|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved. | 
|  | // Copyright 2005 Nokia. All rights reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/lhash.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | #include <sys/timeb.h> | 
|  | #else | 
|  | #include <sys/socket.h> | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | static_assert(SSL3_RT_MAX_ENCRYPTED_OVERHEAD >= | 
|  | SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD, | 
|  | "max overheads are inconsistent"); | 
|  |  | 
|  | // |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it | 
|  | // to avoid downstream churn. | 
|  | OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL) | 
|  |  | 
|  | // The following errors are no longer emitted, but are used in nginx without | 
|  | // #ifdefs. | 
|  | OPENSSL_DECLARE_ERROR_REASON(SSL, BLOCK_CIPHER_PAD_IS_WRONG) | 
|  | OPENSSL_DECLARE_ERROR_REASON(SSL, NO_CIPHERS_SPECIFIED) | 
|  |  | 
|  | // Some error codes are special. Ensure the make_errors.go script never | 
|  | // regresses this. | 
|  | static_assert(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION == | 
|  | SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET, | 
|  | "alert reason code mismatch"); | 
|  |  | 
|  | // kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. | 
|  | static const size_t kMaxHandshakeSize = (1u << 24) - 1; | 
|  |  | 
|  | static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = | 
|  | CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; | 
|  | static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = | 
|  | CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; | 
|  |  | 
|  | bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out) { | 
|  | uint8_t *ptr; | 
|  | size_t len; | 
|  | if (!CBB_finish(cbb, &ptr, &len)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | out->Reset(ptr, len); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ssl_reset_error_state(SSL *ssl) { | 
|  | // Functions which use |SSL_get_error| must reset I/O and error state on | 
|  | // entry. | 
|  | ssl->s3->rwstate = SSL_ERROR_NONE; | 
|  | ERR_clear_error(); | 
|  | ERR_clear_system_error(); | 
|  | } | 
|  |  | 
|  | void ssl_set_read_error(SSL *ssl) { | 
|  | ssl->s3->read_shutdown = ssl_shutdown_error; | 
|  | ssl->s3->read_error.reset(ERR_save_state()); | 
|  | } | 
|  |  | 
|  | static bool check_read_error(const SSL *ssl) { | 
|  | if (ssl->s3->read_shutdown == ssl_shutdown_error) { | 
|  | ERR_restore_state(ssl->s3->read_error.get()); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ssl_can_write(const SSL *ssl) { | 
|  | return !SSL_in_init(ssl) || ssl->s3->hs->can_early_write; | 
|  | } | 
|  |  | 
|  | bool ssl_can_read(const SSL *ssl) { | 
|  | return !SSL_in_init(ssl) || ssl->s3->hs->can_early_read; | 
|  | } | 
|  |  | 
|  | ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | if (!check_read_error(ssl)) { | 
|  | *out_alert = 0; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | auto ret = ssl->method->open_handshake(ssl, out_consumed, out_alert, in); | 
|  | if (ret == ssl_open_record_error) { | 
|  | ssl_set_read_error(ssl); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | if (!check_read_error(ssl)) { | 
|  | *out_alert = 0; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | auto ret = | 
|  | ssl->method->open_change_cipher_spec(ssl, out_consumed, out_alert, in); | 
|  | if (ret == ssl_open_record_error) { | 
|  | ssl_set_read_error(ssl); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | if (!check_read_error(ssl)) { | 
|  | *out_alert = 0; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | auto ret = ssl->method->open_app_data(ssl, out, out_consumed, out_alert, in); | 
|  | if (ret == ssl_open_record_error) { | 
|  | ssl_set_read_error(ssl); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static uint8_t hex_char_consttime(uint8_t b) { | 
|  | declassify_assert(b < 16); | 
|  | return constant_time_select_8(constant_time_lt_8(b, 10), b + '0', | 
|  | b - 10 + 'a'); | 
|  | } | 
|  |  | 
|  | static bool cbb_add_hex_consttime(CBB *cbb, Span<const uint8_t> in) { | 
|  | uint8_t *out; | 
|  | if (!CBB_add_space(cbb, &out, in.size() * 2)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (uint8_t b : in) { | 
|  | *(out++) = hex_char_consttime(b >> 4); | 
|  | *(out++) = hex_char_consttime(b & 0xf); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ssl_log_secret(const SSL *ssl, const char *label, | 
|  | Span<const uint8_t> secret) { | 
|  | if (ssl->ctx->keylog_callback == NULL) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ScopedCBB cbb; | 
|  | Array<uint8_t> line; | 
|  | auto label_bytes = bssl::StringAsBytes(label); | 
|  | if (!CBB_init(cbb.get(), strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 + | 
|  | secret.size() * 2 + 1) || | 
|  | !CBB_add_bytes(cbb.get(), label_bytes.data(), label_bytes.size()) || | 
|  | !CBB_add_u8(cbb.get(), ' ') || | 
|  | !cbb_add_hex_consttime(cbb.get(), ssl->s3->client_random) || | 
|  | !CBB_add_u8(cbb.get(), ' ') || | 
|  | // Convert to hex in constant time to avoid leaking |secret|. If the | 
|  | // callback discards the data, we should not introduce side channels. | 
|  | !cbb_add_hex_consttime(cbb.get(), secret) || | 
|  | !CBB_add_u8(cbb.get(), 0 /* NUL */) || | 
|  | !CBBFinishArray(cbb.get(), &line)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssl->ctx->keylog_callback(ssl, reinterpret_cast<const char *>(line.data())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ssl_do_info_callback(const SSL *ssl, int type, int value) { | 
|  | void (*cb)(const SSL *ssl, int type, int value) = NULL; | 
|  | if (ssl->info_callback != NULL) { | 
|  | cb = ssl->info_callback; | 
|  | } else if (ssl->ctx->info_callback != NULL) { | 
|  | cb = ssl->ctx->info_callback; | 
|  | } | 
|  |  | 
|  | if (cb != NULL) { | 
|  | cb(ssl, type, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, | 
|  | Span<const uint8_t> in) { | 
|  | if (ssl->msg_callback == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // |version| is zero when calling for |SSL3_RT_HEADER| and |SSL2_VERSION| for | 
|  | // a V2ClientHello. | 
|  | int version; | 
|  | switch (content_type) { | 
|  | case 0: | 
|  | // V2ClientHello | 
|  | version = SSL2_VERSION; | 
|  | break; | 
|  | case SSL3_RT_HEADER: | 
|  | version = 0; | 
|  | break; | 
|  | default: | 
|  | version = SSL_version(ssl); | 
|  | } | 
|  |  | 
|  | ssl->msg_callback(is_write, version, content_type, in.data(), in.size(), | 
|  | const_cast<SSL *>(ssl), ssl->msg_callback_arg); | 
|  | } | 
|  |  | 
|  | OPENSSL_timeval ssl_ctx_get_current_time(const SSL_CTX *ctx) { | 
|  | if (ctx->current_time_cb != NULL) { | 
|  | // TODO(davidben): Update current_time_cb to use OPENSSL_timeval. See | 
|  | // https://crbug.com/boringssl/155. | 
|  | struct timeval clock; | 
|  | ctx->current_time_cb(nullptr /* ssl */, &clock); | 
|  | if (clock.tv_sec < 0) { | 
|  | assert(0); | 
|  | return {0, 0}; | 
|  | } else { | 
|  | return {static_cast<uint64_t>(clock.tv_sec), | 
|  | static_cast<uint32_t>(clock.tv_usec)}; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) | 
|  | return {1234, 1234}; | 
|  | #elif defined(OPENSSL_WINDOWS) | 
|  | struct _timeb time; | 
|  | _ftime(&time); | 
|  | if (time.time < 0) { | 
|  | assert(0); | 
|  | return {0, 0}; | 
|  | } else { | 
|  | return {static_cast<uint64_t>(time.time), | 
|  | static_cast<uint32_t>(time.millitm * 1000)}; | 
|  | } | 
|  | #else | 
|  | struct timeval clock; | 
|  | gettimeofday(&clock, NULL); | 
|  | if (clock.tv_sec < 0) { | 
|  | assert(0); | 
|  | return {0, 0}; | 
|  | } else { | 
|  | return {static_cast<uint64_t>(clock.tv_sec), | 
|  | static_cast<uint32_t>(clock.tv_usec)}; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_handoff_mode(SSL_CTX *ctx, bool on) { ctx->handoff = on; } | 
|  |  | 
|  | static bool ssl_can_renegotiate(const SSL *ssl) { | 
|  | if (ssl->server || SSL_is_dtls(ssl)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (ssl->s3->version != 0  // | 
|  | && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // The config has already been shed. | 
|  | if (!ssl->config) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (ssl->renegotiate_mode) { | 
|  | case ssl_renegotiate_ignore: | 
|  | case ssl_renegotiate_never: | 
|  | return false; | 
|  |  | 
|  | case ssl_renegotiate_freely: | 
|  | case ssl_renegotiate_explicit: | 
|  | return true; | 
|  | case ssl_renegotiate_once: | 
|  | return ssl->s3->total_renegotiations == 0; | 
|  | } | 
|  |  | 
|  | assert(0); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void ssl_maybe_shed_handshake_config(SSL *ssl) { | 
|  | if (ssl->s3->hs != nullptr ||               // | 
|  | ssl->config == nullptr ||               // | 
|  | !ssl->config->shed_handshake_config ||  // | 
|  | ssl_can_renegotiate(ssl)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ssl->config.reset(); | 
|  | } | 
|  |  | 
|  | void SSL_set_handoff_mode(SSL *ssl, bool on) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->handoff = on; | 
|  | } | 
|  |  | 
|  | bool SSL_get_traffic_secrets(const SSL *ssl, | 
|  | Span<const uint8_t> *out_read_traffic_secret, | 
|  | Span<const uint8_t> *out_write_traffic_secret) { | 
|  | // This API is not well-defined for DTLS 1.3 (see https://crbug.com/42290608) | 
|  | // or QUIC, where multiple epochs may be alive at once. | 
|  | if (SSL_is_dtls(ssl) || SSL_is_quic(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!ssl->s3->initial_handshake_complete) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (SSL_version(ssl) < TLS1_3_VERSION) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *out_read_traffic_secret = ssl->s3->read_traffic_secret; | 
|  | *out_write_traffic_secret = ssl->s3->write_traffic_secret; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_aes_hw_override_for_testing(SSL_CTX *ctx, | 
|  | bool override_value) { | 
|  | ctx->aes_hw_override = true; | 
|  | ctx->aes_hw_override_value = override_value; | 
|  | } | 
|  |  | 
|  | void SSL_set_aes_hw_override_for_testing(SSL *ssl, bool override_value) { | 
|  | ssl->config->aes_hw_override = true; | 
|  | ssl->config->aes_hw_override_value = override_value; | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | using namespace bssl; | 
|  |  | 
|  | int SSL_library_init(void) { return 1; } | 
|  |  | 
|  | int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static uint32_t ssl_session_hash(const SSL_SESSION *sess) { | 
|  | return ssl_hash_session_id(sess->session_id); | 
|  | } | 
|  |  | 
|  | static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { | 
|  | return Span(a->session_id) == b->session_id ? 0 : 1; | 
|  | } | 
|  |  | 
|  | ssl_ctx_st::ssl_ctx_st(const SSL_METHOD *ssl_method) | 
|  | : RefCounted(CheckSubClass()), | 
|  | method(ssl_method->method), | 
|  | x509_method(ssl_method->x509_method), | 
|  | retain_only_sha256_of_client_certs(false), | 
|  | quiet_shutdown(false), | 
|  | ocsp_stapling_enabled(false), | 
|  | signed_cert_timestamps_enabled(false), | 
|  | channel_id_enabled(false), | 
|  | grease_enabled(false), | 
|  | permute_extensions(false), | 
|  | allow_unknown_alpn_protos(false), | 
|  | false_start_allowed_without_alpn(false), | 
|  | handoff(false), | 
|  | enable_early_data(false), | 
|  | aes_hw_override(false), | 
|  | aes_hw_override_value(false) { | 
|  | CRYPTO_MUTEX_init(&lock); | 
|  | CRYPTO_new_ex_data(&ex_data); | 
|  | } | 
|  |  | 
|  | ssl_ctx_st::~ssl_ctx_st() { | 
|  | // Free the internal session cache. Note that this calls the caller-supplied | 
|  | // remove callback, so we must do it before clearing ex_data. (See ticket | 
|  | // [openssl.org #212].) | 
|  | SSL_CTX_flush_sessions(this, 0); | 
|  |  | 
|  | CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, this, &ex_data); | 
|  |  | 
|  | CRYPTO_MUTEX_cleanup(&lock); | 
|  | lh_SSL_SESSION_free(sessions); | 
|  | x509_method->ssl_ctx_free(this); | 
|  | } | 
|  |  | 
|  | SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) { | 
|  | if (method == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL_CTX> ret = MakeUnique<SSL_CTX>(method); | 
|  | if (!ret) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ret->cert = MakeUnique<CERT>(method->x509_method); | 
|  | ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); | 
|  | ret->client_CA.reset(sk_CRYPTO_BUFFER_new_null()); | 
|  | ret->CA_names.reset(sk_CRYPTO_BUFFER_new_null()); | 
|  | if (ret->cert == nullptr ||       // | 
|  | !ret->cert->is_valid() ||     // | 
|  | ret->sessions == nullptr ||   // | 
|  | ret->client_CA == nullptr ||  // | 
|  | ret->CA_names == nullptr ||   // | 
|  | !ret->x509_method->ssl_ctx_new(ret.get())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!SSL_CTX_set_strict_cipher_list(ret.get(), SSL_DEFAULT_CIPHER_LIST) || | 
