(component) + 1 > len) {
break;
}
truncated += component;
}
EXPECT_EQ(buf, truncated);
}
}
// kLargeSerialPEM is a certificate with a large serial number.
static const char kLargeSerialPEM[] = R"(
-----BEGIN CERTIFICATE-----
MIICZjCCAc+gAwIBAgIQASNFZ4mrze8BI0VniavN7zANBgkqhkiG9w0BAQsFADA2
MRowGAYDVQQKExFCb3JpbmdTU0wgVEVTVElORzEYMBYGA1UEAxMPSW50ZXJtZWRp
YXRlIENBMCAXDTE1MDEwMTAwMDAwMFoYDzIxMDAwMTAxMDAwMDAwWjAyMRowGAYD
VQQKExFCb3JpbmdTU0wgVEVTVElORzEUMBIGA1UEAxMLZXhhbXBsZS5jb20wgZ8w
DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMPRTRliCpKEnug6OzI0rJVcQep5p+aT
9sCg+pj+HVyg/DYTwqZ6qJRKhM+MbkhdJuU7FyqlsBeCeM/OjwMjcY0yEB/xJg1i
ygfuBztTLuPnHxtSuKwae5MeqSofp3j97sRMnuLcKlHxu8rXoOCAS9BO50uKnPwU
Ee1iEVqR92FPAgMBAAGjdzB1MA4GA1UdDwEB/wQEAwIFoDAdBgNVHSUEFjAUBggr
BgEFBQcDAQYIKwYBBQUHAwIwDAYDVR0TAQH/BAIwADAZBgNVHQ4EEgQQo3mm9u6v
uaVeN4wRgDTidTAbBgNVHSMEFDASgBCMGmiotXbbXVd7H40UsgajMA0GCSqGSIb3
DQEBCwUAA4GBAGP+n4kKGn/8uddYLWTXbUsz+KLuEXNDMyu3vRufLjTpIbP2MCNo
85fhLeC3fzKuGOk+6QGVLOBBcWDrrLqrmqnWdBMPULDo2QoF71a4GVjeJh+ax/tZ
PyeGVPUK21TE0LDIxf2a11d1CJw582MgZQIPk4tXk+AcU9EqIceKgECG
-----END CERTIFICATE-----
)";
TEST(X509Test, Print) {
bssl::UniquePtr<X509> cert(CertFromPEM(kLargeSerialPEM));
ASSERT_TRUE(cert);
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
EXPECT_TRUE(X509_print_ex(bio.get(), cert.get(), 0, 0));
// Nothing should be left in the error queue.
EXPECT_EQ(0u, ERR_peek_error());
// This output is not guaranteed to be stable, but we assert on it to make
// sure something is printed.
const uint8_t *data;
size_t data_len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &data, &data_len));
std::string print(reinterpret_cast<const char*>(data), data_len);
EXPECT_EQ(print, R"(Certificate:
Data:
Version: 3 (0x2)
Serial Number:
01:23:45:67:89:ab:cd:ef:01:23:45:67:89:ab:cd:ef
Signature Algorithm: sha256WithRSAEncryption
Issuer: O=BoringSSL TESTING, CN=Intermediate CA
Validity
Not Before: Jan 1 00:00:00 2015 GMT
Not After : Jan 1 00:00:00 2100 GMT
Subject: O=BoringSSL TESTING, CN=example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
Public-Key: (1024 bit)
Modulus:
00:c3:d1:4d:19:62:0a:92:84:9e:e8:3a:3b:32:34:
ac:95:5c:41:ea:79:a7:e6:93:f6:c0:a0:fa:98:fe:
1d:5c:a0:fc:36:13:c2:a6:7a:a8:94:4a:84:cf:8c:
6e:48:5d:26:e5:3b:17:2a:a5:b0:17:82:78:cf:ce:
8f:03:23:71:8d:32:10:1f:f1:26:0d:62:ca:07:ee:
07:3b:53:2e:e3:e7:1f:1b:52:b8:ac:1a:7b:93:1e:
a9:2a:1f:a7:78:fd:ee:c4:4c:9e:e2:dc:2a:51:f1:
bb:ca:d7:a0:e0:80:4b:d0:4e:e7:4b:8a:9c:fc:14:
11:ed:62:11:5a:91:f7:61:4f
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
X509v3 Extended Key Usage:
TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Subject Key Identifier:
A3:79:A6:F6:EE:AF:B9:A5:5E:37:8C:11:80:34:E2:75
X509v3 Authority Key Identifier:
keyid:8C:1A:68:A8:B5:76:DB:5D:57:7B:1F:8D:14:B2:06:A3
Signature Algorithm: sha256WithRSAEncryption
63:fe:9f:89:0a:1a:7f:fc:b9:d7:58:2d:64:d7:6d:4b:33:f8:
a2:ee:11:73:43:33:2b:b7:bd:1b:9f:2e:34:e9:21:b3:f6:30:
23:68:f3:97:e1:2d:e0:b7:7f:32:ae:18:e9:3e:e9:01:95:2c:
e0:41:71:60:eb:ac:ba:ab:9a:a9:d6:74:13:0f:50:b0:e8:d9:
0a:05:ef:56:b8:19:58:de:26:1f:9a:c7:fb:59:3f:27:86:54:
f5:0a:db:54:c4:d0:b0:c8:c5:fd:9a:d7:57:75:08:9c:39:f3:
63:20:65:02:0f:93:8b:57:93:e0:1c:53:d1:2a:21:c7:8a:80:
40:86
)");
}
TEST(X509Test, AddExt) {
bssl::UniquePtr<X509> x509(X509_new());
ASSERT_TRUE(x509);
struct Extension {
int nid;
bool critical;
std::vector<uint8_t> data;
};
auto expect_extensions = [&](const std::vector<Extension> &exts) {
ASSERT_EQ(static_cast<size_t>(X509_get_ext_count(x509.get())), exts.size());
for (size_t i = 0; i < exts.size(); i++) {
SCOPED_TRACE(i);
const X509_EXTENSION *ext = X509_get_ext(x509.get(), static_cast<int>(i));
EXPECT_EQ(OBJ_obj2nid(X509_EXTENSION_get_object(ext)), exts[i].nid);
EXPECT_EQ(X509_EXTENSION_get_critical(ext), exts[i].critical ? 1 : 0);
const ASN1_OCTET_STRING *data = X509_EXTENSION_get_data(ext);
EXPECT_EQ(Bytes(ASN1_STRING_get0_data(data), ASN1_STRING_length(data)),
Bytes(exts[i].data));
}
};
// Make a few sample extensions.
// SEQUENCE {}
std::vector<uint8_t> basic1_der = {0x30, 0x00};
const uint8_t *inp = basic1_der.data();
bssl::UniquePtr<BASIC_CONSTRAINTS> basic1_obj(
d2i_BASIC_CONSTRAINTS(nullptr, &inp, basic1_der.size()));
EXPECT_EQ(inp, basic1_der.data() + basic1_der.size());
// SEQUENCE { BOOLEAN { TRUE } }
std::vector<uint8_t> basic2_der = {0x30, 0x03, 0x01, 0x01, 0xff};
inp = basic2_der.data();
bssl::UniquePtr<BASIC_CONSTRAINTS> basic2_obj(
d2i_BASIC_CONSTRAINTS(nullptr, &inp, basic2_der.size()));
EXPECT_EQ(inp, basic2_der.data() + basic2_der.size());
// OCTET_STRING {}
std::vector<uint8_t> skid1_der = {0x04, 0x00};
inp = skid1_der.data();
bssl::UniquePtr<ASN1_OCTET_STRING> skid1_obj(
d2i_ASN1_OCTET_STRING(nullptr, &inp, skid1_der.size()));
EXPECT_EQ(inp, skid1_der.data() + skid1_der.size());
// OCTET_STRING { "a" }
std::vector<uint8_t> skid2_der = {0x04, 0x01, 0x61};
inp = skid2_der.data();
bssl::UniquePtr<ASN1_OCTET_STRING> skid2_obj(
d2i_ASN1_OCTET_STRING(nullptr, &inp, skid2_der.size()));
EXPECT_EQ(inp, skid2_der.data() + skid2_der.size());
// Initially, the extension list is empty.
expect_extensions({});
// Adding extensions works with the default settings.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic1_obj.get(),
/*crit=*/1, X509V3_ADD_DEFAULT));
expect_extensions({{NID_basic_constraints, true, basic1_der}});
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_subject_key_identifier,
skid1_obj.get(),
/*crit=*/0, X509V3_ADD_DEFAULT));
expect_extensions({{NID_basic_constraints, true, basic1_der},
{NID_subject_key_identifier, false, skid1_der}});
// By default, we cannot add duplicates.
EXPECT_EQ(
0, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic2_obj.get(),
/*crit=*/0, X509V3_ADD_DEFAULT));
expect_extensions({{NID_basic_constraints, true, basic1_der},
{NID_subject_key_identifier, false, skid1_der}});
// |X509V3_ADD_KEEP_EXISTING| silently keeps the existing extension if already
// present.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic2_obj.get(),
/*crit=*/0, X509V3_ADD_KEEP_EXISTING));
expect_extensions({{NID_basic_constraints, true, basic1_der},
{NID_subject_key_identifier, false, skid1_der}});
// |X509V3_ADD_REPLACE| replaces it.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic2_obj.get(),
/*crit=*/0, X509V3_ADD_REPLACE));
expect_extensions({{NID_basic_constraints, false, basic2_der},
{NID_subject_key_identifier, false, skid1_der}});
// |X509V3_ADD_REPLACE_EXISTING| also replaces matches.
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_subject_key_identifier,
skid2_obj.get(),
/*crit=*/1, X509V3_ADD_REPLACE_EXISTING));
expect_extensions({{NID_basic_constraints, false, basic2_der},
{NID_subject_key_identifier, true, skid2_der}});
// |X509V3_ADD_DELETE| ignores the value and deletes the extension.
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
// Not finding an extension to delete is an error.
EXPECT_EQ(0, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
// |X509V3_ADD_REPLACE_EXISTING| fails if it cannot find a match.
EXPECT_EQ(
0, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic1_obj.get(),
/*crit=*/1, X509V3_ADD_REPLACE_EXISTING));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
// |X509V3_ADD_REPLACE| adds a new extension if not preseent.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic1_obj.get(),
/*crit=*/1, X509V3_ADD_REPLACE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der},
{NID_basic_constraints, true, basic1_der}});
// Delete the extension again.
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
// |X509V3_ADD_KEEP_EXISTING| adds a new extension if not preseent.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic1_obj.get(),
/*crit=*/1, X509V3_ADD_KEEP_EXISTING));
expect_extensions({{NID_subject_key_identifier, true, skid2_der},
{NID_basic_constraints, true, basic1_der}});
// Delete the extension again.
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
// |X509V3_ADD_APPEND| adds a new extension if not present.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic1_obj.get(),
/*crit=*/1, X509V3_ADD_APPEND));
expect_extensions({{NID_subject_key_identifier, true, skid2_der},
{NID_basic_constraints, true, basic1_der}});
// |X509V3_ADD_APPEND| keeps adding duplicates (invalid) even if present.
EXPECT_EQ(
1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, basic2_obj.get(),
/*crit=*/0, X509V3_ADD_APPEND));
expect_extensions({{NID_subject_key_identifier, true, skid2_der},
{NID_basic_constraints, true, basic1_der},
{NID_basic_constraints, false, basic2_der}});
// |X509V3_ADD_DELETE| only deletes one extension at a time.
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der},
{NID_basic_constraints, false, basic2_der}});
EXPECT_EQ(1, X509_add1_ext_i2d(x509.get(), NID_basic_constraints, nullptr, 0,
X509V3_ADD_DELETE));
expect_extensions({{NID_subject_key_identifier, true, skid2_der}});
}
TEST(X509Test, NameEntry) {
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
ASSERT_TRUE(name);
auto check_name = [&](const char *expected_rfc2253) {
// Check RDN indices are self-consistent.
int num = X509_NAME_entry_count(name.get());
if (num > 0) {
// RDN indices must start at zero.
EXPECT_EQ(0, X509_NAME_ENTRY_set(X509_NAME_get_entry(name.get(), 0)));
}
for (int i = 1; i < num; i++) {
int prev = X509_NAME_ENTRY_set(X509_NAME_get_entry(name.get(), i - 1));
int current = X509_NAME_ENTRY_set(X509_NAME_get_entry(name.get(), i));
// RDN indices must increase consecutively.
EXPECT_TRUE(prev == current || prev + 1 == current)
<< "Entry " << i << " has RDN index " << current
<< " which is inconsistent with previous index " << prev;
}
// Check the name based on the RFC 2253 serialization. Note the RFC 2253
// serialization is in reverse.
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
EXPECT_GE(X509_NAME_print_ex(bio.get(), name.get(), 0, XN_FLAG_RFC2253), 0);
const uint8_t *data;
size_t len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &data, &len));
EXPECT_EQ(expected_rfc2253, std::string(data, data + len));
};
check_name("");
// |loc| = -1, |set| = 0 appends as new RDNs.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_organizationName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Org"), /*len=*/-1, /*loc=*/-1,
/*set=*/0));
check_name("O=Org");
// |loc| = -1, |set| = 0 appends as new RDNs.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_commonName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Name"), /*len=*/-1, /*loc=*/-1,
/*set=*/0));
check_name("CN=Name,O=Org");
// Inserting in the middle of the set, but with |set| = 0 inserts a new RDN
// and fixes the "set" values as needed.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_organizationalUnitName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Unit"), /*len=*/-1, /*loc=*/1,
/*set=*/0));
check_name("CN=Name,OU=Unit,O=Org");
// |set = -1| adds to the previous entry's RDN. (Although putting O and OU at
// the same level makes little sense, the test is written this way to check
// the function isn't using attribute types to order things.)
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_organizationName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Org2"), /*len=*/-1, /*loc=*/2,
/*set=*/-1));
check_name("CN=Name,O=Org2+OU=Unit,O=Org");
// |set| = 1 adds to the next entry's RDN.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_commonName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Name2"), /*len=*/-1, /*loc=*/2,
/*set=*/-1));
check_name("CN=Name,O=Org2+CN=Name2+OU=Unit,O=Org");
// If there is no previous RDN, |set| = -1 makes a new RDN.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_countryName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("US"), /*len=*/-1, /*loc=*/0,
/*set=*/-1));
check_name("CN=Name,O=Org2+CN=Name2+OU=Unit,O=Org,C=US");
// Likewise if there is no next RDN.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_commonName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Name3"), /*len=*/-1, /*loc=*/-1,
/*set=*/1));
check_name("CN=Name3,CN=Name,O=Org2+CN=Name2+OU=Unit,O=Org,C=US");
// If |set| = 0 and we insert in the middle of an existing RDN, it adds an
// RDN boundary after the entry but not before. This is a quirk of how the
// function is implemented and hopefully not something any caller depends on.
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_commonName, MBSTRING_UTF8,
reinterpret_cast<const unsigned char *>("Name4"), /*len=*/-1, /*loc=*/3,
/*set=*/0));
check_name("CN=Name3,CN=Name,O=Org2+CN=Name2,CN=Name4+OU=Unit,O=Org,C=US");
// Entries may be deleted.
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 7));
check_name("CN=Name,O=Org2+CN=Name2,CN=Name4+OU=Unit,O=Org,C=US");
// When deleting the only attribute in an RDN, index invariants should still
// hold.