|  | // Lock the SSL_CTX to the specified version, for compatibility with | 
|  | // legacy uses of SSL_METHOD. | 
|  | !SSL_CTX_set_max_proto_version(ret.get(), method->version) || | 
|  | !SSL_CTX_set_min_proto_version(ret.get(), method->version)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return ret.release(); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_up_ref(SSL_CTX *ctx) { | 
|  | ctx->UpRefInternal(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_free(SSL_CTX *ctx) { | 
|  | if (ctx != nullptr) { | 
|  | ctx->DecRefInternal(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ssl_st::ssl_st(SSL_CTX *ctx_arg) | 
|  | : method(ctx_arg->method), | 
|  | max_send_fragment(ctx_arg->max_send_fragment), | 
|  | msg_callback(ctx_arg->msg_callback), | 
|  | msg_callback_arg(ctx_arg->msg_callback_arg), | 
|  | ctx(UpRef(ctx_arg)), | 
|  | session_ctx(UpRef(ctx_arg)), | 
|  | options(ctx->options), | 
|  | mode(ctx->mode), | 
|  | max_cert_list(ctx->max_cert_list), | 
|  | server(false), | 
|  | quiet_shutdown(ctx->quiet_shutdown), | 
|  | enable_early_data(ctx->enable_early_data) { | 
|  | CRYPTO_new_ex_data(&ex_data); | 
|  | } | 
|  |  | 
|  | ssl_st::~ssl_st() { | 
|  | CRYPTO_free_ex_data(&g_ex_data_class_ssl, this, &ex_data); | 
|  | // |config| refers to |this|, so we must release it earlier. | 
|  | config.reset(); | 
|  | if (method != NULL) { | 
|  | method->ssl_free(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | SSL *SSL_new(SSL_CTX *ctx) { | 
|  | if (ctx == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL> ssl = MakeUnique<SSL>(ctx); | 
|  | if (ssl == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ssl->config = MakeUnique<SSL_CONFIG>(ssl.get()); | 
|  | if (ssl->config == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | ssl->config->conf_min_version = ctx->conf_min_version; | 
|  | ssl->config->conf_max_version = ctx->conf_max_version; | 
|  |  | 
|  | ssl->config->cert = ssl_cert_dup(ctx->cert.get()); | 
|  | if (ssl->config->cert == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ssl->config->verify_mode = ctx->verify_mode; | 
|  | ssl->config->verify_callback = ctx->default_verify_callback; | 
|  | ssl->config->custom_verify_callback = ctx->custom_verify_callback; | 
|  | ssl->config->retain_only_sha256_of_client_certs = | 
|  | ctx->retain_only_sha256_of_client_certs; | 
|  | ssl->config->permute_extensions = ctx->permute_extensions; | 
|  | ssl->config->aes_hw_override = ctx->aes_hw_override; | 
|  | ssl->config->aes_hw_override_value = ctx->aes_hw_override_value; | 
|  | ssl->config->compliance_policy = ctx->compliance_policy; | 
|  |  | 
|  | if (!ssl->config->supported_group_list.CopyFrom(ctx->supported_group_list) || | 
|  | !ssl->config->alpn_client_proto_list.CopyFrom( | 
|  | ctx->alpn_client_proto_list) || | 
|  | !ssl->config->verify_sigalgs.CopyFrom(ctx->verify_sigalgs)) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (ctx->psk_identity_hint) { | 
|  | ssl->config->psk_identity_hint.reset( | 
|  | OPENSSL_strdup(ctx->psk_identity_hint.get())); | 
|  | if (ssl->config->psk_identity_hint == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | ssl->config->psk_client_callback = ctx->psk_client_callback; | 
|  | ssl->config->psk_server_callback = ctx->psk_server_callback; | 
|  |  | 
|  | ssl->config->channel_id_enabled = ctx->channel_id_enabled; | 
|  | ssl->config->channel_id_private = UpRef(ctx->channel_id_private); | 
|  |  | 
|  | ssl->config->signed_cert_timestamps_enabled = | 
|  | ctx->signed_cert_timestamps_enabled; | 
|  | ssl->config->ocsp_stapling_enabled = ctx->ocsp_stapling_enabled; | 
|  | ssl->config->handoff = ctx->handoff; | 
|  | ssl->quic_method = ctx->quic_method; | 
|  |  | 
|  | if (!ssl->method->ssl_new(ssl.get()) || | 
|  | !ssl->ctx->x509_method->ssl_new(ssl->s3->hs.get())) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return ssl.release(); | 
|  | } | 
|  |  | 
|  | SSL_CONFIG::SSL_CONFIG(SSL *ssl_arg) | 
|  | : ssl(ssl_arg), | 
|  | ech_grease_enabled(false), | 
|  | signed_cert_timestamps_enabled(false), | 
|  | ocsp_stapling_enabled(false), | 
|  | channel_id_enabled(false), | 
|  | enforce_rsa_key_usage(true), | 
|  | retain_only_sha256_of_client_certs(false), | 
|  | handoff(false), | 
|  | shed_handshake_config(false), | 
|  | jdk11_workaround(false), | 
|  | quic_use_legacy_codepoint(false), | 
|  | permute_extensions(false), | 
|  | alps_use_new_codepoint(false) { | 
|  | assert(ssl); | 
|  | } | 
|  |  | 
|  | SSL_CONFIG::~SSL_CONFIG() { | 
|  | if (ssl->ctx != nullptr) { | 
|  | ssl->ctx->x509_method->ssl_config_free(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SSL_free(SSL *ssl) { Delete(ssl); } | 
|  |  | 
|  | void SSL_set_connect_state(SSL *ssl) { | 
|  | ssl->server = false; | 
|  | ssl->do_handshake = ssl_client_handshake; | 
|  | } | 
|  |  | 
|  | void SSL_set_accept_state(SSL *ssl) { | 
|  | ssl->server = true; | 
|  | ssl->do_handshake = ssl_server_handshake; | 
|  | } | 
|  |  | 
|  | void SSL_set0_rbio(SSL *ssl, BIO *rbio) { ssl->rbio.reset(rbio); } | 
|  |  | 
|  | void SSL_set0_wbio(SSL *ssl, BIO *wbio) { ssl->wbio.reset(wbio); } | 
|  |  | 
|  | void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) { | 
|  | // For historical reasons, this function has many different cases in ownership | 
|  | // handling. | 
|  |  | 
|  | // If nothing has changed, do nothing | 
|  | if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the two arguments are equal, one fewer reference is granted than | 
|  | // taken. | 
|  | if (rbio != NULL && rbio == wbio) { | 
|  | BIO_up_ref(rbio); | 
|  | } | 
|  |  | 
|  | // If only the wbio is changed, adopt only one reference. | 
|  | if (rbio == SSL_get_rbio(ssl)) { | 
|  | SSL_set0_wbio(ssl, wbio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // There is an asymmetry here for historical reasons. If only the rbio is | 
|  | // changed AND the rbio and wbio were originally different, then we only adopt | 
|  | // one reference. | 
|  | if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) { | 
|  | SSL_set0_rbio(ssl, rbio); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, adopt both references. | 
|  | SSL_set0_rbio(ssl, rbio); | 
|  | SSL_set0_wbio(ssl, wbio); | 
|  | } | 
|  |  | 
|  | BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio.get(); } | 
|  |  | 
|  | BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio.get(); } | 
|  |  | 
|  | size_t SSL_quic_max_handshake_flight_len(const SSL *ssl, | 
|  | enum ssl_encryption_level_t level) { | 
|  | // Limits flights to 16K by default when there are no large | 
|  | // (certificate-carrying) messages. | 
|  | static const size_t kDefaultLimit = 16384; | 
|  |  | 
|  | switch (level) { | 
|  | case ssl_encryption_initial: | 
|  | return kDefaultLimit; | 
|  | case ssl_encryption_early_data: | 
|  | // QUIC does not send EndOfEarlyData. | 
|  | return 0; | 
|  | case ssl_encryption_handshake: | 
|  | if (ssl->server) { | 
|  | // Servers may receive Certificate message if configured to request | 
|  | // client certificates. | 
|  | if (!!(ssl->config->verify_mode & SSL_VERIFY_PEER) && | 
|  | ssl->max_cert_list > kDefaultLimit) { | 
|  | return ssl->max_cert_list; | 
|  | } | 
|  | } else { | 
|  | // Clients may receive both Certificate message and a CertificateRequest | 
|  | // message. | 
|  | if (2 * ssl->max_cert_list > kDefaultLimit) { | 
|  | return 2 * ssl->max_cert_list; | 
|  | } | 
|  | } | 
|  | return kDefaultLimit; | 
|  | case ssl_encryption_application: | 
|  | // Note there is not actually a bound on the number of NewSessionTickets | 
|  | // one may send in a row. This level may need more involved flow | 
|  | // control. See https://github.com/quicwg/base-drafts/issues/1834. | 
|  | return kDefaultLimit; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | enum ssl_encryption_level_t SSL_quic_read_level(const SSL *ssl) { | 
|  | assert(SSL_is_quic(ssl)); | 
|  | return ssl->s3->quic_read_level; | 
|  | } | 
|  |  | 
|  | enum ssl_encryption_level_t SSL_quic_write_level(const SSL *ssl) { | 
|  | assert(SSL_is_quic(ssl)); | 
|  | return ssl->s3->quic_write_level; | 
|  | } | 
|  |  | 
|  | int SSL_provide_quic_data(SSL *ssl, enum ssl_encryption_level_t level, | 
|  | const uint8_t *data, size_t len) { | 
|  | if (!SSL_is_quic(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (level != ssl->s3->quic_read_level) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_ENCRYPTION_LEVEL_RECEIVED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t new_len = (ssl->s3->hs_buf ? ssl->s3->hs_buf->length : 0) + len; | 
|  | if (new_len < len || | 
|  | new_len > SSL_quic_max_handshake_flight_len(ssl, level)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return tls_append_handshake_data(ssl, Span(data, len)); | 
|  | } | 
|  |  | 
|  | int SSL_do_handshake(SSL *ssl) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (ssl->do_handshake == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!SSL_in_init(ssl)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Run the handshake. | 
|  | SSL_HANDSHAKE *hs = ssl->s3->hs.get(); | 
|  |  | 
|  | bool early_return = false; | 
|  | int ret = ssl_run_handshake(hs, &early_return); | 
|  | ssl_do_info_callback( | 
|  | ssl, ssl->server ? SSL_CB_ACCEPT_EXIT : SSL_CB_CONNECT_EXIT, ret); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Destroy the handshake object if the handshake has completely finished. | 
|  | if (!early_return) { | 
|  | ssl->s3->hs.reset(); | 
|  | ssl_maybe_shed_handshake_config(ssl); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_connect(SSL *ssl) { | 
|  | if (ssl->do_handshake == NULL) { | 
|  | // Not properly initialized yet | 
|  | SSL_set_connect_state(ssl); | 
|  | } | 
|  |  | 
|  | return SSL_do_handshake(ssl); | 
|  | } | 
|  |  | 
|  | int SSL_accept(SSL *ssl) { | 
|  | if (ssl->do_handshake == NULL) { | 
|  | // Not properly initialized yet | 
|  | SSL_set_accept_state(ssl); | 
|  | } | 
|  |  | 
|  | return SSL_do_handshake(ssl); | 
|  | } | 
|  |  | 
|  | static int ssl_do_post_handshake(SSL *ssl, const SSLMessage &msg) { | 
|  | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return tls13_post_handshake(ssl, msg); | 
|  | } | 
|  |  | 
|  | // Check for renegotiation on the server before parsing to use the correct | 
|  | // error. Renegotiation is triggered by a different message for servers. | 
|  | if (ssl->server) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); | 
|  | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (msg.type != SSL3_MT_HELLO_REQUEST || CBS_len(&msg.body) != 0) { | 
|  | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ssl->renegotiate_mode == ssl_renegotiate_ignore) { | 
|  | return 1;  // Ignore the HelloRequest. | 
|  | } | 
|  |  | 
|  | ssl->s3->renegotiate_pending = true; | 
|  | if (ssl->renegotiate_mode == ssl_renegotiate_explicit) { | 
|  | return 1;  // Handle it later. | 
|  | } | 
|  |  | 
|  | if (!SSL_renegotiate(ssl)) { | 
|  | ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_process_quic_post_handshake(SSL *ssl) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (!SSL_is_quic(ssl) || SSL_in_init(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Replay post-handshake message errors. | 
|  | if (!check_read_error(ssl)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Process any buffered post-handshake messages. | 
|  | SSLMessage msg; | 
|  | while (ssl->method->get_message(ssl, &msg)) { | 
|  | // Handle the post-handshake message and try again. | 
|  | if (!ssl_do_post_handshake(ssl, msg)) { | 
|  | ssl_set_read_error(ssl); | 
|  | return 0; | 
|  | } | 
|  | ssl->method->next_message(ssl); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ssl_read_impl(SSL *ssl) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (ssl->do_handshake == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Replay post-handshake message errors. | 
|  | if (!check_read_error(ssl)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | while (ssl->s3->pending_app_data.empty()) { | 
|  | if (ssl->s3->renegotiate_pending) { | 
|  | ssl->s3->rwstate = SSL_ERROR_WANT_RENEGOTIATE; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If a read triggered a DTLS ACK or retransmit, resolve that before reading | 
|  | // more. | 
|  | if (SSL_is_dtls(ssl)) { | 
|  | int ret = ssl->method->flush(ssl); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Complete the current handshake, if any. False Start will cause | 
|  | // |SSL_do_handshake| to return mid-handshake, so this may require multiple | 
|  | // iterations. | 
|  | while (!ssl_can_read(ssl)) { | 
|  | int ret = SSL_do_handshake(ssl); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | if (ret == 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process any buffered post-handshake messages. | 
|  | SSLMessage msg; | 
|  | if (ssl->method->get_message(ssl, &msg)) { | 
|  | // If we received an interrupt in early read (EndOfEarlyData), loop again | 
|  | // for the handshake to process it. | 
|  | if (SSL_in_init(ssl)) { | 
|  | ssl->s3->hs->can_early_read = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Handle the post-handshake message and try again. | 
|  | if (!ssl_do_post_handshake(ssl, msg)) { | 
|  | ssl_set_read_error(ssl); | 
|  | return -1; | 
|  | } | 
|  | ssl->method->next_message(ssl); | 
|  | continue;  // Loop again. We may have begun a new handshake. | 
|  | } | 
|  |  | 
|  | uint8_t alert = SSL_AD_DECODE_ERROR; | 
|  | size_t consumed = 0; | 
|  | auto ret = ssl_open_app_data(ssl, &ssl->s3->pending_app_data, &consumed, | 
|  | &alert, ssl->s3->read_buffer.span()); | 
|  | bool retry; | 
|  | int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert); | 
|  | if (bio_ret <= 0) { | 
|  | return bio_ret; | 
|  | } | 
|  | if (!retry) { | 
|  | assert(!ssl->s3->pending_app_data.empty()); | 
|  | ssl->s3->key_update_count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_read(SSL *ssl, void *buf, int num) { | 
|  | int ret = SSL_peek(ssl, buf, num); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | // TODO(davidben): In DTLS, should the rest of the record be discarded?  DTLS | 
|  | // is not a stream. See https://crbug.com/boringssl/65. | 
|  | ssl->s3->pending_app_data = | 
|  | ssl->s3->pending_app_data.subspan(static_cast<size_t>(ret)); | 
|  | if (ssl->s3->pending_app_data.empty()) { | 
|  | ssl->s3->read_buffer.DiscardConsumed(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int SSL_peek(SSL *ssl, void *buf, int num) { | 
|  | if (SSL_is_quic(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int ret = ssl_read_impl(ssl); | 
|  | if (ret <= 0) { | 
|  | return ret; | 
|  | } | 
|  | if (num <= 0) { | 
|  | return num; | 
|  | } | 
|  | size_t todo = | 
|  | std::min(ssl->s3->pending_app_data.size(), static_cast<size_t>(num)); | 
|  | OPENSSL_memcpy(buf, ssl->s3->pending_app_data.data(), todo); | 
|  | return static_cast<int>(todo); | 
|  | } | 
|  |  | 
|  | int SSL_write(SSL *ssl, const void *buf, int num) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (SSL_is_quic(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ssl->do_handshake == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | size_t bytes_written = 0; | 
|  | bool needs_handshake = false; | 
|  | do { | 
|  | // If necessary, complete the handshake implicitly. | 
|  | if (!ssl_can_write(ssl)) { | 
|  | ret = SSL_do_handshake(ssl); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | if (ret == 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num < 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH); | 
|  | return -1; | 
|  | } | 
|  | ret = ssl->method->write_app_data( | 
|  | ssl, &needs_handshake, &bytes_written, | 
|  | Span(static_cast<const uint8_t *>(buf), static_cast<size_t>(num))); | 
|  | } while (needs_handshake); | 
|  | return ret <= 0 ? ret : static_cast<int>(bytes_written); | 
|  | } | 
|  |  | 
|  | int SSL_key_update(SSL *ssl, int request_type) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (ssl->do_handshake == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (SSL_is_quic(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ssl->s3->initial_handshake_complete) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return tls13_add_key_update(ssl, request_type); | 
|  | } | 
|  |  | 
|  | int SSL_shutdown(SSL *ssl) { | 
|  | ssl_reset_error_state(ssl); | 
|  |  | 
|  | if (ssl->do_handshake == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If we are in the middle of a handshake, silently succeed. Consumers often | 
|  | // call this function before |SSL_free|, whether the handshake succeeded or | 
|  | // not. We assume the caller has already handled failed handshakes. | 
|  | if (SSL_in_init(ssl)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (ssl->quiet_shutdown) { | 
|  | // Do nothing if configured not to send a close_notify. | 
|  | ssl->s3->write_shutdown = ssl_shutdown_close_notify; | 
|  | ssl->s3->read_shutdown = ssl_shutdown_close_notify; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // This function completes in two stages. It sends a close_notify and then it | 
|  | // waits for a close_notify to come in. Perform exactly one action and return | 
|  | // whether or not it succeeds. | 
|  |  | 
|  | if (ssl->s3->write_shutdown != ssl_shutdown_close_notify) { | 
|  | // Send a close_notify. | 
|  | if (ssl_send_alert_impl(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) { | 
|  | return -1; | 
|  | } | 
|  | } else if (ssl->s3->alert_dispatch) { | 
|  | // Finish sending the close_notify. | 
|  | if (ssl->method->dispatch_alert(ssl) <= 0) { | 
|  | return -1; | 
|  | } | 
|  | } else if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { | 
|  | if (SSL_is_dtls(ssl)) { | 
|  | // Bidirectional shutdown doesn't make sense for an unordered | 
|  | // transport. DTLS alerts also aren't delivered reliably, so we may even | 
|  | // time out because the peer never received our close_notify. Report to | 
|  | // the caller that the channel has fully shut down. | 
|  | if (ssl->s3->read_shutdown == ssl_shutdown_error) { | 
|  | ERR_restore_state(ssl->s3->read_error.get()); | 
|  | return -1; | 
|  | } | 
|  | ssl->s3->read_shutdown = ssl_shutdown_close_notify; | 
|  | } else { | 
|  | // Process records until an error, close_notify, or application data. | 
|  | if (ssl_read_impl(ssl) > 0) { | 
|  | // We received some unexpected application data. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_APPLICATION_DATA_ON_SHUTDOWN); | 
|  | return -1; | 
|  | } | 
|  | if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return 0 for unidirectional shutdown and 1 for bidirectional shutdown. | 
|  | return ssl->s3->read_shutdown == ssl_shutdown_close_notify; | 
|  | } | 
|  |  | 
|  | int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) { | 
|  | if (ssl->s3->alert_dispatch) { | 
|  | if (ssl->s3->send_alert[0] != SSL3_AL_FATAL || | 
|  | ssl->s3->send_alert[1] != alert) { | 
|  | // We are already attempting to write a different alert. | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); | 
|  | return -1; | 
|  | } | 
|  | return ssl->method->dispatch_alert(ssl); | 
|  | } | 
|  |  | 
|  | return ssl_send_alert_impl(ssl, SSL3_AL_FATAL, alert); | 
|  | } | 
|  |  | 
|  | int SSL_set_quic_transport_params(SSL *ssl, const uint8_t *params, | 
|  | size_t params_len) { | 
|  | return ssl->config && | 
|  | ssl->config->quic_transport_params.CopyFrom(Span(params, params_len)); | 
|  | } | 
|  |  | 
|  | void SSL_get_peer_quic_transport_params(const SSL *ssl, | 
|  | const uint8_t **out_params, | 
|  | size_t *out_params_len) { | 
|  | *out_params = ssl->s3->peer_quic_transport_params.data(); | 
|  | *out_params_len = ssl->s3->peer_quic_transport_params.size(); | 
|  | } | 
|  |  | 
|  | int SSL_set_quic_early_data_context(SSL *ssl, const uint8_t *context, | 
|  | size_t context_len) { | 
|  | return ssl->config && ssl->config->quic_early_data_context.CopyFrom( | 
|  | Span(context, context_len)); | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_early_data_enabled(SSL_CTX *ctx, int enabled) { | 
|  | ctx->enable_early_data = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_set_early_data_enabled(SSL *ssl, int enabled) { | 
|  | ssl->enable_early_data = !!enabled; | 
|  | } | 
|  |  | 
|  | int SSL_in_early_data(const SSL *ssl) { | 
|  | if (ssl->s3->hs == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return ssl->s3->hs->in_early_data; | 
|  | } | 
|  |  | 
|  | int SSL_early_data_accepted(const SSL *ssl) { | 
|  | return ssl->s3->early_data_accepted; | 
|  | } | 
|  |  | 
|  | void SSL_reset_early_data_reject(SSL *ssl) { | 
|  | SSL_HANDSHAKE *hs = ssl->s3->hs.get(); | 
|  | if (hs == NULL ||  // | 
|  | hs->wait != ssl_hs_early_data_rejected) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | hs->wait = ssl_hs_ok; | 
|  | hs->in_early_data = false; | 
|  | hs->early_session.reset(); | 
|  |  | 
|  | // Discard any unfinished writes from the perspective of |SSL_write|'s | 
|  | // retry. The handshake will transparently flush out the pending record | 
|  | // (discarded by the server) to keep the framing correct. | 
|  | ssl->s3->pending_write = {}; | 
|  | } | 
|  |  | 
|  | enum ssl_early_data_reason_t SSL_get_early_data_reason(const SSL *ssl) { | 
|  | return ssl->s3->early_data_reason; | 
|  | } | 
|  |  | 
|  | const char *SSL_early_data_reason_string(enum ssl_early_data_reason_t reason) { | 
|  | switch (reason) { | 
|  | case ssl_early_data_unknown: | 
|  | return "unknown"; | 
|  | case ssl_early_data_disabled: | 
|  | return "disabled"; | 
|  | case ssl_early_data_accepted: | 
|  | return "accepted"; | 
|  | case ssl_early_data_protocol_version: | 
|  | return "protocol_version"; | 
|  | case ssl_early_data_peer_declined: | 
|  | return "peer_declined"; | 
|  | case ssl_early_data_no_session_offered: | 
|  | return "no_session_offered"; | 
|  | case ssl_early_data_session_not_resumed: | 
|  | return "session_not_resumed"; | 
|  | case ssl_early_data_unsupported_for_session: | 
|  | return "unsupported_for_session"; | 
|  | case ssl_early_data_hello_retry_request: | 
|  | return "hello_retry_request"; | 
|  | case ssl_early_data_alpn_mismatch: | 
|  | return "alpn_mismatch"; | 
|  | case ssl_early_data_channel_id: | 
|  | return "channel_id"; | 
|  | case ssl_early_data_ticket_age_skew: | 
|  | return "ticket_age_skew"; | 
|  | case ssl_early_data_quic_parameter_mismatch: | 
|  | return "quic_parameter_mismatch"; | 
|  | case ssl_early_data_alps_mismatch: | 
|  | return "alps_mismatch"; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static int bio_retry_reason_to_error(int reason) { | 
|  | switch (reason) { | 
|  | case BIO_RR_CONNECT: | 
|  | return SSL_ERROR_WANT_CONNECT; | 
|  | case BIO_RR_ACCEPT: | 
|  | return SSL_ERROR_WANT_ACCEPT; | 
|  | default: | 
|  | return SSL_ERROR_SYSCALL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int SSL_get_error(const SSL *ssl, int ret_code) { | 
|  | if (ret_code > 0) { | 
|  | return SSL_ERROR_NONE; | 
|  | } | 
|  |  | 
|  | // Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, | 
|  | // where we do encode the error | 
|  | uint32_t err = ERR_peek_error(); | 
|  | if (err != 0) { | 
|  | if (ERR_GET_LIB(err) == ERR_LIB_SYS) { | 
|  | return SSL_ERROR_SYSCALL; | 
|  | } | 
|  | return SSL_ERROR_SSL; | 
|  | } | 
|  |  | 
|  | if (ret_code == 0) { | 
|  | if (ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN) { | 
|  | return SSL_ERROR_ZERO_RETURN; | 
|  | } | 
|  | // An EOF was observed which violates the protocol, and the underlying | 
|  | // transport does not participate in the error queue. Bubble up to the | 
|  | // caller. | 
|  | return SSL_ERROR_SYSCALL; | 
|  | } | 
|  |  | 
|  | switch (ssl->s3->rwstate) { | 
|  | case SSL_ERROR_PENDING_SESSION: | 
|  | case SSL_ERROR_PENDING_CERTIFICATE: | 
|  | case SSL_ERROR_HANDOFF: | 
|  | case SSL_ERROR_HANDBACK: | 
|  | case SSL_ERROR_WANT_X509_LOOKUP: | 
|  | case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: | 
|  | case SSL_ERROR_PENDING_TICKET: | 
|  | case SSL_ERROR_EARLY_DATA_REJECTED: | 
|  | case SSL_ERROR_WANT_CERTIFICATE_VERIFY: | 
|  | case SSL_ERROR_WANT_RENEGOTIATE: | 
|  | case SSL_ERROR_HANDSHAKE_HINTS_READY: | 
|  | return ssl->s3->rwstate; | 
|  |  | 
|  | case SSL_ERROR_WANT_READ: { | 
|  | if (SSL_is_quic(ssl)) { | 
|  | return SSL_ERROR_WANT_READ; | 
|  | } | 
|  | BIO *bio = SSL_get_rbio(ssl); | 
|  | if (BIO_should_read(bio)) { | 
|  | return SSL_ERROR_WANT_READ; | 
|  | } | 
|  |  | 
|  | if (BIO_should_write(bio)) { | 
|  | // TODO(davidben): OpenSSL historically checked for writes on the read | 
|  | // BIO. Can this be removed? | 
|  | return SSL_ERROR_WANT_WRITE; | 
|  | } | 
|  |  | 
|  | if (BIO_should_io_special(bio)) { | 
|  | return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case SSL_ERROR_WANT_WRITE: { | 
|  | BIO *bio = SSL_get_wbio(ssl); | 
|  | if (BIO_should_write(bio)) { | 
|  | return SSL_ERROR_WANT_WRITE; | 
|  | } | 
|  |  | 
|  | if (BIO_should_read(bio)) { | 
|  | // TODO(davidben): OpenSSL historically checked for reads on the write | 
|  | // BIO. Can this be removed? | 
|  | return SSL_ERROR_WANT_READ; | 
|  | } | 
|  |  | 
|  | if (BIO_should_io_special(bio)) { | 
|  | return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return SSL_ERROR_SYSCALL; | 
|  | } | 
|  |  | 
|  | const char *SSL_error_description(int err) { | 
|  | switch (err) { | 
|  | case SSL_ERROR_NONE: | 