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 0));
check_name("CN=Name,O=Org2+CN=Name2,CN=Name4+OU=Unit,O=Org");
// Index invariants also hold when deleting attributes from non-singular RDNs.
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 1));
check_name("CN=Name,O=Org2+CN=Name2,CN=Name4,O=Org");
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 1));
check_name("CN=Name,O=Org2+CN=Name2,O=Org");
// Same as above, but delete the second attribute first.
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 2));
check_name("CN=Name,CN=Name2,O=Org");
X509_NAME_ENTRY_free(X509_NAME_delete_entry(name.get(), 1));
check_name("CN=Name,O=Org");
}
// Tests that non-integer types are rejected when passed as an argument to
// X509_set_serialNumber().
TEST(X509Test, SetSerialNumberChecksASN1StringType) {
bssl::UniquePtr<X509> root = CertFromPEM(kRootCAPEM);
ASSERT_TRUE(root);
// Passing an IA5String to X509_set_serialNumber() should fail.
bssl::UniquePtr<ASN1_IA5STRING> str(ASN1_IA5STRING_new());
ASSERT_TRUE(str);
EXPECT_FALSE(X509_set_serialNumber(root.get(), str.get()));
// Passing a negative serial number is allowed. While invalid, we do accept
// them and some callers rely in this for tests.
bssl::UniquePtr<ASN1_INTEGER> serial(ASN1_INTEGER_new());
ASSERT_TRUE(serial);
ASSERT_TRUE(ASN1_INTEGER_set_int64(serial.get(), -1));
ASSERT_TRUE(X509_set_serialNumber(root.get(), serial.get()));
int64_t val;
ASSERT_TRUE(ASN1_INTEGER_get_int64(&val, X509_get0_serialNumber(root.get())));
EXPECT_EQ(-1, val);
}
TEST(X509Test, Policy) {
bssl::UniquePtr<ASN1_OBJECT> oid1(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.1", /*dont_search_names=*/1));
ASSERT_TRUE(oid1);
bssl::UniquePtr<ASN1_OBJECT> oid2(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.2", /*dont_search_names=*/1));
ASSERT_TRUE(oid2);
bssl::UniquePtr<ASN1_OBJECT> oid3(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.3", /*dont_search_names=*/1));
ASSERT_TRUE(oid3);
bssl::UniquePtr<ASN1_OBJECT> oid4(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.4", /*dont_search_names=*/1));
ASSERT_TRUE(oid4);
bssl::UniquePtr<ASN1_OBJECT> oid5(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.5", /*dont_search_names=*/1));
ASSERT_TRUE(oid5);
bssl::UniquePtr<X509> root(
CertFromPEM(GetTestData("crypto/x509/test/policy_root.pem").c_str()));
ASSERT_TRUE(root);
bssl::UniquePtr<X509> root_cross_inhibit_mapping(CertFromPEM(
GetTestData("crypto/x509/test/policy_root_cross_inhibit_mapping.pem")
.c_str()));
ASSERT_TRUE(root_cross_inhibit_mapping);
bssl::UniquePtr<X509> root2(
CertFromPEM(GetTestData("crypto/x509/test/policy_root2.pem").c_str()));
ASSERT_TRUE(root2);
bssl::UniquePtr<X509> intermediate(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate.pem").c_str()));
ASSERT_TRUE(intermediate);
bssl::UniquePtr<X509> intermediate_any(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_any.pem").c_str()));
ASSERT_TRUE(intermediate_any);
bssl::UniquePtr<X509> intermediate_duplicate(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_duplicate.pem")
.c_str()));
ASSERT_TRUE(intermediate_duplicate);
bssl::UniquePtr<X509> intermediate_invalid(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_invalid.pem").c_str()));
ASSERT_TRUE(intermediate_invalid);
bssl::UniquePtr<X509> intermediate_mapped(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_mapped.pem")
.c_str()));
ASSERT_TRUE(intermediate_mapped);
bssl::UniquePtr<X509> intermediate_mapped_any(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_mapped_any.pem")
.c_str()));
ASSERT_TRUE(intermediate_mapped_any);
bssl::UniquePtr<X509> intermediate_mapped_oid3(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_mapped_oid3.pem")
.c_str()));
ASSERT_TRUE(intermediate_mapped_oid3);
bssl::UniquePtr<X509> intermediate_require(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_require.pem").c_str()));
ASSERT_TRUE(intermediate_require);
bssl::UniquePtr<X509> intermediate_require1(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_require1.pem")
.c_str()));
ASSERT_TRUE(intermediate_require1);
bssl::UniquePtr<X509> intermediate_require2(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_require2.pem")
.c_str()));
ASSERT_TRUE(intermediate_require2);
bssl::UniquePtr<X509> intermediate_require_duplicate(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate_require_duplicate.pem")
.c_str()));
ASSERT_TRUE(intermediate_require_duplicate);
bssl::UniquePtr<X509> intermediate_require_no_policies(CertFromPEM(
GetTestData(
"crypto/x509/test/policy_intermediate_require_no_policies.pem")
.c_str()));
ASSERT_TRUE(intermediate_require_no_policies);
bssl::UniquePtr<X509> leaf(
CertFromPEM(GetTestData("crypto/x509/test/policy_leaf.pem").c_str()));
ASSERT_TRUE(leaf);
bssl::UniquePtr<X509> leaf_any(
CertFromPEM(GetTestData("crypto/x509/test/policy_leaf_any.pem").c_str()));
ASSERT_TRUE(leaf_any);
bssl::UniquePtr<X509> leaf_duplicate(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_duplicate.pem").c_str()));
ASSERT_TRUE(leaf_duplicate);
bssl::UniquePtr<X509> leaf_invalid(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_invalid.pem").c_str()));
ASSERT_TRUE(leaf_invalid);
bssl::UniquePtr<X509> leaf_none(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_none.pem").c_str()));
ASSERT_TRUE(leaf_none);
bssl::UniquePtr<X509> leaf_oid1(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_oid1.pem").c_str()));
ASSERT_TRUE(leaf_oid1);
bssl::UniquePtr<X509> leaf_oid2(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_oid2.pem").c_str()));
ASSERT_TRUE(leaf_oid2);
bssl::UniquePtr<X509> leaf_oid3(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_oid3.pem").c_str()));
ASSERT_TRUE(leaf_oid3);
bssl::UniquePtr<X509> leaf_oid4(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_oid4.pem").c_str()));
ASSERT_TRUE(leaf_oid4);
bssl::UniquePtr<X509> leaf_oid5(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_oid5.pem").c_str()));
ASSERT_TRUE(leaf_oid5);
bssl::UniquePtr<X509> leaf_require(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_require.pem").c_str()));
ASSERT_TRUE(leaf_require);
bssl::UniquePtr<X509> leaf_require1(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_require1.pem").c_str()));
ASSERT_TRUE(leaf_require1);
auto set_policies = [](X509_STORE_CTX *ctx,
std::vector<const ASN1_OBJECT *> oids) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
for (const ASN1_OBJECT *oid : oids) {
bssl::UniquePtr<ASN1_OBJECT> copy(OBJ_dup(oid));
ASSERT_TRUE(copy);
ASSERT_TRUE(X509_VERIFY_PARAM_add0_policy(param, copy.get()));
copy.release(); // |X509_VERIFY_PARAM_add0_policy| takes ownership on
// success.
}
};
// The chain is good for |oid1| and |oid2|, but not |oid3|.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid2.get()});
}));
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get(), oid2.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get(), oid3.get()});
}));
// The policy extension cannot be parsed.
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf.get(), {root.get()}, {intermediate_invalid.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf_invalid.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf_invalid.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}));
// There is a duplicate policy in the policy extension.
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf.get(), {root.get()}, {intermediate_duplicate.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
// The policy extension in the leaf cannot be parsed.
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf_duplicate.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
// Without |X509_V_FLAG_EXPLICIT_POLICY|, the policy tree is built and
// intersected with user-specified policies, but it is not required to result
// in any valid policies.
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// However, a CA with policy constraints can require an explicit policy.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()},
{intermediate_require.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf.get(), {root.get()}, {intermediate_require.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// requireExplicitPolicy applies even if the application does not configure a
// user-initial-policy-set. If the validation results in no policies, the
// chain is invalid.
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_none.get(), {root.get()}, {intermediate_require.get()},
/*crls=*/{}));
// A leaf can also set requireExplicitPolicy.
EXPECT_EQ(X509_V_OK,
Verify(leaf_require.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, /*flags=*/0));
EXPECT_EQ(X509_V_OK, Verify(leaf_require.get(), {root.get()},
{intermediate.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_require.get(), {root.get()}, {intermediate.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// requireExplicitPolicy is a count of certificates to skip. If the value is
// not zero by the end of the chain, it doesn't count.
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf.get(), {root.get()}, {intermediate_require1.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate_require2.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf_require1.get(), {root.get()}, {intermediate.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// If multiple certificates specify the constraint, the more constrained value
// wins.
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_require1.get(), {root.get()}, {intermediate_require1.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_require.get(), {root.get()}, {intermediate_require2.get()},
/*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// An intermediate that requires an explicit policy, but then specifies no
// policies should fail verification as a result.
EXPECT_EQ(X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf.get(), {root.get()},
{intermediate_require_no_policies.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
// A constrained intermediate's policy extension has a duplicate policy, which
// is invalid. Historically this, and the above case, leaked memory.
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf.get(), {root.get()},
{intermediate_require_duplicate.get()}, /*crls=*/{},
/*flags=*/0, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
// The leaf asserts anyPolicy, but the intermediate does not. The resulting
// valid policies are the intersection.
EXPECT_EQ(
X509_V_OK,
Verify(leaf_any.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_any.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// The intermediate asserts anyPolicy, but the leaf does not. The resulting
// valid policies are the intersection.
EXPECT_EQ(
X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate_any.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf.get(), {root.get()}, {intermediate_any.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// Both assert anyPolicy. All policies are valid.
EXPECT_EQ(X509_V_OK,
Verify(leaf_any.get(), {root.get()}, {intermediate_any.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
EXPECT_EQ(X509_V_OK,
Verify(leaf_any.get(), {root.get()}, {intermediate_any.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// With just a trust anchor, policy checking silently succeeds.
EXPECT_EQ(X509_V_OK, Verify(root.get(), {root.get()}, {},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
for (bool use_any : {false, true}) {
SCOPED_TRACE(use_any);
X509 *cert =
use_any ? intermediate_mapped_any.get() : intermediate_mapped.get();
// OID3 is mapped to {OID1, OID2}, which means OID1 and OID2 (or both) are
// acceptable for OID3.
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid1.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid2.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// If the intermediate's policies were anyPolicy, OID3 at the leaf, despite
// being mapped, is still acceptable as OID3 at the root. Despite the OID3
// having expected_policy_set = {OID1, OID2}, it can match the anyPolicy
// node instead.
//
// If the intermediate's policies listed OIDs explicitly, OID3 at the leaf
// is not acceptable as OID3 at the root. OID3 has expected_polciy_set =
// {OID1, OID2} and no other node allows OID3.
EXPECT_EQ(use_any ? X509_V_OK : X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_oid3.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
// If the intermediate's policies were anyPolicy, OID1 at the leaf is no
// longer acceptable as OID1 at the root because policies only match
// anyPolicy when they match no other policy.
//
// If the intermediate's policies listed OIDs explicitly, OID1 at the leaf
// is acceptable as OID1 at the root because it will match both OID1 and
// OID3 (mapped) policies.
EXPECT_EQ(use_any ? X509_V_ERR_NO_EXPLICIT_POLICY : X509_V_OK,
Verify(leaf_oid1.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
// All pairs of OID4 and OID5 are mapped together, so either can stand for
// the other.
EXPECT_EQ(X509_V_OK, Verify(leaf_oid4.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid4.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid4.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid5.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid5.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid4.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid5.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid5.get()});
}));
EXPECT_EQ(X509_V_OK, Verify(leaf_oid4.get(), {root.get()}, {cert},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid4.get(), oid5.get()});
}));
}
// Although |intermediate_mapped_oid3| contains many mappings, it only accepts
// OID3. Nodes should not be created for the other mappings.
EXPECT_EQ(X509_V_OK, Verify(leaf_oid1.get(), {root.get()},
{intermediate_mapped_oid3.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_oid4.get(), {root.get()}, {intermediate_mapped_oid3.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid4.get()});
}));
// Policy mapping can be inhibited, either by the caller or a certificate in
// the chain, in which case mapped policies are unassertable (apart from some
// anyPolicy edge cases).
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_oid1.get(), {root.get()}, {intermediate_mapped_oid3.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY | X509_V_FLAG_INHIBIT_MAP,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
EXPECT_EQ(
X509_V_ERR_NO_EXPLICIT_POLICY,
Verify(leaf_oid1.get(), {root2.get()},
{intermediate_mapped_oid3.get(), root_cross_inhibit_mapping.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid3.get()});
}));
}
#if defined(OPENSSL_THREADS)
// A similar test to the above, but ensures the various bits of intermediate
// state are computed safely.
TEST(X509Test, PolicyThreads) {
const size_t kNumThreads = 10;
bssl::UniquePtr<ASN1_OBJECT> oid1(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.1", /*dont_search_names=*/1));
ASSERT_TRUE(oid1);
bssl::UniquePtr<ASN1_OBJECT> oid2(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.2", /*dont_search_names=*/1));
ASSERT_TRUE(oid2);
bssl::UniquePtr<ASN1_OBJECT> oid3(
OBJ_txt2obj("1.2.840.113554.4.1.72585.2.3", /*dont_search_names=*/1));
ASSERT_TRUE(oid3);
auto set_policies = [](X509_STORE_CTX *ctx,
std::vector<const ASN1_OBJECT *> oids) {
X509_VERIFY_PARAM *param = X509_STORE_CTX_get0_param(ctx);
for (const ASN1_OBJECT *oid : oids) {
bssl::UniquePtr<ASN1_OBJECT> copy(OBJ_dup(oid));
ASSERT_TRUE(copy);
ASSERT_TRUE(X509_VERIFY_PARAM_add0_policy(param, copy.get()));
copy.release(); // |X509_VERIFY_PARAM_add0_policy| takes ownership on
// success.
}
};
{
bssl::UniquePtr<X509> root(
CertFromPEM(GetTestData("crypto/x509/test/policy_root.pem").c_str()));
ASSERT_TRUE(root);
bssl::UniquePtr<X509> intermediate(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate.pem").c_str()));
ASSERT_TRUE(intermediate);
bssl::UniquePtr<X509> leaf(
CertFromPEM(GetTestData("crypto/x509/test/policy_leaf.pem").c_str()));
ASSERT_TRUE(leaf);
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] {
EXPECT_EQ(
X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, /*crls=*/{},
X509_V_FLAG_EXPLICIT_POLICY, [&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
});
}
for (auto &thread : threads) {
thread.join();
}
}
{
bssl::UniquePtr<X509> root(
CertFromPEM(GetTestData("crypto/x509/test/policy_root.pem").c_str()));
ASSERT_TRUE(root);
bssl::UniquePtr<X509> intermediate(CertFromPEM(
GetTestData("crypto/x509/test/policy_intermediate.pem").c_str()));
ASSERT_TRUE(intermediate);
bssl::UniquePtr<X509> leaf_invalid(CertFromPEM(
GetTestData("crypto/x509/test/policy_leaf_invalid.pem").c_str()));
ASSERT_TRUE(leaf_invalid);
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] {
EXPECT_EQ(X509_V_ERR_INVALID_POLICY_EXTENSION,
Verify(leaf_invalid.get(), {root.get()}, {intermediate.get()},
/*crls=*/{}, X509_V_FLAG_EXPLICIT_POLICY,
[&](X509_STORE_CTX *ctx) {
set_policies(ctx, {oid1.get()});
}));
});
}
for (auto &thread : threads) {
thread.join();
}
}
}
#endif // OPENSSL_THREADS
TEST(X509Test, ExtensionFromConf) {
static const char kTestOID[] = "1.2.840.113554.4.1.72585.2";
const struct {
const char *name;
std::string value;
// conf is the serialized confdb, or nullptr if none is to be provided.
const char *conf;
// expected is the resulting extension, encoded in DER, or the empty string
// if an error is expected.
std::vector<uint8_t> expected;
} kTests[] = {
// Many extensions have built-in syntax.