|  | return "NONE"; | 
|  | case SSL_ERROR_SSL: | 
|  | return "SSL"; | 
|  | case SSL_ERROR_WANT_READ: | 
|  | return "WANT_READ"; | 
|  | case SSL_ERROR_WANT_WRITE: | 
|  | return "WANT_WRITE"; | 
|  | case SSL_ERROR_WANT_X509_LOOKUP: | 
|  | return "WANT_X509_LOOKUP"; | 
|  | case SSL_ERROR_SYSCALL: | 
|  | return "SYSCALL"; | 
|  | case SSL_ERROR_ZERO_RETURN: | 
|  | return "ZERO_RETURN"; | 
|  | case SSL_ERROR_WANT_CONNECT: | 
|  | return "WANT_CONNECT"; | 
|  | case SSL_ERROR_WANT_ACCEPT: | 
|  | return "WANT_ACCEPT"; | 
|  | case SSL_ERROR_PENDING_SESSION: | 
|  | return "PENDING_SESSION"; | 
|  | case SSL_ERROR_PENDING_CERTIFICATE: | 
|  | return "PENDING_CERTIFICATE"; | 
|  | case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: | 
|  | return "WANT_PRIVATE_KEY_OPERATION"; | 
|  | case SSL_ERROR_PENDING_TICKET: | 
|  | return "PENDING_TICKET"; | 
|  | case SSL_ERROR_EARLY_DATA_REJECTED: | 
|  | return "EARLY_DATA_REJECTED"; | 
|  | case SSL_ERROR_WANT_CERTIFICATE_VERIFY: | 
|  | return "WANT_CERTIFICATE_VERIFY"; | 
|  | case SSL_ERROR_HANDOFF: | 
|  | return "HANDOFF"; | 
|  | case SSL_ERROR_HANDBACK: | 
|  | return "HANDBACK"; | 
|  | case SSL_ERROR_WANT_RENEGOTIATE: | 
|  | return "WANT_RENEGOTIATE"; | 
|  | case SSL_ERROR_HANDSHAKE_HINTS_READY: | 
|  | return "HANDSHAKE_HINTS_READY"; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) { | 
|  | ctx->options |= options; | 
|  | return ctx->options; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) { | 
|  | ctx->options &= ~options; | 
|  | return ctx->options; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } | 
|  |  | 
|  | uint32_t SSL_set_options(SSL *ssl, uint32_t options) { | 
|  | ssl->options |= options; | 
|  | return ssl->options; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_clear_options(SSL *ssl, uint32_t options) { | 
|  | ssl->options &= ~options; | 
|  | return ssl->options; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; } | 
|  |  | 
|  | uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) { | 
|  | ctx->mode |= mode; | 
|  | return ctx->mode; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) { | 
|  | ctx->mode &= ~mode; | 
|  | return ctx->mode; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; } | 
|  |  | 
|  | uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) { | 
|  | ssl->mode |= mode; | 
|  | return ssl->mode; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) { | 
|  | ssl->mode &= ~mode; | 
|  | return ssl->mode; | 
|  | } | 
|  |  | 
|  | uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; } | 
|  |  | 
|  | void SSL_CTX_set0_buffer_pool(SSL_CTX *ctx, CRYPTO_BUFFER_POOL *pool) { | 
|  | ctx->pool = pool; | 
|  | } | 
|  |  | 
|  | int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, | 
|  | size_t max_out) { | 
|  | *out_len = 0; | 
|  | OPENSSL_memset(out, 0, max_out); | 
|  |  | 
|  | // tls-unique is not defined for TLS 1.3. | 
|  | if (!ssl->s3->initial_handshake_complete || | 
|  | ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The tls-unique value is the first Finished message in the handshake, which | 
|  | // is the client's in a full handshake and the server's for a resumption. See | 
|  | // https://tools.ietf.org/html/rfc5929#section-3.1. | 
|  | Span<const uint8_t> finished = ssl->s3->previous_client_finished; | 
|  | if (ssl->session != NULL) { | 
|  | // tls-unique is broken for resumed sessions unless EMS is used. | 
|  | if (!ssl->session->extended_master_secret) { | 
|  | return 0; | 
|  | } | 
|  | finished = ssl->s3->previous_server_finished; | 
|  | } | 
|  |  | 
|  | *out_len = finished.size(); | 
|  | if (finished.size() > max_out) { | 
|  | *out_len = max_out; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(out, finished.data(), *out_len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int set_session_id_context(CERT *cert, const uint8_t *sid_ctx, | 
|  | size_t sid_ctx_len) { | 
|  | if (!cert->sid_ctx.TryCopyFrom(Span(sid_ctx, sid_ctx_len))) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, | 
|  | size_t sid_ctx_len) { | 
|  | return set_session_id_context(ctx->cert.get(), sid_ctx, sid_ctx_len); | 
|  | } | 
|  |  | 
|  | int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, | 
|  | size_t sid_ctx_len) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | return set_session_id_context(ssl->config->cert.get(), sid_ctx, sid_ctx_len); | 
|  | } | 
|  |  | 
|  | const uint8_t *SSL_get0_session_id_context(const SSL *ssl, size_t *out_len) { | 
|  | if (!ssl->config) { | 
|  | assert(ssl->config); | 
|  | *out_len = 0; | 
|  | return NULL; | 
|  | } | 
|  | *out_len = ssl->config->cert->sid_ctx.size(); | 
|  | return ssl->config->cert->sid_ctx.data(); | 
|  | } | 
|  |  | 
|  | int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); } | 
|  |  | 
|  | int SSL_get_rfd(const SSL *ssl) { | 
|  | int ret = -1; | 
|  | BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR); | 
|  | if (b != NULL) { | 
|  | BIO_get_fd(b, &ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int SSL_get_wfd(const SSL *ssl) { | 
|  | int ret = -1; | 
|  | BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR); | 
|  | if (b != NULL) { | 
|  | BIO_get_fd(b, &ret); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if !defined(OPENSSL_NO_SOCK) | 
|  | int SSL_set_fd(SSL *ssl, int fd) { | 
|  | BIO *bio = BIO_new(BIO_s_socket()); | 
|  | if (bio == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); | 
|  | return 0; | 
|  | } | 
|  | BIO_set_fd(bio, fd, BIO_NOCLOSE); | 
|  | SSL_set_bio(ssl, bio, bio); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_wfd(SSL *ssl, int fd) { | 
|  | BIO *rbio = SSL_get_rbio(ssl); | 
|  | if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET || | 
|  | BIO_get_fd(rbio, NULL) != fd) { | 
|  | BIO *bio = BIO_new(BIO_s_socket()); | 
|  | if (bio == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); | 
|  | return 0; | 
|  | } | 
|  | BIO_set_fd(bio, fd, BIO_NOCLOSE); | 
|  | SSL_set0_wbio(ssl, bio); | 
|  | } else { | 
|  | // Copy the rbio over to the wbio. | 
|  | BIO_up_ref(rbio); | 
|  | SSL_set0_wbio(ssl, rbio); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_rfd(SSL *ssl, int fd) { | 
|  | BIO *wbio = SSL_get_wbio(ssl); | 
|  | if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET || | 
|  | BIO_get_fd(wbio, NULL) != fd) { | 
|  | BIO *bio = BIO_new(BIO_s_socket()); | 
|  | if (bio == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); | 
|  | return 0; | 
|  | } | 
|  | BIO_set_fd(bio, fd, BIO_NOCLOSE); | 
|  | SSL_set0_rbio(ssl, bio); | 
|  | } else { | 
|  | // Copy the wbio over to the rbio. | 
|  | BIO_up_ref(wbio); | 
|  | SSL_set0_rbio(ssl, wbio); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #endif  // !OPENSSL_NO_SOCK | 
|  |  | 
|  | static size_t copy_finished(void *out, size_t out_len, Span<const uint8_t> in) { | 
|  | if (out_len > in.size()) { | 
|  | out_len = in.size(); | 
|  | } | 
|  | OPENSSL_memcpy(out, in.data(), out_len); | 
|  | return in.size(); | 
|  | } | 
|  |  | 
|  | size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) { | 
|  | if (!ssl->s3->initial_handshake_complete || | 
|  | ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ssl->server) { | 
|  | return copy_finished(buf, count, ssl->s3->previous_server_finished); | 
|  | } | 
|  |  | 
|  | return copy_finished(buf, count, ssl->s3->previous_client_finished); | 
|  | } | 
|  |  | 
|  | size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) { | 
|  | if (!ssl->s3->initial_handshake_complete || | 
|  | ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ssl->server) { | 
|  | return copy_finished(buf, count, ssl->s3->previous_client_finished); | 
|  | } | 
|  |  | 
|  | return copy_finished(buf, count, ssl->s3->previous_server_finished); | 
|  | } | 
|  |  | 
|  | int SSL_get_verify_mode(const SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | assert(ssl->config); | 
|  | return -1; | 
|  | } | 
|  | return ssl->config->verify_mode; | 
|  | } | 
|  |  | 
|  | int SSL_get_extms_support(const SSL *ssl) { | 
|  | // TLS 1.3 does not require extended master secret and always reports as | 
|  | // supporting it. | 
|  | if (ssl->s3->version == 0) { | 
|  | return 0; | 
|  | } | 
|  | if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // If the initial handshake completed, query the established session. | 
|  | if (ssl->s3->established_session != NULL) { | 
|  | return ssl->s3->established_session->extended_master_secret; | 
|  | } | 
|  |  | 
|  | // Otherwise, query the in-progress handshake. | 
|  | if (ssl->s3->hs != NULL) { | 
|  | return ssl->s3->hs->extended_master_secret; | 
|  | } | 
|  | assert(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; } | 
|  |  | 
|  | int SSL_get_read_ahead(const SSL *ssl) { return 0; } | 
|  |  | 
|  | int SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { return 1; } | 
|  |  | 
|  | int SSL_set_read_ahead(SSL *ssl, int yes) { return 1; } | 
|  |  | 
|  | int SSL_pending(const SSL *ssl) { | 
|  | return static_cast<int>(ssl->s3->pending_app_data.size()); | 
|  | } | 
|  |  | 
|  | int SSL_has_pending(const SSL *ssl) { | 
|  | return SSL_pending(ssl) != 0 || !ssl->s3->read_buffer.empty(); | 
|  | } | 
|  |  | 
|  | static bool has_cert_and_key(const SSL_CREDENTIAL *cred) { | 
|  | // TODO(davidben): If |cred->key_method| is set, that should be fine too. | 
|  | if (cred->privkey == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cred->chain == nullptr || | 
|  | sk_CRYPTO_BUFFER_value(cred->chain.get(), 0) == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_check_private_key(const SSL_CTX *ctx) { | 
|  | // There is no need to actually check consistency because inconsistent values | 
|  | // can never be configured. | 
|  | return has_cert_and_key(ctx->cert->legacy_credential.get()); | 
|  | } | 
|  |  | 
|  | int SSL_check_private_key(const SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // There is no need to actually check consistency because inconsistent values | 
|  | // can never be configured. | 
|  | return has_cert_and_key(ssl->config->cert->legacy_credential.get()); | 
|  | } | 
|  |  | 
|  | long SSL_get_default_timeout(const SSL *ssl) { | 
|  | return SSL_DEFAULT_SESSION_TIMEOUT; | 
|  | } | 
|  |  | 
|  | int SSL_renegotiate(SSL *ssl) { | 
|  | // Caller-initiated renegotiation is not supported. | 
|  | if (!ssl->s3->renegotiate_pending) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ssl_can_renegotiate(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We should not have told the caller to release the private key. | 
|  | assert(!SSL_can_release_private_key(ssl)); | 
|  |  | 
|  | // Renegotiation is only supported at quiescent points in the application | 
|  | // protocol, namely in HTTPS, just before reading the HTTP response. | 
|  | // Require the record-layer be idle and avoid complexities of sending a | 
|  | // handshake record while an application_data record is being written. | 
|  | if (!ssl->s3->write_buffer.empty() || | 
|  | ssl->s3->write_shutdown != ssl_shutdown_none) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Begin a new handshake. | 
|  | if (ssl->s3->hs != nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  | ssl->s3->hs = ssl_handshake_new(ssl); | 
|  | if (ssl->s3->hs == nullptr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssl->s3->renegotiate_pending = false; | 
|  | ssl->s3->total_renegotiations++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_renegotiate_pending(SSL *ssl) { | 
|  | return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete; | 
|  | } | 
|  |  | 
|  | int SSL_total_renegotiations(const SSL *ssl) { | 
|  | return ssl->s3->total_renegotiations; | 
|  | } | 
|  |  | 
|  | size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) { | 
|  | return ctx->max_cert_list; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) { | 
|  | if (max_cert_list > kMaxHandshakeSize) { | 
|  | max_cert_list = kMaxHandshakeSize; | 
|  | } | 
|  | ctx->max_cert_list = (uint32_t)max_cert_list; | 
|  | } | 
|  |  | 
|  | size_t SSL_get_max_cert_list(const SSL *ssl) { return ssl->max_cert_list; } | 
|  |  | 
|  | void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) { | 
|  | if (max_cert_list > kMaxHandshakeSize) { | 
|  | max_cert_list = kMaxHandshakeSize; | 
|  | } | 
|  | ssl->max_cert_list = (uint32_t)max_cert_list; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) { | 
|  | if (max_send_fragment < 512) { | 
|  | max_send_fragment = 512; | 
|  | } | 
|  | if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { | 
|  | max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; | 
|  | } | 
|  | ctx->max_send_fragment = (uint16_t)max_send_fragment; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) { | 
|  | if (max_send_fragment < 512) { | 
|  | max_send_fragment = 512; | 
|  | } | 
|  | if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { | 
|  | max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; | 
|  | } | 
|  | ssl->max_send_fragment = (uint16_t)max_send_fragment; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_mtu(SSL *ssl, unsigned mtu) { | 
|  | if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) { | 
|  | return 0; | 
|  | } | 
|  | ssl->d1->mtu = mtu; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_get_secure_renegotiation_support(const SSL *ssl) { | 
|  | if (ssl->s3->version == 0) { | 
|  | return 0; | 
|  | } | 
|  | return ssl_protocol_version(ssl) >= TLS1_3_VERSION || | 
|  | ssl->s3->send_connection_binding; | 
|  | } | 
|  |  | 
|  | size_t SSL_CTX_sess_number(const SSL_CTX *ctx) { | 
|  | MutexReadLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock)); | 
|  | return lh_SSL_SESSION_num_items(ctx->sessions); | 
|  | } | 
|  |  | 
|  | unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) { | 
|  | unsigned long ret = ctx->session_cache_size; | 
|  | ctx->session_cache_size = size; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) { | 
|  | return ctx->session_cache_size; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) { | 
|  | int ret = ctx->session_cache_mode; | 
|  | ctx->session_cache_mode = mode; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) { | 
|  | return ctx->session_cache_mode; | 
|  | } | 
|  |  | 
|  |  | 
|  | int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) { | 
|  | if (out == NULL) { | 
|  | return 48; | 
|  | } | 
|  | if (len != 48) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The default ticket keys are initialized lazily. Trigger a key | 
|  | // rotation to initialize them. | 
|  | if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t *out_bytes = reinterpret_cast<uint8_t *>(out); | 
|  | MutexReadLock lock(&ctx->lock); | 
|  | OPENSSL_memcpy(out_bytes, ctx->ticket_key_current->name, 16); | 
|  | OPENSSL_memcpy(out_bytes + 16, ctx->ticket_key_current->hmac_key, 16); | 
|  | OPENSSL_memcpy(out_bytes + 32, ctx->ticket_key_current->aes_key, 16); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) { | 
|  | if (in == NULL) { | 
|  | return 48; | 
|  | } | 
|  | if (len != 48) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); | 
|  | return 0; | 
|  | } | 
|  | auto key = MakeUnique<TicketKey>(); | 
|  | if (!key) { | 
|  | return 0; | 
|  | } | 
|  | const uint8_t *in_bytes = reinterpret_cast<const uint8_t *>(in); | 
|  | OPENSSL_memcpy(key->name, in_bytes, 16); | 
|  | OPENSSL_memcpy(key->hmac_key, in_bytes + 16, 16); | 
|  | OPENSSL_memcpy(key->aes_key, in_bytes + 32, 16); | 
|  | // Disable automatic key rotation for manually-configured keys. This is now | 
|  | // the caller's responsibility. | 
|  | key->next_rotation_tv_sec = 0; | 
|  | ctx->ticket_key_current = std::move(key); | 
|  | ctx->ticket_key_prev.reset(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_ticket_key_cb( | 
|  | SSL_CTX *ctx, | 
|  | int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, | 
|  | EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, int encrypt)) { | 
|  | ctx->ticket_key_cb = callback; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool check_group_ids(Span<const uint16_t> group_ids) { | 
|  | for (uint16_t group_id : group_ids) { | 
|  | if (ssl_group_id_to_nid(group_id) == NID_undef) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_group_ids(SSL_CTX *ctx, const uint16_t *group_ids, | 
|  | size_t num_group_ids) { | 
|  | auto span = Span(group_ids, num_group_ids); | 
|  | return check_group_ids(span) && ctx->supported_group_list.CopyFrom(span); | 
|  | } | 
|  |  | 
|  | int SSL_set1_group_ids(SSL *ssl, const uint16_t *group_ids, | 
|  | size_t num_group_ids) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | auto span = Span(group_ids, num_group_ids); | 
|  | return check_group_ids(span) && | 
|  | ssl->config->supported_group_list.CopyFrom(span); | 
|  | } | 
|  |  | 
|  | static bool ssl_nids_to_group_ids(Array<uint16_t> *out_group_ids, | 
|  | Span<const int> nids) { | 
|  | Array<uint16_t> group_ids; | 
|  | if (!group_ids.InitForOverwrite(nids.size())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < nids.size(); i++) { | 
|  | if (!ssl_nid_to_group_id(&group_ids[i], nids[i])) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | *out_group_ids = std::move(group_ids); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_groups(SSL_CTX *ctx, const int *groups, size_t num_groups) { | 
|  | return ssl_nids_to_group_ids(&ctx->supported_group_list, | 
|  | Span(groups, num_groups)); | 
|  | } | 
|  |  | 
|  | int SSL_set1_groups(SSL *ssl, const int *groups, size_t num_groups) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | return ssl_nids_to_group_ids(&ssl->config->supported_group_list, | 
|  | Span(groups, num_groups)); | 
|  | } | 
|  |  | 
|  | static bool ssl_str_to_group_ids(Array<uint16_t> *out_group_ids, | 
|  | const char *str) { | 
|  | // Count the number of groups in the list. | 
|  | size_t count = 0; | 
|  | const char *ptr = str, *col; | 
|  | do { | 
|  | col = strchr(ptr, ':'); | 
|  | count++; | 
|  | if (col) { | 
|  | ptr = col + 1; | 
|  | } | 
|  | } while (col); | 
|  |  | 
|  | Array<uint16_t> group_ids; | 
|  | if (!group_ids.InitForOverwrite(count)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t i = 0; | 
|  | ptr = str; | 
|  | do { | 
|  | col = strchr(ptr, ':'); | 
|  | if (!ssl_name_to_group_id(&group_ids[i++], ptr, | 
|  | col ? (size_t)(col - ptr) : strlen(ptr))) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); | 
|  | return false; | 
|  | } | 
|  | if (col) { | 
|  | ptr = col + 1; | 
|  | } | 
|  | } while (col); | 
|  |  | 
|  | assert(i == count); | 
|  | *out_group_ids = std::move(group_ids); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_groups_list(SSL_CTX *ctx, const char *groups) { | 
|  | return ssl_str_to_group_ids(&ctx->supported_group_list, groups); | 
|  | } | 
|  |  | 
|  | int SSL_set1_groups_list(SSL *ssl, const char *groups) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | return ssl_str_to_group_ids(&ssl->config->supported_group_list, groups); | 
|  | } | 
|  |  | 
|  | uint16_t SSL_get_group_id(const SSL *ssl) { | 
|  | SSL_SESSION *session = SSL_get_session(ssl); | 
|  | if (session == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return session->group_id; | 
|  | } | 
|  |  | 
|  | int SSL_get_negotiated_group(const SSL *ssl) { | 
|  | uint16_t group_id = SSL_get_group_id(ssl); | 
|  | if (group_id == 0) { | 
|  | return NID_undef; | 
|  | } | 
|  | return ssl_group_id_to_nid(group_id); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) { return 1; } | 
|  |  | 
|  | int SSL_set_tmp_dh(SSL *ssl, const DH *dh) { return 1; } | 
|  |  | 
|  | STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) { | 
|  | return ctx->cipher_list->ciphers.get(); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_cipher_in_group(const SSL_CTX *ctx, size_t i) { | 
|  | if (i >= sk_SSL_CIPHER_num(ctx->cipher_list->ciphers.get())) { | 
|  | return 0; | 
|  | } | 
|  | return ctx->cipher_list->in_group_flags[i]; | 
|  | } | 
|  |  | 
|  | STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) { | 
|  | if (ssl == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (ssl->config == NULL) { | 
|  | assert(ssl->config); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ssl->config->cipher_list ? ssl->config->cipher_list->ciphers.get() | 
|  | : ssl->ctx->cipher_list->ciphers.get(); | 
|  | } | 
|  |  | 
|  | const char *SSL_get_cipher_list(const SSL *ssl, int n) { | 
|  | if (ssl == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | STACK_OF(SSL_CIPHER) *sk = SSL_get_ciphers(ssl); | 
|  | if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const SSL_CIPHER *c = sk_SSL_CIPHER_value(sk, n); | 
|  | if (c == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return c->name; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { | 
|  | const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value | 
|  | : EVP_has_aes_hardware(); | 
|  | return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str, | 
|  | false /* not strict */); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_strict_cipher_list(SSL_CTX *ctx, const char *str) { | 
|  | const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value | 
|  | : EVP_has_aes_hardware(); | 
|  | return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str, | 
|  | true /* strict */); | 
|  | } | 
|  |  | 
|  | int SSL_set_cipher_list(SSL *ssl, const char *str) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | const bool has_aes_hw = ssl->config->aes_hw_override | 
|  | ? ssl->config->aes_hw_override_value | 
|  | : EVP_has_aes_hardware(); | 
|  | return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str, | 
|  | false /* not strict */); | 
|  | } | 
|  |  | 
|  | int SSL_set_strict_cipher_list(SSL *ssl, const char *str) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | const bool has_aes_hw = ssl->config->aes_hw_override | 
|  | ? ssl->config->aes_hw_override_value | 
|  | : EVP_has_aes_hardware(); | 
|  | return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str, | 
|  | true /* strict */); | 
|  | } | 
|  |  | 
|  | const char *SSL_get_servername(const SSL *ssl, const int type) { | 
|  | if (type != TLSEXT_NAMETYPE_host_name) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Historically, |SSL_get_servername| was also the configuration getter | 
|  | // corresponding to |SSL_set_tlsext_host_name|. | 
|  | if (ssl->hostname != nullptr) { | 
|  | return ssl->hostname.get(); | 
|  | } | 
|  |  | 
|  | return ssl->s3->hostname.get(); | 
|  | } | 
|  |  | 
|  | int SSL_get_servername_type(const SSL *ssl) { | 
|  | if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) == NULL) { | 
|  | return -1; | 
|  | } | 
|  | return TLSEXT_NAMETYPE_host_name; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_custom_verify( | 
|  | SSL_CTX *ctx, int mode, | 
|  | enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { | 
|  | ctx->verify_mode = mode; | 
|  | ctx->custom_verify_callback = callback; | 
|  | } | 
|  |  | 
|  | void SSL_set_custom_verify( | 
|  | SSL *ssl, int mode, | 
|  | enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->verify_mode = mode; | 
|  | ssl->config->custom_verify_callback = callback; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) { | 
|  | ctx->signed_cert_timestamps_enabled = true; | 
|  | } | 
|  |  | 
|  | void SSL_enable_signed_cert_timestamps(SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->signed_cert_timestamps_enabled = true; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) { | 
|  | ctx->ocsp_stapling_enabled = true; | 
|  | } | 
|  |  | 
|  | void SSL_enable_ocsp_stapling(SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->ocsp_stapling_enabled = true; | 
|  | } | 
|  |  | 
|  | void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, | 
|  | size_t *out_len) { | 
|  | SSL_SESSION *session = SSL_get_session(ssl); | 
|  | if (ssl->server || !session || !session->signed_cert_timestamp_list) { | 
|  | *out_len = 0; | 
|  | *out = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | *out = CRYPTO_BUFFER_data(session->signed_cert_timestamp_list.get()); | 
|  | *out_len = CRYPTO_BUFFER_len(session->signed_cert_timestamp_list.get()); | 
|  | } | 
|  |  | 
|  | void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, | 
|  | size_t *out_len) { | 
|  | SSL_SESSION *session = SSL_get_session(ssl); | 
|  | if (ssl->server || !session || !session->ocsp_response) { | 
|  | *out_len = 0; | 
|  | *out = NULL; | 
|  | return; | 
|  | } | 
|  |  | 
|  | *out = CRYPTO_BUFFER_data(session->ocsp_response.get()); | 
|  | *out_len = CRYPTO_BUFFER_len(session->ocsp_response.get()); | 
|  | } | 
|  |  | 
|  | int SSL_set_tlsext_host_name(SSL *ssl, const char *name) { | 
|  | ssl->hostname.reset(); | 
|  | if (name == nullptr) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t len = strlen(name); | 
|  | if (len == 0 || len > TLSEXT_MAXLEN_host_name) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME); | 
|  | return 0; | 
|  | } | 
|  | ssl->hostname.reset(OPENSSL_strdup(name)); | 
|  | if (ssl->hostname == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_servername_callback( | 
|  | SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) { | 
|  | ctx->servername_callback = callback; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) { | 
|  | ctx->servername_arg = arg; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *peer, | 
|  | unsigned peer_len, const uint8_t *supported, | 
|  | unsigned supported_len) { | 
|  | *out = nullptr; | 