{"basicConstraints",
"critical,CA:true",
nullptr,
{0x30, 0x0f, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff, 0x04, 0x05,
0x30, 0x03, 0x01, 0x01, 0xff}},
{"basicConstraints",
"critical,CA:true,pathlen:1",
nullptr,
{0x30, 0x12, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff,
0x04, 0x08, 0x30, 0x06, 0x01, 0x01, 0xff, 0x02, 0x01, 0x01}},
// key:value tuples can be repeated and just override the previous value.
{"basicConstraints",
"critical,CA:true,pathlen:100,pathlen:1",
nullptr,
{0x30, 0x12, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff,
0x04, 0x08, 0x30, 0x06, 0x01, 0x01, 0xff, 0x02, 0x01, 0x01}},
// Extension contents may be referenced from a config section.
{"basicConstraints",
"critical,@section",
"[section]\nCA = true\n",
{0x30, 0x0f, 0x06, 0x03, 0x55, 0x1d, 0x13, 0x01, 0x01, 0xff, 0x04, 0x05,
0x30, 0x03, 0x01, 0x01, 0xff}},
// If no config is provided, this should fail.
{"basicConstraints", "critical,@section", nullptr, {}},
// issuingDistributionPoint takes a list of name:value pairs. Omitting the
// value is not allowed.
{"issuingDistributionPoint", "fullname", nullptr, {}},
{"issuingDistributionPoint",
"relativename:name",
"[name]\nCN=Hello\n",
{0x30, 0x1b, 0x06, 0x03, 0x55, 0x1d, 0x1c, 0x04, 0x14, 0x30,
0x12, 0xa0, 0x10, 0xa1, 0x0e, 0x30, 0x0c, 0x06, 0x03, 0x55,
0x04, 0x03, 0x0c, 0x05, 0x48, 0x65, 0x6c, 0x6c, 0x6f}},
// relativename referencing a section which doesn't exist.
{"issuingDistributionPoint",
"relativename:wrong_section_name",
"[name]\nCN=Hello\n",
{}},
// relativename must be a single RDN. By default, the section-based name
// syntax puts each attribute into its own RDN.
{"issuingDistributionPoint",
"relativename:name",
"[name]\nCN=Hello\nC=US\n",
{}},
// A single RDN with multiple attributes is allowed.
{"issuingDistributionPoint",
"relativename:name",
"[name]\nCN=Hello\n+C=US\n",
{0x30, 0x26, 0x06, 0x03, 0x55, 0x1d, 0x1c, 0x04, 0x1f, 0x30,
0x1d, 0xa0, 0x1b, 0xa1, 0x19, 0x30, 0x09, 0x06, 0x03, 0x55,
0x04, 0x06, 0x13, 0x02, 0x55, 0x53, 0x30, 0x0c, 0x06, 0x03,
0x55, 0x04, 0x03, 0x0c, 0x05, 0x48, 0x65, 0x6c, 0x6c, 0x6f}},
// Duplicate reason keys are an error. Reaching this case is interesting.
// The value can a string like "key:value,key:value", or it can be
// "@section" and reference a config section. If using a string, duplicate
// keys are possible, but then it is impossible to put commas in the
// value, as onlysomereasons expects. If using a section reference, it is
// impossible to have a duplicate key because the config file parser
// overrides the old value.
{"issuingDistributionPoint",
"onlysomereasons:keyCompromise",
nullptr,
{0x30, 0x0d, 0x06, 0x03, 0x55, 0x1d, 0x1c, 0x04, 0x06, 0x30, 0x04, 0x83,
0x02, 0x06, 0x40}},
{"issuingDistributionPoint",
"onlysomereasons:keyCompromise,onlysomereasons:CACompromise\n",
nullptr,
{}},
// subjectAltName has a series of string-based inputs for each name type.
{"subjectAltName",
"email:foo@example.com, URI:https://example.com, DNS:example.com, "
"RID:1.2.3.4, IP:127.0.0.1, IP:::1, dirName:section, "
"otherName:1.2.3.4;BOOLEAN:TRUE",
"[section]\nCN=Test\n",
{0x30, 0x78, 0x06, 0x03, 0x55, 0x1d, 0x11, 0x04, 0x71, 0x30, 0x6f, 0x81,
0x0f, 0x66, 0x6f, 0x6f, 0x40, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65,
0x2e, 0x63, 0x6f, 0x6d, 0x86, 0x13, 0x68, 0x74, 0x74, 0x70, 0x73, 0x3a,
0x2f, 0x2f, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63, 0x6f,
0x6d, 0x82, 0x0b, 0x65, 0x78, 0x61, 0x6d, 0x70, 0x6c, 0x65, 0x2e, 0x63,
0x6f, 0x6d, 0x88, 0x03, 0x2a, 0x03, 0x04, 0x87, 0x04, 0x7f, 0x00, 0x00,
0x01, 0x87, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xa4, 0x11, 0x30, 0x0f, 0x31,
0x0d, 0x30, 0x0b, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x04, 0x54, 0x65,
0x73, 0x74, 0xa0, 0x0a, 0x06, 0x03, 0x2a, 0x03, 0x04, 0xa0, 0x03, 0x01,
0x01, 0xff}},
// Syntax errors in each case, where they exist. (The string types just
// copy the string in as-is.)
{"subjectAltName", "RID:not_an_oid", nullptr, {}},
{"subjectAltName", "IP:not_an_ip", nullptr, {}},
{"subjectAltName", "dirName:no_conf_db", nullptr, {}},
{"subjectAltName", "dirName:missing_section", "[section]\nCN=Test\n", {}},
{"subjectAltName", "otherName:missing_semicolon", nullptr, {}},
{"subjectAltName", "otherName:1.2.3.4", nullptr, {}},
{"subjectAltName", "otherName:invalid_oid;BOOLEAN:TRUE", nullptr, {}},
{"subjectAltName", "otherName:1.2.3.4;invalid_value", nullptr, {}},
{"policyMappings",
"1.1.1.1:2.2.2.2",
nullptr,
{0x30, 0x15, 0x06, 0x03, 0x55, 0x1d, 0x21, 0x04, 0x0e, 0x30, 0x0c, 0x30,
0x0a, 0x06, 0x03, 0x29, 0x01, 0x01, 0x06, 0x03, 0x52, 0x02, 0x02}},
{"policyMappings", "invalid_oid:2.2.2.2", nullptr, {}},
{"policyMappings", "1.1.1.1:invalid_oid", nullptr, {}},
// The "DER:" prefix just specifies an arbitrary byte string. Colons
// separators are ignored.
{kTestOID, "DER:0001020304", nullptr, {0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05,
0x00, 0x01, 0x02, 0x03, 0x04}},
{kTestOID,
"DER:00:01:02:03:04",
nullptr,
{0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05, 0x00, 0x01, 0x02, 0x03, 0x04}},
{kTestOID, "DER:invalid hex", nullptr, {}},
// The "ASN1:" prefix implements a complex language for describing ASN.1
// structures. See
// https://www.openssl.org/docs/man1.1.1/man3/ASN1_generate_nconf.html
{kTestOID, "ASN1:invalid", nullptr, {}},
{kTestOID,
"ASN1:BOOLEAN:TRUE",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x01, 0x01, 0xff}},
{kTestOID, "ASN1:BOOL:yes", nullptr, {0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x03,
0x01, 0x01, 0xff}},
{kTestOID,
"ASN1:BOOLEAN:NO",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x01, 0x01, 0x00}},
{kTestOID,
"ASN1:BOOLEAN", // Missing value
nullptr,
{}},
{kTestOID, "ASN1:BOOLEAN:invalid", nullptr, {}},
{kTestOID, "ASN1:BOOLEAN:TRUE,invalid", nullptr, {}},
{kTestOID, "ASN1:NULL", nullptr, {0x30, 0x12, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x02, 0x05, 0x00}},
{kTestOID, "ASN1:NULL,invalid", nullptr, {}},
{kTestOID, "ASN1:NULL:invalid", nullptr, {}},
// Missing value.
{kTestOID, "ASN1:INTEGER", nullptr, {}},
{kTestOID, "ASN1:INTEGER:", nullptr, {}},
{kTestOID, "ASN1:INTEGER,invalid", nullptr, {}},
// INTEGER may be decimal or hexadecimal.
{kTestOID, "ASN1:INT:-0x10", nullptr, {0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x03,
0x02, 0x01, 0xf0}},
{kTestOID, "ASN1:INT:-10", nullptr, {0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x03,
0x02, 0x01, 0xf6}},
{kTestOID, "ASN1:INT:0", nullptr, {0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x03,
0x02, 0x01, 0x00}},
{kTestOID,
"ASN1:INTEGER:10",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x02, 0x01, 0x0a}},
{kTestOID,
"ASN1:INTEGER:0x10",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x02, 0x01, 0x10}},
{kTestOID, "ASN1:ENUM:0", nullptr, {0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x03,
0x0a, 0x01, 0x00}},
{kTestOID,
"ASN1:ENUMERATED:0",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x0a, 0x01, 0x00}},
// OIDs may be spelled out or specified by name.
{kTestOID, "ASN1:OBJECT:invalid", nullptr, {}},
{kTestOID,
"ASN1:OBJECT:basicConstraints",
nullptr,
{0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05, 0x06, 0x03, 0x55, 0x1d, 0x13}},
{kTestOID,
"ASN1:OBJECT:2.5.29.19",
nullptr,
{0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05, 0x06, 0x03, 0x55, 0x1d, 0x13}},
{kTestOID,
"ASN1:OID:2.5.29.19",
nullptr,
{0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05, 0x06, 0x03, 0x55, 0x1d, 0x13}},
{kTestOID, "ASN1:UTC:invalid", nullptr, {}},
{kTestOID, "ASN1:UTC:20001231235959Z", nullptr, {}},
{kTestOID, "ASN1:UTCTIME:invalid", nullptr, {}},
{kTestOID,
"ASN1:UTC:001231235959Z",
nullptr,
{0x30, 0x1f, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x0f, 0x17, 0x0d, 0x30, 0x30,
0x31, 0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5a}},
{kTestOID,
"ASN1:UTCTIME:001231235959Z",
nullptr,
{0x30, 0x1f, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x0f, 0x17, 0x0d, 0x30, 0x30,
0x31, 0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5a}},
{kTestOID, "ASN1:GENTIME:invalid", nullptr, {}},
{kTestOID, "ASN1:GENTIME:001231235959Z", nullptr, {}},
{kTestOID, "ASN1:GENERALIZEDTIME:invalid", nullptr, {}},
{kTestOID,
"ASN1:GENTIME:20001231235959Z",
nullptr,
{0x30, 0x21, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x11, 0x18, 0x0f, 0x32, 0x30, 0x30, 0x30,
0x31, 0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5a}},
{kTestOID,
"ASN1:GENERALIZEDTIME:20001231235959Z",
nullptr,
{0x30, 0x21, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x11, 0x18, 0x0f, 0x32, 0x30, 0x30, 0x30,
0x31, 0x32, 0x33, 0x31, 0x32, 0x33, 0x35, 0x39, 0x35, 0x39, 0x5a}},
// The default input format for string types is ASCII, which is then
// converted into the target string type.
{kTestOID, "ASN1:UTF8:hello", nullptr, {0x30, 0x17, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x07, 0x0c, 0x05,
0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:UTF8String:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x0c, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:UNIV:hello",
nullptr,
{0x30, 0x26, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x16, 0x1c, 0x14,
0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00,
0x00, 0x6c, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x6f}},
{kTestOID,
"ASN1:UNIVERSALSTRING:hello",
nullptr,
{0x30, 0x26, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x16, 0x1c, 0x14,
0x00, 0x00, 0x00, 0x68, 0x00, 0x00, 0x00, 0x65, 0x00, 0x00,
0x00, 0x6c, 0x00, 0x00, 0x00, 0x6c, 0x00, 0x00, 0x00, 0x6f}},
{kTestOID,
"ASN1:BMP:hello",
nullptr,
{0x30, 0x1c, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x0c, 0x1e, 0x0a,
0x00, 0x68, 0x00, 0x65, 0x00, 0x6c, 0x00, 0x6c, 0x00, 0x6f}},
{kTestOID,
"ASN1:BMPSTRING:hello",
nullptr,
{0x30, 0x1c, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x0c, 0x1e, 0x0a,
0x00, 0x68, 0x00, 0x65, 0x00, 0x6c, 0x00, 0x6c, 0x00, 0x6f}},
{kTestOID, "ASN1:IA5:hello", nullptr, {0x30, 0x17, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x07, 0x16, 0x05,
0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:IA5STRING:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x16, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:PRINTABLE:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x13, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:PRINTABLESTRING:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x13, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID, "ASN1:T61:hello", nullptr, {0x30, 0x17, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x07, 0x14, 0x05,
0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:T61STRING:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x14, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:TELETEXSTRING:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x14, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
// FORMAT:UTF8 switches the input format to UTF-8. This should be
// converted to the destination string, or rejected if invalid.
{kTestOID,
"ASN1:FORMAT:UTF8,UTF8:\xe2\x98\x83",
nullptr,
{0x30, 0x15, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x05, 0x0c, 0x03, 0xe2, 0x98, 0x83}},
{kTestOID,
"ASN1:FORMAT:UTF8,UNIV:\xe2\x98\x83",
nullptr,
{0x30, 0x16, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02,
0x04, 0x06, 0x1c, 0x04, 0x00, 0x00, 0x26, 0x03}},
{kTestOID,
"ASN1:FORMAT:UTF8,BMP:\xe2\x98\x83",
nullptr,
{0x30, 0x14, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x04, 0x1e, 0x02, 0x26, 0x03}},
{kTestOID, "ASN1:FORMAT:UTF8,IA5:\xe2\x98\x83", nullptr, {}},
{kTestOID,
"ASN1:FORMAT:UTF8,IA5:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x16, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID, "ASN1:FORMAT:UTF8,PRINTABLE:\xe2\x98\x83", nullptr, {}},
{kTestOID,
"ASN1:FORMAT:UTF8,PRINTABLE:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x13, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID, "ASN1:FORMAT:UTF8,T61:\xe2\x98\x83", nullptr, {}},
{kTestOID,
"ASN1:FORMAT:UTF8,T61:\xc3\xb7",
nullptr,
{0x30, 0x13, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x03, 0x14, 0x01, 0xf7}},
// Invalid UTF-8.