|  | *out_len = 0; | 
|  |  | 
|  | // Both |peer| and |supported| must be valid protocol lists, but |peer| may be | 
|  | // empty in NPN. | 
|  | auto peer_span = Span(peer, peer_len); | 
|  | auto supported_span = Span(supported, supported_len); | 
|  | if ((!peer_span.empty() && !ssl_is_valid_alpn_list(peer_span)) || | 
|  | !ssl_is_valid_alpn_list(supported_span)) { | 
|  | return OPENSSL_NPN_NO_OVERLAP; | 
|  | } | 
|  |  | 
|  | // For each protocol in peer preference order, see if we support it. | 
|  | CBS cbs = peer_span, proto; | 
|  | while (CBS_len(&cbs) != 0) { | 
|  | if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) { | 
|  | return OPENSSL_NPN_NO_OVERLAP; | 
|  | } | 
|  |  | 
|  | if (ssl_alpn_list_contains_protocol(Span(supported, supported_len), | 
|  | proto)) { | 
|  | // This function is not const-correct for compatibility with existing | 
|  | // callers. | 
|  | *out = const_cast<uint8_t *>(CBS_data(&proto)); | 
|  | // A u8 length prefix will fit in |uint8_t|. | 
|  | *out_len = static_cast<uint8_t>(CBS_len(&proto)); | 
|  | return OPENSSL_NPN_NEGOTIATED; | 
|  | } | 
|  | } | 
|  |  | 
|  | // There's no overlap between our protocols and the peer's list. In ALPN, the | 
|  | // caller is expected to fail the connection with no_application_protocol. In | 
|  | // NPN, the caller is expected to opportunistically select the first protocol. | 
|  | // See draft-agl-tls-nextprotoneg-04, section 6. | 
|  | cbs = supported_span; | 
|  | if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) { | 
|  | return OPENSSL_NPN_NO_OVERLAP; | 
|  | } | 
|  |  | 
|  | // See above. | 
|  | *out = const_cast<uint8_t *>(CBS_data(&proto)); | 
|  | *out_len = static_cast<uint8_t>(CBS_len(&proto)); | 
|  | return OPENSSL_NPN_NO_OVERLAP; | 
|  | } | 
|  |  | 
|  | void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, | 
|  | unsigned *out_len) { | 
|  | // NPN protocols have one-byte lengths, so they must fit in |unsigned|. | 
|  | assert(ssl->s3->next_proto_negotiated.size() <= UINT_MAX); | 
|  | *out_data = ssl->s3->next_proto_negotiated.data(); | 
|  | *out_len = static_cast<unsigned>(ssl->s3->next_proto_negotiated.size()); | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_next_protos_advertised_cb( | 
|  | SSL_CTX *ctx, | 
|  | int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), | 
|  | void *arg) { | 
|  | ctx->next_protos_advertised_cb = cb; | 
|  | ctx->next_protos_advertised_cb_arg = arg; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_next_proto_select_cb(SSL_CTX *ctx, | 
|  | int (*cb)(SSL *ssl, uint8_t **out, | 
|  | uint8_t *out_len, | 
|  | const uint8_t *in, | 
|  | unsigned in_len, void *arg), | 
|  | void *arg) { | 
|  | ctx->next_proto_select_cb = cb; | 
|  | ctx->next_proto_select_cb_arg = arg; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, | 
|  | size_t protos_len) { | 
|  | // Note this function's return value is backwards. | 
|  | auto span = Span(protos, protos_len); | 
|  | if (!span.empty() && !ssl_is_valid_alpn_list(span)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); | 
|  | return 1; | 
|  | } | 
|  | return ctx->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, size_t protos_len) { | 
|  | // Note this function's return value is backwards. | 
|  | if (!ssl->config) { | 
|  | return 1; | 
|  | } | 
|  | auto span = Span(protos, protos_len); | 
|  | if (!span.empty() && !ssl_is_valid_alpn_list(span)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); | 
|  | return 1; | 
|  | } | 
|  | return ssl->config->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, | 
|  | int (*cb)(SSL *ssl, const uint8_t **out, | 
|  | uint8_t *out_len, const uint8_t *in, | 
|  | unsigned in_len, void *arg), | 
|  | void *arg) { | 
|  | ctx->alpn_select_cb = cb; | 
|  | ctx->alpn_select_cb_arg = arg; | 
|  | } | 
|  |  | 
|  | void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, | 
|  | unsigned *out_len) { | 
|  | Span<const uint8_t> protocol; | 
|  | if (SSL_in_early_data(ssl) && !ssl->server) { | 
|  | protocol = ssl->s3->hs->early_session->early_alpn; | 
|  | } else { | 
|  | protocol = ssl->s3->alpn_selected; | 
|  | } | 
|  | // ALPN protocols have one-byte lengths, so they must fit in |unsigned|. | 
|  | assert(protocol.size() < UINT_MAX); | 
|  | *out_data = protocol.data(); | 
|  | *out_len = static_cast<unsigned>(protocol.size()); | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_allow_unknown_alpn_protos(SSL_CTX *ctx, int enabled) { | 
|  | ctx->allow_unknown_alpn_protos = !!enabled; | 
|  | } | 
|  |  | 
|  | int SSL_add_application_settings(SSL *ssl, const uint8_t *proto, | 
|  | size_t proto_len, const uint8_t *settings, | 
|  | size_t settings_len) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | ALPSConfig config; | 
|  | if (!config.protocol.CopyFrom(Span(proto, proto_len)) || | 
|  | !config.settings.CopyFrom(Span(settings, settings_len)) || | 
|  | !ssl->config->alps_configs.Push(std::move(config))) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void SSL_get0_peer_application_settings(const SSL *ssl, | 
|  | const uint8_t **out_data, | 
|  | size_t *out_len) { | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | Span<const uint8_t> settings = | 
|  | session ? session->peer_application_settings : Span<const uint8_t>(); | 
|  | *out_data = settings.data(); | 
|  | *out_len = settings.size(); | 
|  | } | 
|  |  | 
|  | int SSL_has_application_settings(const SSL *ssl) { | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | return session && session->has_application_settings; | 
|  | } | 
|  |  | 
|  | void SSL_set_alps_use_new_codepoint(SSL *ssl, int use_new) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->alps_use_new_codepoint = !!use_new; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_add_cert_compression_alg(SSL_CTX *ctx, uint16_t alg_id, | 
|  | ssl_cert_compression_func_t compress, | 
|  | ssl_cert_decompression_func_t decompress) { | 
|  | assert(compress != nullptr || decompress != nullptr); | 
|  |  | 
|  | for (const auto &alg : ctx->cert_compression_algs) { | 
|  | if (alg.alg_id == alg_id) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | CertCompressionAlg alg; | 
|  | alg.alg_id = alg_id; | 
|  | alg.compress = compress; | 
|  | alg.decompress = decompress; | 
|  | return ctx->cert_compression_algs.Push(alg); | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_tls_channel_id_enabled(SSL_CTX *ctx, int enabled) { | 
|  | ctx->channel_id_enabled = !!enabled; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) { | 
|  | SSL_CTX_set_tls_channel_id_enabled(ctx, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void SSL_set_tls_channel_id_enabled(SSL *ssl, int enabled) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->channel_id_enabled = !!enabled; | 
|  | } | 
|  |  | 
|  | int SSL_enable_tls_channel_id(SSL *ssl) { | 
|  | SSL_set_tls_channel_id_enabled(ssl, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int is_p256_key(EVP_PKEY *private_key) { | 
|  | const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key); | 
|  | return ec_key != NULL && EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) == | 
|  | NID_X9_62_prime256v1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) { | 
|  | if (!is_p256_key(private_key)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctx->channel_id_private = UpRef(private_key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | if (!is_p256_key(private_key)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssl->config->channel_id_private = UpRef(private_key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) { | 
|  | if (!ssl->s3->channel_id_valid) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(out, ssl->s3->channel_id, (max_out < 64) ? max_out : 64); | 
|  | return 64; | 
|  | } | 
|  |  | 
|  | size_t SSL_get0_certificate_types(const SSL *ssl, const uint8_t **out_types) { | 
|  | Span<const uint8_t> types; | 
|  | if (!ssl->server && ssl->s3->hs != nullptr) { | 
|  | types = ssl->s3->hs->certificate_types; | 
|  | } | 
|  | *out_types = types.data(); | 
|  | return types.size(); | 
|  | } | 
|  |  | 
|  | size_t SSL_get0_peer_verify_algorithms(const SSL *ssl, | 
|  | const uint16_t **out_sigalgs) { | 
|  | Span<const uint16_t> sigalgs; | 
|  | if (ssl->s3->hs != nullptr) { | 
|  | sigalgs = ssl->s3->hs->peer_sigalgs; | 
|  | } | 
|  | *out_sigalgs = sigalgs.data(); | 
|  | return sigalgs.size(); | 
|  | } | 
|  |  | 
|  | size_t SSL_get0_peer_delegation_algorithms(const SSL *ssl, | 
|  | const uint16_t **out_sigalgs) { | 
|  | Span<const uint16_t> sigalgs; | 
|  | if (ssl->s3->hs != nullptr) { | 
|  | sigalgs = ssl->s3->hs->peer_delegated_credential_sigalgs; | 
|  | } | 
|  | *out_sigalgs = sigalgs.data(); | 
|  | return sigalgs.size(); | 
|  | } | 
|  |  | 
|  | EVP_PKEY *SSL_get_privatekey(const SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | assert(ssl->config); | 
|  | return nullptr; | 
|  | } | 
|  | return ssl->config->cert->legacy_credential->privkey.get(); | 
|  | } | 
|  |  | 
|  | EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { | 
|  | return ctx->cert->legacy_credential->privkey.get(); | 
|  | } | 
|  |  | 
|  | const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) { | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | return session == nullptr ? nullptr : session->cipher; | 
|  | } | 
|  |  | 
|  | int SSL_session_reused(const SSL *ssl) { | 
|  | return ssl->s3->session_reused || SSL_in_early_data(ssl); | 
|  | } | 
|  |  | 
|  | const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; } | 
|  |  | 
|  | const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; } | 
|  |  | 
|  | int SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; } | 
|  |  | 
|  | void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { | 
|  | ctx->quiet_shutdown = (mode != 0); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { | 
|  | return ctx->quiet_shutdown; | 
|  | } | 
|  |  | 
|  | void SSL_set_quiet_shutdown(SSL *ssl, int mode) { | 
|  | ssl->quiet_shutdown = (mode != 0); | 
|  | } | 
|  |  | 
|  | int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; } | 
|  |  | 
|  | void SSL_set_shutdown(SSL *ssl, int mode) { | 
|  | // It is an error to clear any bits that have already been set. (We can't try | 
|  | // to get a second close_notify or send two.) | 
|  | assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl)); | 
|  |  | 
|  | if (mode & SSL_RECEIVED_SHUTDOWN && | 
|  | ssl->s3->read_shutdown == ssl_shutdown_none) { | 
|  | ssl->s3->read_shutdown = ssl_shutdown_close_notify; | 
|  | } | 
|  |  | 
|  | if (mode & SSL_SENT_SHUTDOWN && | 
|  | ssl->s3->write_shutdown == ssl_shutdown_none) { | 
|  | ssl->s3->write_shutdown = ssl_shutdown_close_notify; | 
|  | } | 
|  | } | 
|  |  | 
|  | int SSL_get_shutdown(const SSL *ssl) { | 
|  | int ret = 0; | 
|  | if (ssl->s3->read_shutdown != ssl_shutdown_none) { | 
|  | // Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify | 
|  | // and fatal alert. | 
|  | ret |= SSL_RECEIVED_SHUTDOWN; | 
|  | } | 
|  | if (ssl->s3->write_shutdown == ssl_shutdown_close_notify) { | 
|  | // Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify. | 
|  | ret |= SSL_SENT_SHUTDOWN; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx.get(); } | 
|  |  | 
|  | SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { | 
|  | if (!ssl->config) { | 
|  | return NULL; | 
|  | } | 
|  | if (ssl->ctx.get() == ctx) { | 
|  | return ssl->ctx.get(); | 
|  | } | 
|  |  | 
|  | // One cannot change the X.509 callbacks during a connection. | 
|  | if (ssl->ctx->x509_method != ctx->x509_method) { | 
|  | assert(0); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | UniquePtr<CERT> new_cert = ssl_cert_dup(ctx->cert.get()); | 
|  | if (!new_cert) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ssl->config->cert = std::move(new_cert); | 
|  | ssl->ctx = UpRef(ctx); | 
|  | ssl->enable_early_data = ssl->ctx->enable_early_data; | 
|  |  | 
|  | return ssl->ctx.get(); | 
|  | } | 
|  |  | 
|  | void SSL_set_info_callback(SSL *ssl, | 
|  | void (*cb)(const SSL *ssl, int type, int value)) { | 
|  | ssl->info_callback = cb; | 
|  | } | 
|  |  | 
|  | void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type, | 
|  | int value) { | 
|  | return ssl->info_callback; | 
|  | } | 
|  |  | 
|  | int SSL_state(const SSL *ssl) { | 
|  | return SSL_in_init(ssl) ? SSL_ST_INIT : SSL_ST_OK; | 
|  | } | 
|  |  | 
|  | void SSL_set_state(SSL *ssl, int state) {} | 
|  |  | 
|  | char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) { | 
|  | if (len <= 0) { | 
|  | return NULL; | 
|  | } | 
|  | buf[0] = '\0'; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | int SSL_get_shared_sigalgs(SSL *ssl, int idx, int *psign, int *phash, | 
|  | int *psignandhash, uint8_t *rsig, uint8_t *rhash) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method) { | 
|  | if (ctx->method->is_dtls) { | 
|  | return 0; | 
|  | } | 
|  | ctx->quic_method = quic_method; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_set_quic_method(SSL *ssl, const SSL_QUIC_METHOD *quic_method) { | 
|  | if (ssl->method->is_dtls) { | 
|  | return 0; | 
|  | } | 
|  | ssl->quic_method = quic_method; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { | 
|  | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl, argl, argp, | 
|  | free_func); | 
|  | } | 
|  |  | 
|  | int SSL_set_ex_data(SSL *ssl, int idx, void *data) { | 
|  | return CRYPTO_set_ex_data(&ssl->ex_data, idx, data); | 
|  | } | 
|  |  | 
|  | void *SSL_get_ex_data(const SSL *ssl, int idx) { | 
|  | return CRYPTO_get_ex_data(&ssl->ex_data, idx); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, | 
|  | CRYPTO_EX_dup *dup_unused, | 
|  | CRYPTO_EX_free *free_func) { | 
|  | return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl_ctx, argl, argp, | 
|  | free_func); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data) { | 
|  | return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); | 
|  | } | 
|  |  | 
|  | void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) { | 
|  | return CRYPTO_get_ex_data(&ctx->ex_data, idx); | 
|  | } | 
|  |  | 
|  | int SSL_want(const SSL *ssl) { | 
|  | // Historically, OpenSSL did not track |SSL_ERROR_ZERO_RETURN| as an |rwstate| | 
|  | // value. We do, but map it back to |SSL_ERROR_NONE| to preserve the original | 
|  | // behavior. | 
|  | return ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN ? SSL_ERROR_NONE | 
|  | : ssl->s3->rwstate; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, | 
|  | RSA *(*cb)(SSL *ssl, int is_export, | 
|  | int keylength)) {} | 
|  |  | 
|  | void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, | 
|  | int keylength)) {} | 
|  |  | 
|  | void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, | 
|  | DH *(*cb)(SSL *ssl, int is_export, | 
|  | int keylength)) {} | 
|  |  | 
|  | void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*cb)(SSL *ssl, int is_export, | 
|  | int keylength)) {} | 
|  |  | 
|  | static int use_psk_identity_hint(UniquePtr<char> *out, | 
|  | const char *identity_hint) { | 
|  | if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Clear currently configured hint, if any. | 
|  | out->reset(); | 
|  |  | 
|  | // Treat the empty hint as not supplying one. Plain PSK makes it possible to | 
|  | // send either no hint (omit ServerKeyExchange) or an empty hint, while | 
|  | // ECDHE_PSK can only spell empty hint. Having different capabilities is odd, | 
|  | // so we interpret empty and missing as identical. | 
|  | if (identity_hint != NULL && identity_hint[0] != '\0') { | 
|  | out->reset(OPENSSL_strdup(identity_hint)); | 
|  | if (*out == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { | 
|  | return use_psk_identity_hint(&ctx->psk_identity_hint, identity_hint); | 
|  | } | 
|  |  | 
|  | int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | return use_psk_identity_hint(&ssl->config->psk_identity_hint, identity_hint); | 
|  | } | 
|  |  | 
|  | const char *SSL_get_psk_identity_hint(const SSL *ssl) { | 
|  | if (ssl == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | if (ssl->config == NULL) { | 
|  | assert(ssl->config); | 
|  | return NULL; | 
|  | } | 
|  | return ssl->config->psk_identity_hint.get(); | 
|  | } | 
|  |  | 
|  | const char *SSL_get_psk_identity(const SSL *ssl) { | 
|  | if (ssl == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | SSL_SESSION *session = SSL_get_session(ssl); | 
|  | if (session == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | return session->psk_identity.get(); | 
|  | } | 
|  |  | 
|  | void SSL_set_psk_client_callback( | 
|  | SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len)) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->psk_client_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_psk_client_callback( | 
|  | SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len)) { | 
|  | ctx->psk_client_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_set_psk_server_callback(SSL *ssl, | 
|  | unsigned (*cb)(SSL *ssl, const char *identity, | 
|  | uint8_t *psk, | 
|  | unsigned max_psk_len)) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->psk_server_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_psk_server_callback( | 
|  | SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, | 
|  | unsigned max_psk_len)) { | 
|  | ctx->psk_server_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_msg_callback(SSL_CTX *ctx, | 
|  | void (*cb)(int write_p, int version, | 
|  | int content_type, const void *buf, | 
|  | size_t len, SSL *ssl, void *arg)) { | 
|  | ctx->msg_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) { | 
|  | ctx->msg_callback_arg = arg; | 
|  | } | 
|  |  | 
|  | void SSL_set_msg_callback(SSL *ssl, | 
|  | void (*cb)(int write_p, int version, int content_type, | 
|  | const void *buf, size_t len, SSL *ssl, | 
|  | void *arg)) { | 
|  | ssl->msg_callback = cb; | 
|  | } | 
|  |  | 
|  | void SSL_set_msg_callback_arg(SSL *ssl, void *arg) { | 
|  | ssl->msg_callback_arg = arg; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, | 
|  | void (*cb)(const SSL *ssl, const char *line)) { | 
|  | ctx->keylog_callback = cb; | 
|  | } | 
|  |  | 
|  | void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))(const SSL *ssl, | 
|  | const char *line) { | 
|  | return ctx->keylog_callback; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_current_time_cb(SSL_CTX *ctx, | 
|  | void (*cb)(const SSL *ssl, | 
|  | struct timeval *out_clock)) { | 
|  | ctx->current_time_cb = cb; | 
|  | } | 
|  |  | 
|  | int SSL_can_release_private_key(const SSL *ssl) { | 
|  | if (ssl_can_renegotiate(ssl)) { | 
|  | // If the connection can renegotiate (client only), the private key may be | 
|  | // used in a future handshake. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is determined by the current handshake. | 
|  | return !ssl->s3->hs || ssl->s3->hs->can_release_private_key; | 
|  | } | 
|  |  | 
|  | int SSL_is_init_finished(const SSL *ssl) { return !SSL_in_init(ssl); } | 
|  |  | 
|  | int SSL_in_init(const SSL *ssl) { | 
|  | // This returns false once all the handshake state has been finalized, to | 
|  | // allow callbacks and getters based on SSL_in_init to return the correct | 
|  | // values. | 
|  | SSL_HANDSHAKE *hs = ssl->s3->hs.get(); | 
|  | return hs != nullptr && !hs->handshake_finalized; | 
|  | } | 
|  |  | 
|  | int SSL_in_false_start(const SSL *ssl) { | 
|  | if (ssl->s3->hs == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return ssl->s3->hs->in_false_start; | 
|  | } | 
|  |  | 
|  | int SSL_cutthrough_complete(const SSL *ssl) { return SSL_in_false_start(ssl); } | 
|  |  | 
|  | int SSL_is_server(const SSL *ssl) { return ssl->server; } | 
|  |  | 
|  | int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; } | 
|  |  | 
|  | int SSL_is_quic(const SSL *ssl) { return ssl->quic_method != nullptr; } | 
|  |  | 
|  | void SSL_CTX_set_select_certificate_cb( | 
|  | SSL_CTX *ctx, | 
|  | enum ssl_select_cert_result_t (*cb)(const SSL_CLIENT_HELLO *)) { | 
|  | ctx->select_certificate_cb = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_dos_protection_cb(SSL_CTX *ctx, | 
|  | int (*cb)(const SSL_CLIENT_HELLO *)) { | 
|  | ctx->dos_protection_cb = cb; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_reverify_on_resume(SSL_CTX *ctx, int enabled) { | 
|  | ctx->reverify_on_resume = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_set_enforce_rsa_key_usage(SSL *ssl, int enabled) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->enforce_rsa_key_usage = !!enabled; | 
|  | } | 
|  |  | 
|  | int SSL_was_key_usage_invalid(const SSL *ssl) { | 
|  | return ssl->s3->was_key_usage_invalid; | 
|  | } | 
|  |  | 
|  | void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) { | 
|  | ssl->renegotiate_mode = mode; | 
|  |  | 
|  | // Check if |ssl_can_renegotiate| has changed and the configuration may now be | 
|  | // shed. HTTP clients may initially allow renegotiation for HTTP/1.1, and then | 
|  | // disable after the handshake once the ALPN protocol is known to be HTTP/2. | 
|  | ssl_maybe_shed_handshake_config(ssl); | 
|  | } | 
|  |  | 
|  | int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv, | 
|  | const uint8_t **out_write_iv, size_t *out_iv_len) { | 
|  | // No cipher suites maintain stateful internal IVs in DTLS. It would not be | 
|  | // compatible with reordering. | 
|  | if (SSL_is_dtls(ssl)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t write_iv_len; | 
|  | if (!ssl->s3->aead_read_ctx->GetIV(out_read_iv, out_iv_len) || | 
|  | !ssl->s3->aead_write_ctx->GetIV(out_write_iv, &write_iv_len) || | 
|  | *out_iv_len != write_iv_len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uint64_t SSL_get_read_sequence(const SSL *ssl) { | 
|  | if (SSL_is_dtls(ssl)) { | 
|  | // TODO(crbug.com/42290608): This API needs to reworked. | 
|  | // | 
|  | // In DTLS 1.2, right at an epoch transition, |read_epoch| may not have | 
|  | // received any records. We will then return that sequence 0 is the highest | 
|  | // received, but it's really -1, which is not representable. This is mostly | 
|  | // moot because, after the handshake, we will never be in the state. | 
|  | // | 
|  | // In DTLS 1.3, epochs do not transition until the first record comes in. | 
|  | // This avoids the DTLS 1.2 problem but introduces a different problem: | 
|  | // during a KeyUpdate (which may occur in the steady state), both epochs are | 
|  | // live. We'll likely need a new API for DTLS offload. | 
|  | const DTLSReadEpoch *read_epoch = &ssl->d1->read_epoch; | 
|  | return DTLSRecordNumber(read_epoch->epoch, read_epoch->bitmap.max_seq_num()) | 
|  | .combined(); | 
|  | } | 
|  | return ssl->s3->read_sequence; | 
|  | } | 
|  |  | 
|  | uint64_t SSL_get_write_sequence(const SSL *ssl) { | 
|  | if (SSL_is_dtls(ssl)) { | 
|  | return ssl->d1->write_epoch.next_record.combined(); | 
|  | } | 
|  |  | 
|  | return ssl->s3->write_sequence; | 
|  | } | 
|  |  | 
|  | uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) { | 
|  | SSL_SESSION *session = SSL_get_session(ssl); | 
|  | if (session == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return session->peer_signature_algorithm; | 
|  | } | 
|  |  | 
|  | size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) { | 
|  | if (max_out == 0) { | 
|  | return sizeof(ssl->s3->client_random); | 
|  | } | 
|  | if (max_out > sizeof(ssl->s3->client_random)) { | 
|  | max_out = sizeof(ssl->s3->client_random); | 
|  | } | 
|  | OPENSSL_memcpy(out, ssl->s3->client_random, max_out); | 
|  | return max_out; | 
|  | } | 
|  |  | 
|  | size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) { | 
|  | if (max_out == 0) { | 
|  | return sizeof(ssl->s3->server_random); | 
|  | } | 
|  | if (max_out > sizeof(ssl->s3->server_random)) { | 
|  | max_out = sizeof(ssl->s3->server_random); | 
|  | } | 
|  | OPENSSL_memcpy(out, ssl->s3->server_random, max_out); | 
|  | return max_out; | 
|  | } | 
|  |  | 
|  | const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) { | 
|  | SSL_HANDSHAKE *hs = ssl->s3->hs.get(); | 
|  | if (hs == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | return hs->new_cipher; | 
|  | } | 
|  |  | 
|  | void SSL_set_retain_only_sha256_of_client_certs(SSL *ssl, int enabled) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->retain_only_sha256_of_client_certs = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) { | 
|  | ctx->retain_only_sha256_of_client_certs = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_grease_enabled(SSL_CTX *ctx, int enabled) { | 
|  | ctx->grease_enabled = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_permute_extensions(SSL_CTX *ctx, int enabled) { | 
|  | ctx->permute_extensions = !!enabled; | 
|  | } | 
|  |  | 
|  | void SSL_set_permute_extensions(SSL *ssl, int enabled) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->permute_extensions = !!enabled; | 
|  | } | 
|  |  | 
|  | int32_t SSL_get_ticket_age_skew(const SSL *ssl) { | 
|  | return ssl->s3->ticket_age_skew; | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_false_start_allowed_without_alpn(SSL_CTX *ctx, int allowed) { | 
|  | ctx->false_start_allowed_without_alpn = !!allowed; | 
|  | } | 
|  |  | 
|  | int SSL_used_hello_retry_request(const SSL *ssl) { | 
|  | return ssl->s3->used_hello_retry_request; | 
|  | } | 
|  |  | 
|  | void SSL_set_shed_handshake_config(SSL *ssl, int enable) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->shed_handshake_config = !!enable; | 