{kTestOID, "ASN1:FORMAT:UTF8,UTF8:\xff", nullptr, {}},
// We don't support these string types.
{kTestOID, "ASN1:NUMERIC:0", nullptr, {}},
{kTestOID, "ASN1:NUMERICSTRING:0", nullptr, {}},
{kTestOID, "ASN1:VISIBLE:hello", nullptr, {}},
{kTestOID, "ASN1:VISIBLESTRING:hello", nullptr, {}},
{kTestOID, "ASN1:GeneralString:hello", nullptr, {}},
// OCTET STRING and BIT STRING also default to ASCII, but also accept HEX.
// BIT STRING interprets OCTET STRING formats by having zero unused bits.
{kTestOID, "ASN1:OCT:hello", nullptr, {0x30, 0x17, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x07, 0x04, 0x05,
0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:OCTETSTRING:hello",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x04, 0x05, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:FORMAT:HEX,OCT:0123abcd",
nullptr,
{0x30, 0x16, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02,
0x04, 0x06, 0x04, 0x04, 0x01, 0x23, 0xab, 0xcd}},
{kTestOID,
"ASN1:BITSTR:hello",
nullptr,
{0x30, 0x18, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x08,
0x03, 0x06, 0x00, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:BITSTRING:hello",
nullptr,
{0x30, 0x18, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x08,
0x03, 0x06, 0x00, 0x68, 0x65, 0x6c, 0x6c, 0x6f}},
{kTestOID,
"ASN1:FORMAT:HEX,BITSTR:0123abcd",
nullptr,
{0x30, 0x17, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x07,
0x03, 0x05, 0x00, 0x01, 0x23, 0xab, 0xcd}},
{kTestOID, "ASN1:FORMAT:HEX,OCT:invalid hex", nullptr, {}},
// BIT STRING additionally supports a BITLIST type, which specifies a
// list of bits to set.
{kTestOID,
"ASN1:FORMAT:BITLIST,BITSTR:1,5",
nullptr,
{0x30, 0x14, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x04, 0x03, 0x02, 0x02, 0x44}},
{kTestOID, "ASN1:FORMAT:BITLIST,BITSTR:1,invalid,5", nullptr, {}},
// Negative bit inidices are not allowed.
{kTestOID, "ASN1:FORMAT:BITLIST,BITSTR:-1", nullptr, {}},
// We cap bit indices at 256.
{kTestOID, "ASN1:FORMAT:BITLIST,BITSTR:257", nullptr, {}},
{kTestOID,
"ASN1:FORMAT:BITLIST,BITSTR:256",
nullptr,
{0x30, 0x34, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x24, 0x03, 0x22, 0x07, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80}},
// Unsupported formats for string types.
{kTestOID, "ASN1:FORMAT:BITLIST,IA5:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:BITLIST,UTF8:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:BITLIST,OCT:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:BITLIST,UTC:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:HEX,IA5:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:HEX,UTF8:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:HEX,UTC:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:UTF8,OCT:abcd", nullptr, {}},
{kTestOID, "ASN1:FORMAT:UTF8,UTC:abcd", nullptr, {}},
// Invalid format type.
{kTestOID, "ASN1:FORMAT:invalid,IA5:abcd", nullptr, {}},
// SEQUENCE and SET encode empty values when there is no value.
{kTestOID, "ASN1:SEQ", nullptr, {0x30, 0x12, 0x06, 0x0c, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02, 0x04, 0x02, 0x30, 0x00}},
{kTestOID, "ASN1:SET", nullptr, {0x30, 0x12, 0x06, 0x0c, 0x2a, 0x86, 0x48,
0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02, 0x04, 0x02, 0x31, 0x00}},
{kTestOID, "ASN1:SEQUENCE", nullptr, {0x30, 0x12, 0x06, 0x0c, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09,
0x02, 0x04, 0x02, 0x30, 0x00}},
// Otherwise, they require a corresponding section in the config database
// to encode values. This can be nested recursively.
{kTestOID, "ASN1:SEQ:missing_confdb", nullptr, {}},
{kTestOID, "ASN1:SET:missing_confdb", nullptr, {}},
{kTestOID,
"ASN1:SEQ:seq",
R"(
[seq]
val1 = NULL
val2 = IA5:a
val3 = SET:set
[set]
# Config names do not matter, only the order.
val4 = INT:1
val3 = INT:2
val2 = SEQ:empty
val1 = INT:3
[empty]
)",
{0x30, 0x24, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x14, 0x30, 0x12,
0x05, 0x00, 0x16, 0x01, 0x61, 0x31, 0x0b, 0x02, 0x01, 0x01,
0x02, 0x01, 0x02, 0x02, 0x01, 0x03, 0x30, 0x00}},
// There is a recursion limit to stop infinite recursion.
{kTestOID,
"ASN1:SEQ:seq1",
R"(
[seq1]
val = SEQ:seq2
[seq2]
val = SEQ:seq1
)",
{}},
// Various modifiers wrap with explicit tagging or universal types.
{kTestOID,
"ASN1:EXP:0,EXP:16U,EXP:100A,EXP:1000C,OCTWRAP,SEQWRAP,SETWRAP,BITWRAP,"
"NULL",
nullptr,
{0x30, 0x26, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x16, 0xa0, 0x14,
0x30, 0x12, 0x7f, 0x64, 0x0f, 0xbf, 0x87, 0x68, 0x0b, 0x04,
0x09, 0x30, 0x07, 0x31, 0x05, 0x03, 0x03, 0x00, 0x05, 0x00}},
// Invalid tag numbers.
{kTestOID, "ASN1:EXP:-1,NULL", nullptr, {}},
{kTestOID, "ASN1:EXP:1?,NULL", nullptr, {}},
// Fits in |uint32_t| but exceeds |CBS_ASN1_TAG_NUMBER_MASK|, the largest
// tag number we support.
{kTestOID, "ASN1:EXP:536870912,NULL", nullptr, {}},
// Implicit tagging may also be applied to the underlying type, or the
// wrapping modifiers.
{kTestOID,
"ASN1:IMP:1A,OCTWRAP,IMP:10,SEQWRAP,IMP:100,SETWRAP,IMP:1000,BITWRAP,"
"IMP:10000,NULL",
nullptr,
{0x30, 0x20, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01,
0x84, 0xb7, 0x09, 0x02, 0x04, 0x10, 0x41, 0x0e, 0xaa, 0x0c, 0xbf, 0x64,
0x09, 0x9f, 0x87, 0x68, 0x05, 0x00, 0x9f, 0xce, 0x10, 0x00}},
// Implicit tagging may not be applied to explicit tagging or itself.
// There's no rule against this in ASN.1, but OpenSSL does not allow it
// here.
{kTestOID, "ASN1:IMP:1,EXP:1,NULL", nullptr, {}},
{kTestOID, "ASN1:IMP:1,IMP:1,NULL", nullptr, {}},
// [UNIVERSAL 0] is reserved.
{kTestOID, "ASN1:0U,NULL", nullptr, {}},
// Leading and trailing spaces on name:value pairs are removed. However,
// while these pairs are delimited by commas, a type will consumes
// everything after it, including commas, and spaces. So this is the
// string " a, b ".
{kTestOID,
"ASN1: EXP:0 , IA5: a, b ",
nullptr,
{0x30, 0x1a, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x0a, 0xa0, 0x08,
0x16, 0x06, 0x20, 0x61, 0x2c, 0x20, 0x62, 0x20}},
// Modifiers without a final type.
{kTestOID, "ASN1:EXP:1", nullptr, {}},
// Put it all together to describe a test Ed25519 key (wrapped inside an
// X.509 extension).
{kTestOID,
"ASN1:SEQUENCE:pkcs8",
R"(
[pkcs8]
vers = INT:0
alg = SEQWRAP,OID:1.3.101.112
key = FORMAT:HEX,OCTWRAP,OCT:9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60
)",
{0x30, 0x40, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04,
0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x30, 0x30, 0x2e, 0x02, 0x01,
0x00, 0x30, 0x05, 0x06, 0x03, 0x2b, 0x65, 0x70, 0x04, 0x22, 0x04,
0x20, 0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60, 0xba, 0x84,
0x4a, 0xf4, 0x92, 0xec, 0x2c, 0xc4, 0x44, 0x49, 0xc5, 0x69, 0x7b,
0x32, 0x69, 0x19, 0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60}},
// Sections can be referenced multiple times.
{kTestOID,
"ASN1:SEQUENCE:seq1",
R"(
[seq1]
val1 = SEQUENCE:seq2
val2 = SEQUENCE:seq2
[seq2]
val1 = INT:1
val2 = INT:2
)",
{0x30, 0x22, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7,
0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x02, 0x04, 0x12,
0x30, 0x10, 0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01,
0x02, 0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x02}},
// But we cap this before it blows up exponentially.
{kTestOID,
"ASN1:SEQ:seq1",
R"(
[seq1]
val1 = SEQ:seq2
val2 = SEQ:seq2
[seq2]
val1 = SEQ:seq3
val2 = SEQ:seq3
[seq3]
val1 = SEQ:seq4
val2 = SEQ:seq4
[seq4]
val1 = SEQ:seq5
val2 = SEQ:seq5
[seq5]
val1 = SEQ:seq6
val2 = SEQ:seq6
[seq6]
val1 = SEQ:seq7
val2 = SEQ:seq7
[seq7]
val1 = SEQ:seq8
val2 = SEQ:seq8
[seq8]
val1 = SEQ:seq9
val2 = SEQ:seq9
[seq9]
val1 = SEQ:seq10
val2 = SEQ:seq10
[seq10]
val1 = SEQ:seq11
val2 = SEQ:seq11
[seq11]
val1 = SEQ:seq12
val2 = SEQ:seq12
[seq12]
val1 = IA5:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
val2 = IA5:BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
)",
{}},
// Integer sizes are capped to mitigate quadratic behavior.
{kTestOID, "ASN1:INT:" + std::string(16384, '9'), nullptr, {}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.name);
SCOPED_TRACE(t.value);
SCOPED_TRACE(t.conf);
bssl::UniquePtr<CONF> conf;
if (t.conf != nullptr) {
conf.reset(NCONF_new(nullptr));
ASSERT_TRUE(conf);
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(t.conf, strlen(t.conf)));
ASSERT_TRUE(bio);
long error_line;
ASSERT_TRUE(NCONF_load_bio(conf.get(), bio.get(), &error_line))
<< "Failed to load config at line " << error_line;
}
bssl::UniquePtr<X509_EXTENSION> ext(
X509V3_EXT_nconf(conf.get(), nullptr, t.name, t.value.c_str()));
if (t.expected.empty()) {
EXPECT_FALSE(ext);
} else {
ASSERT_TRUE(ext);
uint8_t *der = nullptr;
int len = i2d_X509_EXTENSION(ext.get(), &der);
ASSERT_GE(len, 0);
bssl::UniquePtr<uint8_t> free_der(der);
EXPECT_EQ(Bytes(t.expected), Bytes(der, len));
}
// Repeat the test with an explicit |X509V3_CTX|.
X509V3_CTX ctx;
X509V3_set_ctx(&ctx, nullptr, nullptr, nullptr, nullptr, 0);
X509V3_set_nconf(&ctx, conf.get());
ext.reset(X509V3_EXT_nconf(conf.get(), &ctx, t.name, t.value.c_str()));
if (t.expected.empty()) {
EXPECT_FALSE(ext);
} else {
ASSERT_TRUE(ext);
uint8_t *der = nullptr;
int len = i2d_X509_EXTENSION(ext.get(), &der);
ASSERT_GE(len, 0);
bssl::UniquePtr<uint8_t> free_der(der);
EXPECT_EQ(Bytes(t.expected), Bytes(der, len));
}
}
}
TEST(X509Test, AddUnserializableExtension) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
bssl::UniquePtr<X509> x509 =
MakeTestCert("Issuer", "Subject", key.get(), /*is_ca=*/true);
ASSERT_TRUE(x509);
bssl::UniquePtr<X509_EXTENSION> ext(X509_EXTENSION_new());
ASSERT_TRUE(X509_EXTENSION_set_object(ext.get(), OBJ_get_undef()));
EXPECT_FALSE(X509_add_ext(x509.get(), ext.get(), /*loc=*/-1));
}
// Test that, when constructing an |X509_NAME|, names are sorted by DER order.
TEST(X509Test, SortRDN) {
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
ASSERT_TRUE(name);
auto append_entry_new_rdn = [&](const char *str) {
return X509_NAME_add_entry_by_NID(name.get(), NID_commonName, MBSTRING_ASC,
reinterpret_cast<const uint8_t *>(str),
strlen(str), /*loc=*/-1, /*set=*/0);
};
auto append_entry_prev_rdn = [&](const char *str) {
return X509_NAME_add_entry_by_NID(name.get(), NID_commonName, MBSTRING_ASC,
reinterpret_cast<const uint8_t *>(str),
strlen(str), /*loc=*/-1, /*set=*/-1);
};
// This is the sort order to expect.
ASSERT_TRUE(append_entry_new_rdn("A"));
ASSERT_TRUE(append_entry_prev_rdn("B"));
ASSERT_TRUE(append_entry_prev_rdn("AA"));
ASSERT_TRUE(append_entry_prev_rdn("AB"));
// The same RDN, with entries added in a different order.
ASSERT_TRUE(append_entry_new_rdn("AB"));
ASSERT_TRUE(append_entry_prev_rdn("AA"));
ASSERT_TRUE(append_entry_prev_rdn("B"));
ASSERT_TRUE(append_entry_prev_rdn("A"));
// The same RDN, with entries added in a different order.
ASSERT_TRUE(append_entry_new_rdn("A"));
ASSERT_TRUE(append_entry_prev_rdn("AA"));
ASSERT_TRUE(append_entry_prev_rdn("B"));
ASSERT_TRUE(append_entry_prev_rdn("AB"));
uint8_t *der = nullptr;
int der_len = i2d_X509_NAME(name.get(), &der);
ASSERT_GT(der_len, 0);
bssl::UniquePtr<uint8_t> free_der(der);
// SEQUENCE {
// SET {
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "A" }
// }
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "B" }
// }
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "AA" }
// }
// SEQUENCE {
// # commonName
// OBJECT_IDENTIFIER { 2.5.4.3 }
// UTF8String { "AB" }
// }
// }
// ...two more copies of the above SET...
// }
static uint8_t kExpected[] = {
0x30, 0x81, 0x84, 0x31, 0x2a, 0x30, 0x08, 0x06, 0x03, 0x55, 0x04, 0x03,
0x0c, 0x01, 0x41, 0x30, 0x08, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x01,
0x42, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x02, 0x41, 0x41,
0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x02, 0x41, 0x42, 0x31,
0x2a, 0x30, 0x08, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x01, 0x41, 0x30,
0x08, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c, 0x01, 0x42, 0x30, 0x09, 0x06,
0x03, 0x55, 0x04, 0x03, 0x0c, 0x02, 0x41, 0x41, 0x30, 0x09, 0x06, 0x03,
0x55, 0x04, 0x03, 0x0c, 0x02, 0x41, 0x42, 0x31, 0x2a, 0x30, 0x08, 0x06,
0x03, 0x55, 0x04, 0x03, 0x0c, 0x01, 0x41, 0x30, 0x08, 0x06, 0x03, 0x55,
0x04, 0x03, 0x0c, 0x01, 0x42, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x03,
0x0c, 0x02, 0x41, 0x41, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x03, 0x0c,
0x02, 0x41, 0x42};
EXPECT_EQ(Bytes(kExpected), Bytes(der, der_len));
}
TEST(X509Test, NameAttributeValues) {
// 1.2.840.113554.4.1.72585.0. We use an unrecognized OID because using an
// arbitrary ASN.1 type as the value for commonName is invalid. Our parser
// does not check this, but best to avoid unrelated errors in tests, in case
// we decide to later.
static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x00};
static const char kOIDText[] = "1.2.840.113554.4.1.72585.0";
auto encode_single_attribute_name =
[](CBS_ASN1_TAG tag,
const std::string &contents) -> std::vector<uint8_t> {
bssl::ScopedCBB cbb;
CBB seq, rdn, attr, attr_type, attr_value;
if (!CBB_init(cbb.get(), 128) ||
!CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&seq, &rdn, CBS_ASN1_SET) ||
!CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&attr, &attr_type, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&attr_type, kOID, sizeof(kOID)) ||
!CBB_add_asn1(&attr, &attr_value, tag) ||
!CBB_add_bytes(&attr_value,
reinterpret_cast<const uint8_t *>(contents.data()),
contents.size()) ||
!CBB_flush(cbb.get())) {
ADD_FAILURE() << "Could not encode name";
return {};
};
return std::vector<uint8_t>(CBB_data(cbb.get()),
CBB_data(cbb.get()) + CBB_len(cbb.get()));
};
const struct {
CBS_ASN1_TAG der_tag;
std::string der_contents;
int str_type;
std::string str_contents;
} kTests[] = {
// String types are parsed as string types.
{CBS_ASN1_BITSTRING, std::string("\0", 1), V_ASN1_BIT_STRING, ""},
{CBS_ASN1_UTF8STRING, "abc", V_ASN1_UTF8STRING, "abc"},
{CBS_ASN1_NUMERICSTRING, "123", V_ASN1_NUMERICSTRING, "123"},
{CBS_ASN1_PRINTABLESTRING, "abc", V_ASN1_PRINTABLESTRING, "abc"},
{CBS_ASN1_T61STRING, "abc", V_ASN1_T61STRING, "abc"},
{CBS_ASN1_IA5STRING, "abc", V_ASN1_IA5STRING, "abc"},
{CBS_ASN1_UNIVERSALSTRING, std::string("\0\0\0a", 4),
V_ASN1_UNIVERSALSTRING, std::string("\0\0\0a", 4)},
{CBS_ASN1_BMPSTRING, std::string("\0a", 2), V_ASN1_BMPSTRING,
std::string("\0a", 2)},
// ENUMERATED is supported but, currently, INTEGER is not.
{CBS_ASN1_ENUMERATED, "\x01", V_ASN1_ENUMERATED, "\x01"},
// Test negative values. These are interesting because, when encoding, the
// ASN.1 type must be determined from the string type, but the string type
// has an extra |V_ASN1_NEG| bit.
{CBS_ASN1_ENUMERATED, "\xff", V_ASN1_NEG_ENUMERATED, "\x01"},
// SEQUENCE is supported but, currently, SET is not. Note the
// |ASN1_STRING| representation will include the tag and length.
{CBS_ASN1_SEQUENCE, "", V_ASN1_SEQUENCE, std::string("\x30\x00", 2)},
// These types are not actually supported by the library but,
// historically, we would parse them, and not other unsupported types, due
// to quirks of |ASN1_tag2bit|.
{7, "", V_ASN1_OBJECT_DESCRIPTOR, ""},
{8, "", V_ASN1_EXTERNAL, ""},
{9, "", V_ASN1_REAL, ""},
{11, "", 11 /* EMBEDDED PDV */, ""},
{13, "", 13 /* RELATIVE-OID */, ""},
{14, "", 14 /* TIME */, ""},
{15, "", 15 /* not a type; reserved value */, ""},
{29, "", 29 /* CHARACTER STRING */, ""},
// TODO(crbug.com/boringssl/412): Attribute values are an ANY DEFINED BY
// type, so we actually shoudl be accepting all ASN.1 types. We currently
// do not and only accept the above types. Extend this test when we fix
// this.
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.der_tag);
SCOPED_TRACE(Bytes(t.der_contents));
// Construct an X.509 name containing a single RDN with a single attribute:
// kOID with the specified value.
auto encoded = encode_single_attribute_name(t.der_tag, t.der_contents);
ASSERT_FALSE(encoded.empty());
SCOPED_TRACE(Bytes(encoded));
// The input should parse.
const uint8_t *inp = encoded.data();
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &inp, encoded.size()));
ASSERT_TRUE(name);
EXPECT_EQ(inp, encoded.data() + encoded.size())
<< "input was not fully consumed";
// Check there is a single attribute with the expected in-memory
// representation.
ASSERT_EQ(1, X509_NAME_entry_count(name.get()));
const X509_NAME_ENTRY *entry = X509_NAME_get_entry(name.get(), 0);
const ASN1_OBJECT *obj = X509_NAME_ENTRY_get_object(entry);
EXPECT_EQ(Bytes(OBJ_get0_data(obj), OBJ_length(obj)), Bytes(kOID));
const ASN1_STRING *value = X509_NAME_ENTRY_get_data(entry);
EXPECT_EQ(ASN1_STRING_type(value), t.str_type);
EXPECT_EQ(Bytes(ASN1_STRING_get0_data(value), ASN1_STRING_length(value)),
Bytes(t.str_contents));
// The name should re-encode with the same input.
uint8_t *der = nullptr;
int der_len = i2d_X509_NAME(name.get(), &der);
ASSERT_GE(der_len, 0);
bssl::UniquePtr<uint8_t> free_der(der);
EXPECT_EQ(Bytes(der, der_len), Bytes(encoded));
// X509_NAME internally caches its encoding, which means the check above
// does not fully test re-encoding. Repeat the test by constructing an
// |X509_NAME| from the string representation.
name.reset(X509_NAME_new());
ASSERT_TRUE(name);
ASSERT_TRUE(X509_NAME_add_entry_by_txt(
name.get(), kOIDText, t.str_type,
reinterpret_cast<const uint8_t *>(t.str_contents.data()),
t.str_contents.size(), /*loc=*/-1, /*set=*/0));
// The name should re-encode with the same input.
der = nullptr;
der_len = i2d_X509_NAME(name.get(), &der);
ASSERT_GE(der_len, 0);
free_der.reset(der);
EXPECT_EQ(Bytes(der, der_len), Bytes(encoded));
}
const struct {
CBS_ASN1_TAG der_tag;
std::string der_contents;
} kInvalidTests[] = {
// Errors in supported universal types should be handled.
{CBS_ASN1_NULL, "not null"},
{CBS_ASN1_BOOLEAN, "not bool"},
{CBS_ASN1_OBJECT, ""},
{CBS_ASN1_INTEGER, std::string("\0\0", 2)},
{CBS_ASN1_ENUMERATED, std::string("\0\0", 2)},
{CBS_ASN1_BITSTRING, ""},
{CBS_ASN1_UTF8STRING, "not utf-8 \xff"},
{CBS_ASN1_BMPSTRING, "not utf-16 "},
{CBS_ASN1_UNIVERSALSTRING, "not utf-32"},
{CBS_ASN1_UTCTIME, "not utctime"},
{CBS_ASN1_GENERALIZEDTIME, "not generalizedtime"},
{CBS_ASN1_UTF8STRING | CBS_ASN1_CONSTRUCTED, ""},
{CBS_ASN1_SEQUENCE & ~CBS_ASN1_CONSTRUCTED, ""},
// TODO(crbug.com/boringssl/412): The following inputs should parse, but
// are currently rejected because they cannot be represented in
// |ASN1_PRINTABLE|, either because they don't fit in |ASN1_STRING| or
// simply in the |B_ASN1_PRINTABLE| bitmask.
{CBS_ASN1_NULL, ""},
{CBS_ASN1_BOOLEAN, std::string("\x00", 1)},
{CBS_ASN1_BOOLEAN, "\xff"},
{CBS_ASN1_OBJECT, "\x01\x02\x03\x04"},
{CBS_ASN1_INTEGER, "\x01"},
{CBS_ASN1_INTEGER, "\xff"},
{CBS_ASN1_OCTETSTRING, ""},
{CBS_ASN1_UTCTIME, "700101000000Z"},
{CBS_ASN1_GENERALIZEDTIME, "19700101000000Z"},
{CBS_ASN1_SET, ""},
{CBS_ASN1_APPLICATION | CBS_ASN1_CONSTRUCTED | 42, ""},
{CBS_ASN1_APPLICATION | 42, ""},
};
for (const auto &t : kInvalidTests) {
SCOPED_TRACE(t.der_tag);
SCOPED_TRACE(Bytes(t.der_contents));
// Construct an X.509 name containing a single RDN with a single attribute:
// kOID with the specified value.
auto encoded = encode_single_attribute_name(t.der_tag, t.der_contents);
ASSERT_FALSE(encoded.empty());
SCOPED_TRACE(Bytes(encoded));
// The input should not parse.
const uint8_t *inp = encoded.data();
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &inp, encoded.size()));
EXPECT_FALSE(name);
}
}
TEST(X509Test, GetTextByOBJ) {
struct OBJTestCase {
const char *content;
int content_type;
int len;
int expected_result;
const char *expected_string;
} kTests[] = {
{"", V_ASN1_UTF8STRING, 0, 0, ""},
{"derp", V_ASN1_UTF8STRING, 4, 4, "derp"},
{"\x30\x00", // Empty sequence can not be converted to UTF-8
V_ASN1_SEQUENCE, 2, -1, ""},
{
"der\0p",
V_ASN1_TELETEXSTRING,
5,
-1,
"",
},
{
"0123456789ABCDEF",
V_ASN1_IA5STRING,
16,
16,
"0123456789ABCDEF",
},
{
"\x07\xff",
V_ASN1_BMPSTRING,
2,
2,
"\xdf\xbf",
},
{
"\x00\xc3\x00\xaf",
V_ASN1_BMPSTRING,
4,
4,
"\xc3\x83\xc2\xaf",
},
};
for (const auto &test : kTests) {
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
ASSERT_TRUE(name);
ASSERT_TRUE(X509_NAME_add_entry_by_NID(
name.get(), NID_commonName, test.content_type,
reinterpret_cast<const uint8_t *>(test.content), test.len, /*loc=*/-1,
/*set=*/0));
char text[256] = {};
EXPECT_EQ(test.expected_result,
X509_NAME_get_text_by_NID(name.get(), NID_commonName, text,
sizeof(text)));
EXPECT_STREQ(text, test.expected_string);
if (test.expected_result > 0) {
// Test truncation. The function writes a trailing NUL byte so the
// buffer needs to be one bigger than the expected result.
char small[2] = "a";
EXPECT_EQ(
-1, X509_NAME_get_text_by_NID(name.get(), NID_commonName, small, 1));
// The buffer should be unmodified by truncation failure.
EXPECT_STREQ(small, "a");
}
}
}
TEST(X509Test, ParamInheritance) {
// |X509_VERIFY_PARAM_inherit| with both unset.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
ASSERT_TRUE(X509_VERIFY_PARAM_inherit(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), -1);
}
// |X509_VERIFY_PARAM_inherit| with source set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(src.get(), 5);
ASSERT_TRUE(X509_VERIFY_PARAM_inherit(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 5);
}
// |X509_VERIFY_PARAM_inherit| with destination set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(dest.get(), 5);
ASSERT_TRUE(X509_VERIFY_PARAM_inherit(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 5);
}
// |X509_VERIFY_PARAM_inherit| with both set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(dest.get(), 5);
X509_VERIFY_PARAM_set_depth(src.get(), 10);
ASSERT_TRUE(X509_VERIFY_PARAM_inherit(dest.get(), src.get()));
// The existing value is used.
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 5);
}
// |X509_VERIFY_PARAM_set1| with both unset.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
ASSERT_TRUE(X509_VERIFY_PARAM_set1(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), -1);
}
// |X509_VERIFY_PARAM_set1| with source set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(src.get(), 5);
ASSERT_TRUE(X509_VERIFY_PARAM_set1(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 5);
}
// |X509_VERIFY_PARAM_set1| with destination set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(dest.get(), 5);
ASSERT_TRUE(X509_VERIFY_PARAM_set1(dest.get(), src.get()));
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 5);
}
// |X509_VERIFY_PARAM_set1| with both set.
{
bssl::UniquePtr<X509_VERIFY_PARAM> dest(X509_VERIFY_PARAM_new());
ASSERT_TRUE(dest);
bssl::UniquePtr<X509_VERIFY_PARAM> src(X509_VERIFY_PARAM_new());
ASSERT_TRUE(src);
X509_VERIFY_PARAM_set_depth(dest.get(), 5);
X509_VERIFY_PARAM_set_depth(src.get(), 10);
ASSERT_TRUE(X509_VERIFY_PARAM_set1(dest.get(), src.get()));
// The new value is used.
EXPECT_EQ(X509_VERIFY_PARAM_get_depth(dest.get()), 10);
}
}
TEST(X509Test, PublicKeyCache) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
X509_PUBKEY *pub = nullptr;
ASSERT_TRUE(X509_PUBKEY_set(&pub, key.get()));
bssl::UniquePtr<X509_PUBKEY> free_pub(pub);
bssl::UniquePtr<EVP_PKEY> key2(X509_PUBKEY_get(pub));
ASSERT_TRUE(key2);
EXPECT_EQ(1, EVP_PKEY_cmp(key.get(), key2.get()));
// Replace |pub| with different (garbage) values.
ASSERT_TRUE(X509_PUBKEY_set0_param(pub, OBJ_nid2obj(NID_subject_alt_name),
V_ASN1_NULL, nullptr, nullptr, 0));
// The cached key should no longer be returned.
key2.reset(X509_PUBKEY_get(pub));
EXPECT_FALSE(key2);
}
// Tests some unusual behavior in |X509_STORE_CTX_set_purpose| and
// |X509_STORE_CTX_set_trust|.
TEST(X509Test, ContextTrustAndPurpose) {
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
bssl::UniquePtr<X509> leaf(CertFromPEM(kLeafPEM));
ASSERT_TRUE(leaf);
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(), nullptr));
// Initially, neither parameter is set.
EXPECT_EQ(ctx->param->purpose, 0);
EXPECT_EQ(ctx->param->trust, 0);
// Invalid purpose and trust types fail.
EXPECT_FALSE(X509_STORE_CTX_set_purpose(ctx.get(), 999));
EXPECT_FALSE(X509_STORE_CTX_set_trust(ctx.get(), 999));
// It is not possible to set |X509_PURPOSE_ANY| with this API, because there
// is no corresponding trust.
EXPECT_FALSE(X509_STORE_CTX_set_purpose(ctx.get(), X509_PURPOSE_ANY));
// Setting a purpose also sets the corresponding trust.
ASSERT_TRUE(X509_STORE_CTX_set_purpose(ctx.get(), X509_PURPOSE_SSL_SERVER));
EXPECT_EQ(ctx->param->purpose, X509_PURPOSE_SSL_SERVER);
EXPECT_EQ(ctx->param->trust, X509_TRUST_SSL_SERVER);
// Once set, the functions silently do nothing.