|  | } | 
|  |  | 
|  | void SSL_set_jdk11_workaround(SSL *ssl, int enable) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->jdk11_workaround = !!enable; | 
|  | } | 
|  |  | 
|  | void SSL_set_quic_use_legacy_codepoint(SSL *ssl, int use_legacy) { | 
|  | if (!ssl->config) { | 
|  | return; | 
|  | } | 
|  | ssl->config->quic_use_legacy_codepoint = !!use_legacy; | 
|  | } | 
|  |  | 
|  | int SSL_clear(SSL *ssl) { | 
|  | if (!ssl->config) { | 
|  | return 0;  // SSL_clear may not be used after shedding config. | 
|  | } | 
|  |  | 
|  | // In OpenSSL, reusing a client |SSL| with |SSL_clear| causes the previously | 
|  | // established session to be offered the next time around. wpa_supplicant | 
|  | // depends on this behavior, so emulate it. | 
|  | UniquePtr<SSL_SESSION> session; | 
|  | if (!ssl->server && ssl->s3->established_session != NULL) { | 
|  | session = UpRef(ssl->s3->established_session); | 
|  | } | 
|  |  | 
|  | // The ssl->d1->mtu is simultaneously configuration (preserved across | 
|  | // clear) and connection-specific state (gets reset). | 
|  | // | 
|  | // TODO(davidben): Avoid this. | 
|  | unsigned mtu = 0; | 
|  | if (ssl->d1 != NULL) { | 
|  | mtu = ssl->d1->mtu; | 
|  | } | 
|  |  | 
|  | ssl->method->ssl_free(ssl); | 
|  | if (!ssl->method->ssl_new(ssl)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { | 
|  | ssl->d1->mtu = mtu; | 
|  | } | 
|  |  | 
|  | if (session != nullptr) { | 
|  | SSL_set_session(ssl, session.get()); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; } | 
|  |  | 
|  | int SSL_num_renegotiations(const SSL *ssl) { | 
|  | return SSL_total_renegotiations(ssl); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; } | 
|  | int SSL_need_tmp_RSA(const SSL *ssl) { return 0; } | 
|  | int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; } | 
|  | int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; } | 
|  | void ERR_load_SSL_strings(void) {} | 
|  | void SSL_load_error_strings(void) {} | 
|  | int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); } | 
|  |  | 
|  | int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) { | 
|  | if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  | int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); | 
|  | return SSL_CTX_set1_groups(ctx, &nid, 1); | 
|  | } | 
|  |  | 
|  | int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) { | 
|  | if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  | int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); | 
|  | return SSL_set1_groups(ssl, &nid, 1); | 
|  | } | 
|  |  | 
|  | void SSL_CTX_set_ticket_aead_method(SSL_CTX *ctx, | 
|  | const SSL_TICKET_AEAD_METHOD *aead_method) { | 
|  | ctx->ticket_aead_method = aead_method; | 
|  | } | 
|  |  | 
|  | SSL_SESSION *SSL_process_tls13_new_session_ticket(SSL *ssl, const uint8_t *buf, | 
|  | size_t buf_len) { | 
|  | if (SSL_in_init(ssl) ||                             // | 
|  | ssl_protocol_version(ssl) != TLS1_3_VERSION ||  // | 
|  | ssl->server) { | 
|  | // Only TLS 1.3 clients are supported. | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CBS cbs, body; | 
|  | CBS_init(&cbs, buf, buf_len); | 
|  | uint8_t type; | 
|  | if (!CBS_get_u8(&cbs, &type) ||                   // | 
|  | !CBS_get_u24_length_prefixed(&cbs, &body) ||  // | 
|  | CBS_len(&cbs) != 0) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | UniquePtr<SSL_SESSION> session = tls13_create_session_with_ticket(ssl, &body); | 
|  | if (!session) { | 
|  | // |tls13_create_session_with_ticket| puts the correct error. | 
|  | return nullptr; | 
|  | } | 
|  | return session.release(); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) { | 
|  | num_tickets = std::min(num_tickets, kMaxTickets); | 
|  | static_assert(kMaxTickets <= 0xff, "Too many tickets."); | 
|  | ctx->num_tickets = static_cast<uint8_t>(num_tickets); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) { return ctx->num_tickets; } | 
|  |  | 
|  | int SSL_set_tlsext_status_type(SSL *ssl, int type) { | 
|  | if (!ssl->config) { | 
|  | return 0; | 
|  | } | 
|  | ssl->config->ocsp_stapling_enabled = type == TLSEXT_STATUSTYPE_ocsp; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_get_tlsext_status_type(const SSL *ssl) { | 
|  | if (ssl->server) { | 
|  | SSL_HANDSHAKE *hs = ssl->s3->hs.get(); | 
|  | return hs != nullptr && hs->ocsp_stapling_requested | 
|  | ? TLSEXT_STATUSTYPE_ocsp | 
|  | : TLSEXT_STATUSTYPE_nothing; | 
|  | } | 
|  |  | 
|  | return ssl->config != nullptr && ssl->config->ocsp_stapling_enabled | 
|  | ? TLSEXT_STATUSTYPE_ocsp | 
|  | : TLSEXT_STATUSTYPE_nothing; | 
|  | } | 
|  |  | 
|  | int SSL_set_tlsext_status_ocsp_resp(SSL *ssl, uint8_t *resp, size_t resp_len) { | 
|  | if (SSL_set_ocsp_response(ssl, resp, resp_len)) { | 
|  | OPENSSL_free(resp); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t SSL_get_tlsext_status_ocsp_resp(const SSL *ssl, const uint8_t **out) { | 
|  | size_t ret; | 
|  | SSL_get0_ocsp_response(ssl, out, &ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx, | 
|  | int (*callback)(SSL *ssl, void *arg)) { | 
|  | ctx->legacy_ocsp_callback = callback; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg) { | 
|  | ctx->legacy_ocsp_callback_arg = arg; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | uint16_t SSL_get_curve_id(const SSL *ssl) { return SSL_get_group_id(ssl); } | 
|  |  | 
|  | const char *SSL_get_curve_name(uint16_t curve_id) { | 
|  | return SSL_get_group_name(curve_id); | 
|  | } | 
|  |  | 
|  | size_t SSL_get_all_curve_names(const char **out, size_t max_out) { | 
|  | return SSL_get_all_group_names(out, max_out); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t num_curves) { | 
|  | return SSL_CTX_set1_groups(ctx, curves, num_curves); | 
|  | } | 
|  |  | 
|  | int SSL_set1_curves(SSL *ssl, const int *curves, size_t num_curves) { | 
|  | return SSL_set1_groups(ssl, curves, num_curves); | 
|  | } | 
|  |  | 
|  | int SSL_CTX_set1_curves_list(SSL_CTX *ctx, const char *curves) { | 
|  | return SSL_CTX_set1_groups_list(ctx, curves); | 
|  | } | 
|  |  | 
|  | int SSL_set1_curves_list(SSL *ssl, const char *curves) { | 
|  | return SSL_set1_groups_list(ssl, curves); | 
|  | } | 
|  |  | 
|  | namespace fips202205 { | 
|  |  | 
|  | // (References are to SP 800-52r2): | 
|  |  | 
|  | // Section 3.4.2.2 | 
|  | // "at least one of the NIST-approved curves, P-256 (secp256r1) and P384 | 
|  | // (secp384r1), shall be supported as described in RFC 8422." | 
|  | // | 
|  | // Section 3.3.1 | 
|  | // "The server shall be configured to only use cipher suites that are | 
|  | // composed entirely of NIST approved algorithms" | 
|  | static const uint16_t kGroups[] = {SSL_GROUP_SECP256R1, SSL_GROUP_SECP384R1}; | 
|  |  | 
|  | static const uint16_t kSigAlgs[] = { | 
|  | SSL_SIGN_RSA_PKCS1_SHA256, | 
|  | SSL_SIGN_RSA_PKCS1_SHA384, | 
|  | SSL_SIGN_RSA_PKCS1_SHA512, | 
|  | // Table 4.1: | 
|  | // "The curve should be P-256 or P-384" | 
|  | SSL_SIGN_ECDSA_SECP256R1_SHA256, | 
|  | SSL_SIGN_ECDSA_SECP384R1_SHA384, | 
|  | SSL_SIGN_RSA_PSS_RSAE_SHA256, | 
|  | SSL_SIGN_RSA_PSS_RSAE_SHA384, | 
|  | SSL_SIGN_RSA_PSS_RSAE_SHA512, | 
|  | }; | 
|  |  | 
|  | static const char kTLS12Ciphers[] = | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:" | 
|  | "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:" | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:" | 
|  | "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"; | 
|  |  | 
|  | static int Configure(SSL_CTX *ctx) { | 
|  | ctx->compliance_policy = ssl_compliance_policy_fips_202205; | 
|  |  | 
|  | return | 
|  | // Section 3.1: | 
|  | // "Servers that support government-only applications shall be | 
|  | // configured to use TLS 1.2 and should be configured to use TLS 1.3 | 
|  | // as well. These servers should not be configured to use TLS 1.1 and | 
|  | // shall not use TLS 1.0, SSL 3.0, or SSL 2.0. | 
|  | SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) && | 
|  | SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) && | 
|  | // Sections 3.3.1.1.1 and 3.3.1.1.2 are ambiguous about whether | 
|  | // HMAC-SHA-1 cipher suites are permitted with TLS 1.2. However, later the | 
|  | // Encrypt-then-MAC extension is required for all CBC cipher suites and so | 
|  | // it's easier to drop them. | 
|  | SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) && | 
|  | SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && | 
|  | SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)) && | 
|  | SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)); | 
|  | } | 
|  |  | 
|  | static int Configure(SSL *ssl) { | 
|  | ssl->config->compliance_policy = ssl_compliance_policy_fips_202205; | 
|  |  | 
|  | // See |Configure(SSL_CTX)|, above, for reasoning. | 
|  | return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) && | 
|  | SSL_set_max_proto_version(ssl, TLS1_3_VERSION) && | 
|  | SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) && | 
|  | SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && | 
|  | SSL_set_signing_algorithm_prefs(ssl, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)) && | 
|  | SSL_set_verify_algorithm_prefs(ssl, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)); | 
|  | } | 
|  |  | 
|  | }  // namespace fips202205 | 
|  |  | 
|  | namespace wpa202304 { | 
|  |  | 
|  | // See WPA version 3.1, section 3.5. | 
|  |  | 
|  | static const uint16_t kGroups[] = {SSL_GROUP_SECP384R1}; | 
|  |  | 
|  | static const uint16_t kSigAlgs[] = { | 
|  | SSL_SIGN_RSA_PKCS1_SHA384,        // | 
|  | SSL_SIGN_RSA_PKCS1_SHA512,        // | 
|  | SSL_SIGN_ECDSA_SECP384R1_SHA384,  // | 
|  | SSL_SIGN_RSA_PSS_RSAE_SHA384,     // | 
|  | SSL_SIGN_RSA_PSS_RSAE_SHA512,     // | 
|  | }; | 
|  |  | 
|  | static const char kTLS12Ciphers[] = | 
|  | "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:" | 
|  | "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"; | 
|  |  | 
|  | static int Configure(SSL_CTX *ctx) { | 
|  | ctx->compliance_policy = ssl_compliance_policy_wpa3_192_202304; | 
|  |  | 
|  | return SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) && | 
|  | SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) && | 
|  | SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) && | 
|  | SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && | 
|  | SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)) && | 
|  | SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)); | 
|  | } | 
|  |  | 
|  | static int Configure(SSL *ssl) { | 
|  | ssl->config->compliance_policy = ssl_compliance_policy_wpa3_192_202304; | 
|  |  | 
|  | return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) && | 
|  | SSL_set_max_proto_version(ssl, TLS1_3_VERSION) && | 
|  | SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) && | 
|  | SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && | 
|  | SSL_set_signing_algorithm_prefs(ssl, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)) && | 
|  | SSL_set_verify_algorithm_prefs(ssl, kSigAlgs, | 
|  | OPENSSL_ARRAY_SIZE(kSigAlgs)); | 
|  | } | 
|  |  | 
|  | }  // namespace wpa202304 | 
|  |  | 
|  | namespace cnsa202407 { | 
|  |  | 
|  | static int Configure(SSL_CTX *ctx) { | 
|  | ctx->compliance_policy = ssl_compliance_policy_cnsa_202407; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int Configure(SSL *ssl) { | 
|  | ssl->config->compliance_policy = ssl_compliance_policy_cnsa_202407; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | }  // namespace cnsa202407 | 
|  |  | 
|  | int SSL_CTX_set_compliance_policy(SSL_CTX *ctx, | 
|  | enum ssl_compliance_policy_t policy) { | 
|  | switch (policy) { | 
|  | case ssl_compliance_policy_fips_202205: | 
|  | return fips202205::Configure(ctx); | 
|  | case ssl_compliance_policy_wpa3_192_202304: | 
|  | return wpa202304::Configure(ctx); | 
|  | case ssl_compliance_policy_cnsa_202407: | 
|  | return cnsa202407::Configure(ctx); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | enum ssl_compliance_policy_t SSL_CTX_get_compliance_policy(const SSL_CTX *ctx) { | 
|  | return ctx->compliance_policy; | 
|  | } | 
|  |  | 
|  | int SSL_set_compliance_policy(SSL *ssl, enum ssl_compliance_policy_t policy) { | 
|  | switch (policy) { | 
|  | case ssl_compliance_policy_fips_202205: | 
|  | return fips202205::Configure(ssl); | 
|  | case ssl_compliance_policy_wpa3_192_202304: | 
|  | return wpa202304::Configure(ssl); | 
|  | case ssl_compliance_policy_cnsa_202407: | 
|  | return cnsa202407::Configure(ssl); | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | enum ssl_compliance_policy_t SSL_get_compliance_policy(const SSL *ssl) { | 
|  | return ssl->config->compliance_policy; | 
|  | } |