ASSERT_TRUE(X509_STORE_CTX_set_purpose(ctx.get(), X509_PURPOSE_SSL_CLIENT));
ASSERT_TRUE(X509_STORE_CTX_set_trust(ctx.get(), X509_TRUST_SSL_CLIENT));
EXPECT_EQ(ctx->param->purpose, X509_PURPOSE_SSL_SERVER);
EXPECT_EQ(ctx->param->trust, X509_TRUST_SSL_SERVER);
// Start over.
ctx.reset(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(), nullptr));
EXPECT_EQ(ctx->param->purpose, 0);
EXPECT_EQ(ctx->param->trust, 0);
// Setting trust leaves purpose unset.
ASSERT_TRUE(X509_STORE_CTX_set_trust(ctx.get(), X509_TRUST_SSL_SERVER));
EXPECT_EQ(ctx->param->purpose, 0);
EXPECT_EQ(ctx->param->trust, X509_TRUST_SSL_SERVER);
// If trust is set, but not purpose, |X509_STORE_CTX_set_purpose| only sets
// purpose.
ASSERT_TRUE(X509_STORE_CTX_set_purpose(ctx.get(), X509_PURPOSE_SSL_CLIENT));
EXPECT_EQ(ctx->param->purpose, X509_PURPOSE_SSL_CLIENT);
EXPECT_EQ(ctx->param->trust, X509_TRUST_SSL_SERVER);
// Start over.
ctx.reset(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), leaf.get(), nullptr));
EXPECT_EQ(ctx->param->purpose, 0);
EXPECT_EQ(ctx->param->trust, 0);
// If purpose is set, but not trust, |X509_STORE_CTX_set_purpose| only sets
// trust.
ASSERT_TRUE(X509_VERIFY_PARAM_set_purpose(
X509_STORE_CTX_get0_param(ctx.get()), X509_PURPOSE_SSL_CLIENT));
EXPECT_EQ(ctx->param->purpose, X509_PURPOSE_SSL_CLIENT);
EXPECT_EQ(ctx->param->trust, 0);
ASSERT_TRUE(X509_STORE_CTX_set_purpose(ctx.get(), X509_PURPOSE_SSL_SERVER));
EXPECT_EQ(ctx->param->purpose, X509_PURPOSE_SSL_CLIENT);
EXPECT_EQ(ctx->param->trust, X509_TRUST_SSL_SERVER);
}
TEST(X509Test, Purpose) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
struct {
int purpose;
int eku_nid;
std::vector<KeyUsage> key_usages;
} kTests[] = {
{X509_PURPOSE_SSL_CLIENT,
NID_client_auth,
{KeyUsage::kDigitalSignature, KeyUsage::kKeyAgreement}},
{X509_PURPOSE_SSL_SERVER,
NID_server_auth,
{KeyUsage::kDigitalSignature, KeyUsage::kKeyAgreement,
KeyUsage::kKeyEncipherment}},
{X509_PURPOSE_NS_SSL_SERVER,
NID_server_auth,
{KeyUsage::kKeyEncipherment}},
{X509_PURPOSE_SMIME_SIGN,
NID_email_protect,
{KeyUsage::kDigitalSignature, KeyUsage::kNonRepudiation}},
{X509_PURPOSE_SMIME_ENCRYPT,
NID_email_protect,
{KeyUsage::kKeyEncipherment}},
{X509_PURPOSE_CRL_SIGN, NID_undef, {KeyUsage::kCRLSign}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.purpose);
auto configure_callback = [&](X509_STORE_CTX *ctx) {
X509_STORE_CTX_set_purpose(ctx, t.purpose);
};
// An unconstrained cert chain is valid.
bssl::UniquePtr<X509> root =
MakeTestCert("Root", "Root", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root);
ASSERT_TRUE(X509_sign(root.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> intermediate =
MakeTestCert("Root", "Intermediate", key.get(), /*is_ca=*/true);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(X509_sign(intermediate.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509> leaf =
MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {intermediate.get()},
{}, 0, configure_callback));
// A leaf and intermediate with compatible constraints is valid.
intermediate =
MakeTestCert("Root", "Intermediate", key.get(), /*is_ca=*/true);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(AddKeyUsage(intermediate.get(), {KeyUsage::kKeyCertSign}));
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(AddExtendedKeyUsage(intermediate.get(), {t.eku_nid}));
}
ASSERT_TRUE(X509_sign(intermediate.get(), key.get(), EVP_sha256()));
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(AddExtendedKeyUsage(leaf.get(), {t.eku_nid}));
}
ASSERT_TRUE(AddKeyUsage(leaf.get(), t.key_usages));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {intermediate.get()},
{}, 0, configure_callback));
// Each key usage asserted individually is valid.
for (KeyUsage usage : t.key_usages) {
SCOPED_TRACE(static_cast<int>(usage));
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(AddExtendedKeyUsage(leaf.get(), {t.eku_nid}));
}
ASSERT_TRUE(AddKeyUsage(leaf.get(), {usage}));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_OK,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
}
// A leaf with the wrong EKU is invalid.
if (t.eku_nid != NID_undef) {
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(AddExtendedKeyUsage(leaf.get(), {NID_rsaEncryption}));
ASSERT_TRUE(AddKeyUsage(leaf.get(), t.key_usages));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_INVALID_PURPOSE,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
}
// A leaf without any of the requested key usages is invalid.
std::vector<KeyUsage> usages;
for (int i = 0; i < 10; i++) {
auto k = static_cast<KeyUsage>(i);
if (std::find(t.key_usages.begin(), t.key_usages.end(), k) ==
t.key_usages.end()) {
usages.push_back(k);
}
}
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(AddExtendedKeyUsage(leaf.get(), {t.eku_nid}));
}
ASSERT_TRUE(AddKeyUsage(leaf.get(), usages));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_INVALID_PURPOSE,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
// Extra EKUs and key usages are fine.
usages.clear();
for (int i = 0; i < 10; i++) {
usages.push_back(static_cast<KeyUsage>(i));
}
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(
AddExtendedKeyUsage(leaf.get(), {t.eku_nid, NID_rsaEncryption}));
}
ASSERT_TRUE(AddKeyUsage(leaf.get(), usages));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {intermediate.get()},
{}, 0, configure_callback));
// anyExtendedKeyUsage is not allowed in place of a concrete EKU.
if (t.eku_nid != NID_undef) {
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(AddExtendedKeyUsage(leaf.get(), {NID_anyExtendedKeyUsage}));
ASSERT_TRUE(AddKeyUsage(leaf.get(), t.key_usages));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_INVALID_PURPOSE,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
}
// Restore |leaf| to a valid option.
leaf = MakeTestCert("Intermediate", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
// The intermediate must have the keyCertSign bit. This bit is checked in
// multiple places. The first place that fails is in looking for candidate
// issuers.
intermediate =
MakeTestCert("Root", "Intermediate", key.get(), /*is_ca=*/true);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(AddKeyUsage(intermediate.get(), {KeyUsage::kDigitalSignature}));
if (t.eku_nid != NID_undef) {
ASSERT_TRUE(AddExtendedKeyUsage(intermediate.get(), {t.eku_nid}));
}
ASSERT_TRUE(X509_sign(intermediate.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
// The intermediate must have the EKU asserted.
if (t.eku_nid != NID_undef) {
intermediate =
MakeTestCert("Root", "Intermediate", key.get(), /*is_ca=*/true);
ASSERT_TRUE(intermediate);
ASSERT_TRUE(AddKeyUsage(intermediate.get(), {KeyUsage::kKeyCertSign}));
ASSERT_TRUE(AddExtendedKeyUsage(intermediate.get(), {NID_rsaEncryption}));
ASSERT_TRUE(X509_sign(intermediate.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_INVALID_PURPOSE,
Verify(leaf.get(), {root.get()}, {intermediate.get()}, {}, 0,
configure_callback));
}
}
}
TEST(X509Test, Trust) {
struct Certs {
bssl::UniquePtr<X509> normal;
bssl::UniquePtr<X509> trusted_server, distrusted_server;
bssl::UniquePtr<X509> trusted_any, distrusted_any;
};
auto certs_from_pem = [](const char *pem) -> Certs {
Certs certs;
certs.normal = CertFromPEM(pem);
certs.trusted_server = CertFromPEM(pem);
certs.distrusted_server = CertFromPEM(pem);
certs.trusted_any = CertFromPEM(pem);
certs.distrusted_any = CertFromPEM(pem);
if (certs.normal == nullptr || certs.trusted_server == nullptr ||
certs.distrusted_server == nullptr || certs.trusted_any == nullptr ||
certs.distrusted_any == nullptr ||
!X509_add1_trust_object(certs.trusted_server.get(),
OBJ_nid2obj(NID_server_auth)) ||
!X509_add1_reject_object(certs.distrusted_server.get(),
OBJ_nid2obj(NID_server_auth)) ||
!X509_add1_trust_object(certs.trusted_any.get(),
OBJ_nid2obj(NID_anyExtendedKeyUsage)) ||
!X509_add1_reject_object(certs.distrusted_any.get(),
OBJ_nid2obj(NID_anyExtendedKeyUsage))) {
return Certs{};
}
return certs;
};
Certs root = certs_from_pem(kRootCAPEM);
Certs intermediate = certs_from_pem(kIntermediatePEM);
Certs leaf = certs_from_pem(kLeafPEM);
ASSERT_TRUE(root.normal);
ASSERT_TRUE(intermediate.normal);
ASSERT_TRUE(leaf.normal);
// By default, trust is determined by a combination of self-signedness and
// NID_anyExtendedKeyUsage.
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.normal.get()},
{intermediate.normal.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.trusted_any.get()},
{intermediate.normal.get()}, {}));
EXPECT_EQ(X509_V_ERR_CERT_REJECTED,
Verify(leaf.normal.get(), {root.distrusted_any.get()},
{intermediate.normal.get()}, {}));
// Intermediate certificates are not self-signed, so must have an
// NID_anyExtendedKeyUsage trust setting.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT,
Verify(leaf.normal.get(), {intermediate.normal.get()}, {}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(),
{intermediate.trusted_any.get()}, {}, {}));
EXPECT_EQ(
X509_V_ERR_CERT_REJECTED,
Verify(leaf.normal.get(), {intermediate.distrusted_any.get()}, {}, {}));
// If a certificate has trust settings, but only for a different OID, the
// self-signed rule still takes effect.
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.trusted_server.get()},
{intermediate.normal.get()}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.distrusted_server.get()},
{intermediate.normal.get()}, {}));
EXPECT_EQ(
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT,
Verify(leaf.normal.get(), {intermediate.trusted_server.get()}, {}, {}));
// |X509_TRUST_SSL_SERVER| should instead look at self-signedness and
// |NID_server_auth|.
auto set_server_trust = [](X509_STORE_CTX *ctx) {
X509_STORE_CTX_set_trust(ctx, X509_TRUST_SSL_SERVER);
};
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.normal.get()},
{intermediate.normal.get()}, {}, /*flags=*/0,
set_server_trust));
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(), {root.trusted_server.get()},
{intermediate.normal.get()}, {}, /*flags=*/0,
set_server_trust));
EXPECT_EQ(
X509_V_ERR_CERT_REJECTED,
Verify(leaf.normal.get(), {root.distrusted_server.get()},
{intermediate.normal.get()}, {}, /*flags=*/0, set_server_trust));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT,
Verify(leaf.normal.get(), {intermediate.normal.get()}, {}, {},
/*flags=*/0, set_server_trust));
EXPECT_EQ(X509_V_OK, Verify(leaf.normal.get(),
{intermediate.trusted_server.get()}, {}, {},
/*flags=*/0, set_server_trust));
EXPECT_EQ(X509_V_ERR_CERT_REJECTED,
Verify(leaf.normal.get(), {intermediate.distrusted_server.get()},
{}, {}, /*flags=*/0, set_server_trust));
// NID_anyExtendedKeyUsage is just an unrelated OID to X509_TRUST_SSL_SERVER.
// Unlike the default behavior, once a certificate has explicit trust settings
// for any OID, the self-signed check is disabled.
EXPECT_EQ(
X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT,
Verify(leaf.normal.get(), {root.trusted_any.get()},
{intermediate.normal.get()}, {}, /*flags=*/0, set_server_trust));
// Trust settings on a certificate are ignored if the leaf did not come from
// |X509_STORE|. This is important because trust settings may be serialized
// via |d2i_X509_AUX|. It is often not obvious which functions may trigger
// this, so callers may inadvertently run with attacker-supplied trust
// settings on untrusted certificates.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
Verify(leaf.trusted_server.get(), /*roots=*/{},
/*intermediates=*/{intermediate.trusted_server.get()}, {},
/*flags=*/0, set_server_trust));
EXPECT_EQ(
X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN,
Verify(leaf.trusted_server.get(), /*roots=*/{},
/*intermediates=*/
{intermediate.trusted_server.get(), root.trusted_server.get()}, {},
/*flags=*/0, set_server_trust));
// Likewise, distrusts only take effect from |X509_STORE|.
EXPECT_EQ(X509_V_OK, Verify(leaf.distrusted_server.get(), {root.normal.get()},
{intermediate.normal.get()}, {},
/*flags=*/0, set_server_trust));
}
// Test some APIs that rust-openssl uses to look up purposes by name.
TEST(X509Test, PurposeByShortName) {
int idx = X509_PURPOSE_get_by_sname("sslserver");
ASSERT_NE(idx, -1);
const X509_PURPOSE *purpose = X509_PURPOSE_get0(idx);
ASSERT_TRUE(purpose);
EXPECT_EQ(X509_PURPOSE_get_id(purpose), X509_PURPOSE_SSL_SERVER);
}
TEST(X509Test, CriticalExtension) {
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
bssl::UniquePtr<X509> root =
MakeTestCert("Root", "Root", key.get(), /*is_ca=*/true);
ASSERT_TRUE(root);
ASSERT_TRUE(X509_sign(root.get(), key.get(), EVP_sha256()));
// Issue a certificate with a critical Netscape certificate type extension. We
// do not recognize this extension, so this certificate should be rejected.
bssl::UniquePtr<X509> leaf =
MakeTestCert("Root", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf);
bssl::UniquePtr<ASN1_BIT_STRING> cert_type(ASN1_BIT_STRING_new());
ASSERT_TRUE(cert_type);
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(cert_type.get(), /*n=*/0, /*value=*/1));
ASSERT_TRUE(X509_add1_ext_i2d(leaf.get(), NID_netscape_cert_type,
cert_type.get(),
/*crit=*/1, /*flags=*/0));
ASSERT_TRUE(X509_sign(leaf.get(), key.get(), EVP_sha256()));
EXPECT_EQ(X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION,
Verify(leaf.get(), {root.get()}, {}, {}));
EXPECT_EQ(X509_V_OK, Verify(leaf.get(), {root.get()}, {}, {},
X509_V_FLAG_IGNORE_CRITICAL));
}
enum NameHash { kOldHash, kNewHash };
// TemporaryHashDir constructs a temporary directory in the format of
// |X509_LOOKUP_hash_dir|.
class TemporaryHashDir {
public:
explicit TemporaryHashDir(int type) : type_(type) {}
bool Init() { return dir_.Init(); }
const std::string &path() const { return dir_.path(); }
size_t num_cert_hashes() const { return next_cert_.size(); }
size_t num_crl_hashes() const { return next_crl_.size(); }
bool AddCert(X509 *x509, NameHash name_hash) {
return AddCertWithHash(HashName(name_hash, X509_get_subject_name(x509)),
x509);
}
bool AddCRL(X509_CRL *crl, NameHash name_hash) {
return AddCRLWithHash(HashName(name_hash, X509_CRL_get_issuer(crl)), crl);
}
bool AddCertWithHash(uint32_t hash, X509 *cert) {
std::vector<uint8_t> data = EncodeCert(cert);
if (data.empty()) {
return false;
}
auto &num = next_cert_[hash];
char path[32];
snprintf(path, sizeof(path), "%08x.%d", hash, num);
if (!dir_.AddFile(path, data)) {
return false;
}
num++;
return true;
}
bool AddCRLWithHash(uint32_t hash, X509_CRL *crl) {
std::vector<uint8_t> data = EncodeCRL(crl);
if (data.empty()) {
return false;
}
auto &num = next_crl_[hash];
char path[32];
snprintf(path, sizeof(path), "%08x.r%d", hash, num);
if (!dir_.AddFile(path, data)) {
return false;
}
num++;
return true;
}
bool ReplaceLastCRL(X509_CRL *crl, NameHash name_hash) {
uint32_t hash = HashName(name_hash, X509_CRL_get_issuer(crl));
auto iter = next_crl_.find(hash);
if (iter == next_crl_.end()) {
return false;
}
std::vector<uint8_t> data = EncodeCRL(crl);
if (data.empty()) {
return false;
}
char path[32];
snprintf(path, sizeof(path), "%08x.r%d", hash, iter->second - 1);
return dir_.AddFile(path, data);
}
private:
static uint32_t HashName(NameHash name_hash, X509_NAME *name) {
return name_hash == kOldHash ? X509_NAME_hash_old(name)
: X509_NAME_hash(name);
}
std::vector<uint8_t> EncodeCert(X509 *cert) {
if (type_ == X509_FILETYPE_ASN1) {
uint8_t *der = nullptr;
int der_len = i2d_X509(cert, &der);
if (der_len < 0) {
return {};
}
bssl::UniquePtr<uint8_t> free_der(der);
return std::vector<uint8_t>(der, der + der_len);
}
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
const uint8_t *pem;
size_t pem_len;
if (bio == nullptr || //
!PEM_write_bio_X509(bio.get(), cert) ||
!BIO_mem_contents(bio.get(), &pem, &pem_len)) {
return {};
}
return std::vector<uint8_t>(pem, pem + pem_len);
}
std::vector<uint8_t> EncodeCRL(X509_CRL *crl) {
if (type_ == X509_FILETYPE_ASN1) {
uint8_t *der = nullptr;
int der_len = i2d_X509_CRL(crl, &der);
if (der_len < 0) {
return {};
}
bssl::UniquePtr<uint8_t> free_der(der);
return std::vector<uint8_t>(der, der + der_len);
}
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
const uint8_t *pem;
size_t pem_len;
if (bio == nullptr || //
!PEM_write_bio_X509_CRL(bio.get(), crl) ||
!BIO_mem_contents(bio.get(), &pem, &pem_len)) {
return {};
}
return std::vector<uint8_t>(pem, pem + pem_len);
}
int type_;
bssl::TemporaryDirectory dir_;
std::map<uint32_t, int> next_cert_;
std::map<uint32_t, int> next_crl_;
};
// TODO(davidben): Also test CRL handling. There are some interesting behaviors
// in here.
TEST(X509Test, DirHash) {
if (bssl::SkipTempFileTests()) {
GTEST_SKIP();
}
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
// Test both formats.
for (int type : {X509_FILETYPE_PEM, X509_FILETYPE_ASN1}) {
SCOPED_TRACE(type);
// Generate some roots and fill a directory with OpenSSL's directory hash
// format. The hash depends only on the name, so we do not need to
// pre-generate the certificates. Test both DER and PEM.
TemporaryHashDir dir(type);
ASSERT_TRUE(dir.Init());
auto add_root = [&](const std::string &name, NameHash name_hash) -> bool {
bssl::UniquePtr<X509> ca =
MakeTestCert(name.c_str(), name.c_str(), key.get(), /*is_ca=*/true);
if (ca == nullptr || !X509_sign(ca.get(), key.get(), EVP_sha256())) {
return false;
}
return dir.AddCert(ca.get(), name_hash);
};
auto issue_crl =
[&](const std::string &name, int this_update_offset_day,
const std::vector<uint64_t> &serials) -> bssl::UniquePtr<X509_CRL> {
bssl::UniquePtr<X509_CRL> crl = MakeTestCRL(
name.c_str(), this_update_offset_day, /*next_update_offset_day=*/1);
if (crl == nullptr) {
return nullptr;
}
for (uint64_t serial : serials) {
// The revocation time does not matter for this test. Pretend the
// certificate was just revoked.
if (!AddRevokedSerialU64(crl.get(), serial,
/*offset_day=*/this_update_offset_day)) {
return nullptr;
}
}
if (!X509_CRL_sign(crl.get(), key.get(), EVP_sha256())) {
return nullptr;
}
return crl;
};
auto add_crl = [&](const std::string &name, NameHash name_hash,
int this_update_offset_day,
const std::vector<uint64_t> &serials) -> bool {
bssl::UniquePtr<X509_CRL> crl =
issue_crl(name, this_update_offset_day, serials);
return crl != nullptr && dir.AddCRL(crl.get(), name_hash);
};
std::string ca1 = "Test CA 1";
ASSERT_TRUE(add_root(ca1, kNewHash));
std::string ca2 = "Test CA 2";
ASSERT_TRUE(add_root(ca2, kOldHash));
// Install CA 3 at its new hash. CA 3's name is not canonical, but the new
// hash runs after canonicalization, so OpenSSL should be able to find it.
std::string ca3 = "Test CA 3";
std::string ca3_noncanonical = " test ca 3 ";
ASSERT_TRUE(add_root(ca3_noncanonical, kNewHash));
// These two CAs collide under |X509_NAME_hash|.
std::string collide_name1 = "Test CA 1191514847";
std::string collide_name2 = "Test CA 1570301806";
size_t num_cert_hashes = dir.num_cert_hashes();
ASSERT_TRUE(add_root(collide_name1, kNewHash));
EXPECT_EQ(dir.num_cert_hashes(), num_cert_hashes + 1);
ASSERT_TRUE(add_root(collide_name2, kNewHash));
EXPECT_EQ(dir.num_cert_hashes(), num_cert_hashes + 1);
// These two CAs collide under |X509_NAME_hash_old|.
std::string old_collide_name1 = "Test CA 1069881739";
std::string old_collide_name2 = "Test CA 940754110";
num_cert_hashes = dir.num_cert_hashes();
ASSERT_TRUE(add_root(old_collide_name1, kOldHash));
EXPECT_EQ(dir.num_cert_hashes(), num_cert_hashes + 1);
ASSERT_TRUE(add_root(old_collide_name2, kOldHash));
EXPECT_EQ(dir.num_cert_hashes(), num_cert_hashes + 1);
// Make an |X509_STORE| that gets CAs from |dir|.
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
X509_LOOKUP *lookup =
X509_STORE_add_lookup(store.get(), X509_LOOKUP_hash_dir());
ASSERT_TRUE(lookup);
ASSERT_TRUE(X509_LOOKUP_add_dir(lookup, dir.path().c_str(), type));
auto test_issuer_flags = [&](const std::string &issuer, uint64_t serial,
unsigned long flags) -> int {
bssl::UniquePtr<X509> cert =
MakeTestCert(issuer.c_str(), "Leaf", key.get(), /*is_ca=*/false);
bssl::UniquePtr<ASN1_INTEGER> serial_asn1(ASN1_INTEGER_new());
if (cert == nullptr || serial_asn1 == nullptr ||
!ASN1_INTEGER_set_uint64(serial_asn1.get(), serial) ||
!X509_set_serialNumber(cert.get(), serial_asn1.get()) ||
!X509_sign(cert.get(), key.get(), EVP_sha256())) {
return X509_V_ERR_UNSPECIFIED;
}
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
if (ctx == nullptr ||
!X509_STORE_CTX_init(ctx.get(), store.get(), cert.get(),
/*chain=*/nullptr)) {
return X509_V_ERR_UNSPECIFIED;
}
X509_STORE_CTX_set_flags(ctx.get(), flags);
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
return X509_verify_cert(ctx.get()) ? X509_V_OK
: X509_STORE_CTX_get_error(ctx.get());
};
auto test_issuer = [&](const std::string &issuer) -> int {
return test_issuer_flags(issuer, /*serial=*/0, /*flags=*/0);
};
auto test_issuer_crl = [&](const std::string &issuer,
uint64_t serial) -> int {
return test_issuer_flags(issuer, serial, X509_V_FLAG_CRL_CHECK);
};
// All these roots are in the store and should be found. Although Test CA
// 3 was installed under a non-canonical name, the new hash accounts for
// this.
EXPECT_EQ(X509_V_OK, test_issuer(ca1));
EXPECT_EQ(X509_V_OK, test_issuer(ca2));
EXPECT_EQ(X509_V_OK, test_issuer(ca3));
EXPECT_EQ(X509_V_OK, test_issuer(collide_name1));
EXPECT_EQ(X509_V_OK, test_issuer(collide_name2));
EXPECT_EQ(X509_V_OK, test_issuer(old_collide_name1));
EXPECT_EQ(X509_V_OK, test_issuer(old_collide_name2));
// Repeat the tests. This time it will pick up the certificate from the
// cache.
EXPECT_EQ(X509_V_OK, test_issuer(ca1));
EXPECT_EQ(X509_V_OK, test_issuer(ca2));
EXPECT_EQ(X509_V_OK, test_issuer(ca3));
EXPECT_EQ(X509_V_OK, test_issuer(collide_name1));
EXPECT_EQ(X509_V_OK, test_issuer(collide_name2));
EXPECT_EQ(X509_V_OK, test_issuer(old_collide_name1));
EXPECT_EQ(X509_V_OK, test_issuer(old_collide_name2));
// Test a certificate not in the store.
ERR_clear_error();
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY,
test_issuer("Not In Store"));
// Although, internally, this hits the filesystem and finds that a file does
// not exist, there should not be anything on the error queue about a
// missing file. |X509_verify_cert| generally does not use the error queue,
// so it will be empty. See https://crbug.com/boringssl/708.
EXPECT_EQ(ERR_get_error(), 0u);
// Test CRL handling. First, if we cannot find a CRL, verification will
// fail.
//
// TODO(crbug.com/boringssl/690): We should test both the old and new hash,
// but the CRL reloading process does not work for the old hash due to a
// bug. It notices the cached old CRL, mistakes it for something loaded via
// the new hash, and never bothers checking the old hash.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_CRL,
test_issuer_crl(collide_name1, /*serial=*/1));
// Install an empty CRL. Verification should now succeed.
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-10, /*serials=*/{}));
EXPECT_EQ(X509_V_OK, test_issuer_crl(collide_name1, /*serial=*/1));
// Verify again. Unlike roots, which are cached, this will query the
// directory again.
EXPECT_EQ(X509_V_OK, test_issuer_crl(collide_name1, /*serial=*/1));
// The extra query is so that a newer CRL is picked up, at an incrementing
// number. This feature is less useful than it sounds because all CRLs are
// persistently cached.
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-9, /*serials=*/{1}));
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
test_issuer_crl(collide_name1, /*serial=*/1));
// Serial number 2 is not revoked.
EXPECT_EQ(X509_V_OK, test_issuer_crl(collide_name1, /*serial=*/2));
// A new CRL at an already loaded name is ignored because OpenSSL skips
// loading the older ones and relies on them being persistently cached in
// memory.
//
// TODO(crbug.com/boringssl/690): This behavior is almost certainly not what
// anyone wants. Rework this.
bssl::UniquePtr<X509_CRL> crl = issue_crl(
collide_name1, /*this_update_offset_day=*/-8, /*serials=*/{1, 2});
ASSERT_TRUE(crl);
ASSERT_TRUE(dir.ReplaceLastCRL(crl.get(), kNewHash));
EXPECT_EQ(X509_V_OK, test_issuer_crl(collide_name1, /*serial=*/2));
// If there are many new CRLs, they are all loaded and the newest is wins.
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-7, /*serials=*/{1, 2}));
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-5, /*serials=*/{1, 2, 3}));
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-6, /*serials=*/{1, 2}));
// r3 should have won, which revokes all three serials:
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
test_issuer_crl(collide_name1, /*serial=*/1));
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
test_issuer_crl(collide_name1, /*serial=*/2));
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
test_issuer_crl(collide_name1, /*serial=*/3));
// If the new CRL is older than a previously loaded one, it is ignored.
ASSERT_TRUE(add_crl(collide_name1, kNewHash,
/*this_update_offset_day=*/-100, /*serials=*/{}));
// Finally, test hash collisions. The internal book-keeping for where to
// start loading should be compatible with a second CA whose hash collides.
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_CRL,
test_issuer_crl(collide_name2, /*serial=*/1));
EXPECT_EQ(X509_V_ERR_UNABLE_TO_GET_CRL,
test_issuer_crl(collide_name2, /*serial=*/2));
ASSERT_TRUE(add_crl(collide_name2, kNewHash,
/*this_update_offset_day=*/-10, /*serials=*/{1}));
EXPECT_EQ(X509_V_ERR_CERT_REVOKED,
test_issuer_crl(collide_name2, /*serial=*/1));
EXPECT_EQ(X509_V_OK, test_issuer_crl(collide_name2, /*serial=*/2));
// Confirm all CRLs we added had the same hash.
EXPECT_EQ(dir.num_crl_hashes(), 1u);
}
}
// Test that two directory hash paths are treated as a sequence of paths,
// separated by a separator.
TEST(X509Test, DirHashSeparator) {
#if defined(OPENSSL_WINDOWS)
const char kSeparator = ';';
#else
const char kSeparator = ':';
#endif
if (bssl::SkipTempFileTests()) {
GTEST_SKIP();
}
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
// Make two directories and place one CA in each.
TemporaryHashDir dir1(X509_FILETYPE_PEM), dir2(X509_FILETYPE_PEM);
ASSERT_TRUE(dir1.Init());
ASSERT_TRUE(dir2.Init());
bssl::UniquePtr<X509> ca1 =
MakeTestCert("Test CA 1", "Test CA 1", key.get(), /*is_ca=*/true);
ASSERT_TRUE(ca1);
ASSERT_TRUE(X509_sign(ca1.get(), key.get(), EVP_sha256()));
ASSERT_TRUE(dir1.AddCert(ca1.get(), kNewHash));
bssl::UniquePtr<X509> ca2 =
MakeTestCert("Test CA 2", "Test CA 2", key.get(), /*is_ca=*/true);
ASSERT_TRUE(ca2);
ASSERT_TRUE(X509_sign(ca2.get(), key.get(), EVP_sha256()));
ASSERT_TRUE(dir1.AddCert(ca2.get(), kNewHash));
// Make an |X509_STORE| that gets CAs from |dir1| and |dir2|.
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
std::string paths = dir1.path() + kSeparator + dir2.path();
ASSERT_TRUE(
X509_STORE_load_locations(store.get(), /*file=*/nullptr, paths.c_str()));
// Both CAs should work.
{
bssl::UniquePtr<X509> cert =
MakeTestCert("Test CA 1", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(cert);
ASSERT_TRUE(X509_sign(cert.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), cert.get(),
/*chain=*/nullptr));
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
EXPECT_TRUE(X509_verify_cert(ctx.get()))
<< X509_verify_cert_error_string(X509_STORE_CTX_get_error(ctx.get()));
}
{
bssl::UniquePtr<X509> cert =
MakeTestCert("Test CA 2", "Leaf", key.get(), /*is_ca=*/false);
ASSERT_TRUE(cert);
ASSERT_TRUE(X509_sign(cert.get(), key.get(), EVP_sha256()));
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), cert.get(),
/*chain=*/nullptr));
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
EXPECT_TRUE(X509_verify_cert(ctx.get()))
<< X509_verify_cert_error_string(X509_STORE_CTX_get_error(ctx.get()));
}
}
#if defined(OPENSSL_THREADS)
// Test that directory hash lookup is thread-safe.
TEST(X509Test, DirHashThreads) {
if (bssl::SkipTempFileTests()) {
GTEST_SKIP();
}
bssl::UniquePtr<EVP_PKEY> key = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key);
// Generate some roots and fill a directory with OpenSSL's directory hash
// format. The hash depends only on the name, so we do not need to
// pre-generate the certificates. Test both DER and PEM.
TemporaryHashDir dir(X509_FILETYPE_PEM);
ASSERT_TRUE(dir.Init());
auto add_root = [&](const std::string &name, NameHash name_hash) -> bool {
bssl::UniquePtr<X509> ca =
MakeTestCert(name.c_str(), name.c_str(), key.get(), /*is_ca=*/true);
return ca != nullptr && //
X509_sign(ca.get(), key.get(), EVP_sha256()) &&
dir.AddCert(ca.get(), name_hash);
};
auto issue_cert = [&](const std::string &issuer) -> bssl::UniquePtr<X509> {
bssl::UniquePtr<X509> cert =
MakeTestCert(issuer.c_str(), "Leaf", key.get(), /*is_ca=*/false);
if (cert == nullptr || !X509_sign(cert.get(), key.get(), EVP_sha256())) {
return nullptr;
}
return cert;
};
auto add_crl = [&](const std::string &name,
int this_update_offset_day, NameHash name_hash) -> bool {
bssl::UniquePtr<X509_CRL> crl = MakeTestCRL(
name.c_str(), this_update_offset_day, /*next_update_offset_day=*/1);
return crl != nullptr &&
X509_CRL_sign(crl.get(), key.get(), EVP_sha256()) &&
dir.AddCRL(crl.get(), name_hash);
};
// These two CAs collide under |X509_NAME_hash|.
std::string ca1 = "Test CA 1191514847";
std::string ca2 = "Test CA 1570301806";
ASSERT_TRUE(add_root(ca1, kNewHash));
ASSERT_TRUE(add_root(ca2, kNewHash));
ASSERT_TRUE(add_crl(ca1, -2, kNewHash));
ASSERT_TRUE(add_crl(ca2, -1, kNewHash));
ASSERT_TRUE(add_crl(ca2, -2, kNewHash));
ASSERT_TRUE(add_crl(ca1, -1, kNewHash));
// Verify the hashes collided.
ASSERT_EQ(dir.num_cert_hashes(), 1u);
ASSERT_EQ(dir.num_crl_hashes(), 1u);
bssl::UniquePtr<X509> leaf1 = issue_cert(ca1);
ASSERT_TRUE(leaf1);
bssl::UniquePtr<X509> leaf2 = issue_cert(ca2);
ASSERT_TRUE(leaf2);
// These two CAs collide under |X509_NAME_hash_old|.
std::string old_ca1 = "Test CA 1069881739";
std::string old_ca2 = "Test CA 940754110";
ASSERT_TRUE(add_root(old_ca1, kOldHash));
ASSERT_TRUE(add_root(old_ca2, kOldHash));
ASSERT_TRUE(add_crl(old_ca1, -2, kOldHash));
ASSERT_TRUE(add_crl(old_ca2, -1, kOldHash));
ASSERT_TRUE(add_crl(old_ca2, -2, kOldHash));
ASSERT_TRUE(add_crl(old_ca1, -1, kOldHash));
// Verify the hashes collided.
ASSERT_EQ(dir.num_cert_hashes(), 2u);
ASSERT_EQ(dir.num_crl_hashes(), 2u);
bssl::UniquePtr<X509> old_leaf1 = issue_cert(old_ca1);
ASSERT_TRUE(old_leaf1);
bssl::UniquePtr<X509> old_leaf2 = issue_cert(old_ca2);
ASSERT_TRUE(old_leaf2);
// Make an |X509_STORE| that gets CAs from |dir|.
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
ASSERT_TRUE(X509_STORE_load_locations(store.get(), /*file=*/nullptr,
dir.path().c_str()));
auto verify = [&](X509 *cert, bool crl_check) {
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(X509_STORE_CTX_init(ctx.get(), store.get(), cert,
/*chain=*/nullptr));
X509_STORE_CTX_set_flags(ctx.get(), crl_check ? X509_V_FLAG_CRL_CHECK : 0);
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
EXPECT_TRUE(X509_verify_cert(ctx.get()))
<< X509_verify_cert_error_string(X509_STORE_CTX_get_error(ctx.get()));
};
const size_t kNumThreads = 10;
std::vector<std::thread> threads;
for (size_t i = 0; i < kNumThreads; i++) {
threads.emplace_back([&] { verify(leaf1.get(), false); });
threads.emplace_back([&] { verify(leaf1.get(), true); });
threads.emplace_back([&] { verify(leaf2.get(), false); });
threads.emplace_back([&] { verify(leaf2.get(), true); });
threads.emplace_back([&] { verify(old_leaf1.get(), false); });
threads.emplace_back([&] { verify(old_leaf1.get(), true); });
threads.emplace_back([&] { verify(old_leaf2.get(), false); });
threads.emplace_back([&] { verify(old_leaf2.get(), true); });
}
for (auto &thread : threads) {
thread.join();
}
}
#endif // OPENSSL_THREADS
// Test that, when there are two CAs with the same name, but different key
// identifiers, certificate and CRL lookup can disambiguate correctly.
TEST(X509Test, DuplicateName) {
// Make two certificate chains and empty CRLs, with the same names but
// different keys.
bssl::UniquePtr<EVP_PKEY> key1 = PrivateKeyFromPEM(kP256Key);
ASSERT_TRUE(key1);
uint8_t key_id1[] = {'K', 'e', 'y', '1'};
bssl::UniquePtr<X509> ca1 =
MakeTestCert("CA", "CA", key1.get(), /*is_ca=*/true);
ASSERT_TRUE(ca1);
ASSERT_TRUE(AddSubjectKeyIdentifier(ca1.get(), key_id1));
ASSERT_TRUE(X509_sign(ca1.get(), key1.get(), EVP_sha256()));
bssl::UniquePtr<X509> leaf1 =
MakeTestCert("CA", "Leaf", key1.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf1);
ASSERT_TRUE(AddAuthorityKeyIdentifier(leaf1.get(), key_id1));
ASSERT_TRUE(X509_sign(leaf1.get(), key1.get(), EVP_sha256()));
bssl::UniquePtr<X509_CRL> crl1 = MakeTestCRL("CA", -1, 1);
ASSERT_TRUE(crl1);
ASSERT_TRUE(AddAuthorityKeyIdentifier(crl1.get(), key_id1));
ASSERT_TRUE(X509_CRL_sign(crl1.get(), key1.get(), EVP_sha256()));
// TODO(davidben): Some state in CRLs does not get correctly set up unless it
// is parsed from data. |X509_CRL_sign| should reset it internally.
crl1 = ReencodeCRL(crl1.get());
ASSERT_TRUE(crl1);
bssl::UniquePtr<EVP_PKEY> key2 = PrivateKeyFromPEM(kRSAKey);
ASSERT_TRUE(key2);
uint8_t key_id2[] = {'K', 'e', 'y', '2'};
bssl::UniquePtr<X509> ca2 =
MakeTestCert("CA", "CA", key2.get(), /*is_ca=*/true);
ASSERT_TRUE(ca2);
ASSERT_TRUE(AddSubjectKeyIdentifier(ca2.get(), key_id2));
ASSERT_TRUE(X509_sign(ca2.get(), key2.get(), EVP_sha256()));
bssl::UniquePtr<X509> leaf2 =
MakeTestCert("CA", "Leaf", key2.get(), /*is_ca=*/false);
ASSERT_TRUE(leaf2);
ASSERT_TRUE(AddAuthorityKeyIdentifier(leaf2.get(), key_id2));
ASSERT_TRUE(X509_sign(leaf2.get(), key2.get(), EVP_sha256()));
bssl::UniquePtr<X509_CRL> crl2 = MakeTestCRL("CA", -2, 2);
ASSERT_TRUE(crl2);
ASSERT_TRUE(AddAuthorityKeyIdentifier(crl2.get(), key_id2));
ASSERT_TRUE(X509_CRL_sign(crl2.get(), key2.get(), EVP_sha256()));
// TODO(davidben): Some state in CRLs does not get correctly set up unless it
// is parsed from data. |X509_CRL_sign| should reset it internally.
crl2 = ReencodeCRL(crl2.get());
ASSERT_TRUE(crl2);
for (bool key1_first : {false, true}) {
SCOPED_TRACE(key1_first);
X509 *first_leaf = leaf1.get();
X509 *second_leaf = leaf2.get();
if (!key1_first) {
std::swap(first_leaf, second_leaf);
}
for (bool use_dir : {false, true}) {
SCOPED_TRACE(use_dir);
bssl::UniquePtr<X509_STORE> store(X509_STORE_new());
ASSERT_TRUE(store);
TemporaryHashDir dir(X509_FILETYPE_PEM);
if (use_dir) {
ASSERT_TRUE(dir.Init());
ASSERT_TRUE(dir.AddCert(ca1.get(), kNewHash));
ASSERT_TRUE(dir.AddCert(ca2.get(), kNewHash));
ASSERT_TRUE(dir.AddCRL(crl1.get(), kNewHash));
ASSERT_TRUE(dir.AddCRL(crl2.get(), kNewHash));
ASSERT_EQ(dir.num_cert_hashes(), 1u);
ASSERT_EQ(dir.num_crl_hashes(), 1u);
ASSERT_TRUE(X509_STORE_load_locations(store.get(), /*file=*/nullptr,
dir.path().c_str()));
} else {
ASSERT_TRUE(X509_STORE_add_cert(store.get(), ca1.get()));
ASSERT_TRUE(X509_STORE_add_cert(store.get(), ca2.get()));
ASSERT_TRUE(X509_STORE_add_crl(store.get(), crl1.get()));
ASSERT_TRUE(X509_STORE_add_crl(store.get(), crl2.get()));
}
// Verify the two certificates. Whichever comes first, we should
// successfully find their CA and CRL.
{
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(
X509_STORE_CTX_init(ctx.get(), store.get(), first_leaf, nullptr));
X509_STORE_CTX_set_flags(ctx.get(), X509_V_FLAG_CRL_CHECK);
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
EXPECT_TRUE(X509_verify_cert(ctx.get()))
<< X509_verify_cert_error_string(
X509_STORE_CTX_get_error(ctx.get()));
}
{
bssl::UniquePtr<X509_STORE_CTX> ctx(X509_STORE_CTX_new());
ASSERT_TRUE(ctx);
ASSERT_TRUE(
X509_STORE_CTX_init(ctx.get(), store.get(), second_leaf, nullptr));
X509_STORE_CTX_set_flags(ctx.get(), X509_V_FLAG_CRL_CHECK);
X509_STORE_CTX_set_time_posix(ctx.get(), /*flags=*/0, kReferenceTime);
EXPECT_TRUE(X509_verify_cert(ctx.get()))
<< X509_verify_cert_error_string(
X509_STORE_CTX_get_error(ctx.get()));
}
}
}
}
TEST(X509Test, ParseIPAddress) {
const struct {
const char *inp;
// out is the expected output, or an empty vector if the parser is expected
// to fail.
std::vector<uint8_t> out;
} kIPTests[] = {
// Valid IPv4 addresses.
{"127.0.0.1", {127, 0, 0, 1}},
{"1.2.3.4", {1, 2, 3, 4}},
{"1.2.3.255", {1, 2, 3, 255}},
{"255.255.255.255", {255, 255, 255, 255}},
// Valid IPv6 addresses
{"::", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{"::1", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}},
{"::01", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}},
{"::001", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}},
{"::0001", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}},
{"ffff::", {0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
{"1::2", {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}},
{"1:1:1:1:1:1:1:1", {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}},
{"2001:db8::ff00:42:8329",
{0x20, 0x01, 0x0d, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0x00,
0x00, 0x42, 0x83, 0x29}},
{"1234::1.2.3.4", {0x12, 0x34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4}},
{"::1.2.3.4", {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4}},
{"ffff:ffff:ffff:ffff:ffff:ffff:1.2.3.4",
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1, 2, 3, 4}},
// Too few IPv4 components.
{"1", {}},
{"1.", {}},
{"1.2", {}},
{"1.2.", {}},
{"1.2.3", {}},
{"1.2.3.", {}},
// Invalid embedded IPv4 address.
{"::1.2.3", {}},
// Too many components.
{"1.2.3.4.5", {}},
{"1:2:3:4:5:6:7:8:9", {}},
{"1:2:3:4:5::6:7:8:9", {}},
// IPv4 literals take the place of two IPv6 components.
{"1:2:3:4:5:6:7:1.2.3.4", {}},
// '::' should have fewer than 16 components or it is redundant.
{"1:2:3:4:5:6:7::8", {}},
// Embedded IPv4 addresses must be at the end.
{"::1.2.3.4:1", {}},
// Stray whitespace or other invalid characters.
{"1.2.3.4 ", {}},
{"1.2.3 .4", {}},
{"1.2.3. 4", {}},
{" 1.2.3.4", {}},
{"1.2.3.4.", {}},
{"1.2.3.+4", {}},
{"1.2.3.-4", {}},
{"1.2.3.4.example.test", {}},
{"::1 ", {}},
{" ::1", {}},
{":: 1", {}},
{": :1", {}},
{"1.2.3.nope", {}},
{"::nope", {}},
// Components too large.
{"1.2.3.256", {}}, // Overflows when adding
{"1.2.3.260", {}}, // Overflows when multiplying by 10
{"1.2.3.999999999999999999999999999999999999999999", {}},
{"::fffff", {}},
// Although not an overflow, more than four hex digits is an error.
{"::00000", {}},
// Too many colons.
{":::", {}},
{"1:::", {}},
{":::2", {}},
{"1:::2", {}},
// Only one group of zeros may be elided.
{"1::2::3", {}},
// We only support decimal.
{"1.2.3.01", {}},
{"1.2.3.0x1", {}},
// Random garbage.
{"example.test", {}},
{"", {}},
};
for (const auto &t : kIPTests) {
SCOPED_TRACE(t.inp);
bssl::UniquePtr<ASN1_OCTET_STRING> oct(a2i_IPADDRESS(t.inp));
if (t.out.empty()) {
EXPECT_FALSE(oct);
} else {
ASSERT_TRUE(oct);
EXPECT_EQ(Bytes(t.out), Bytes(ASN1_STRING_get0_data(oct.get()),
ASN1_STRING_length(oct.get())));
}
}
}