blob: 053f9ba31f548ac0316d48b00b051d9e5d16d54d [file] [log] [blame]
// Copyright 2014 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/aead.h>
#include <optional>
#include <assert.h>
#include <string.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/span.h>
#include "../../internal.h"
#include "../../mem_internal.h"
#include "internal.h"
size_t EVP_AEAD_key_length(const EVP_AEAD *aead) { return aead->key_len; }
size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead) { return aead->nonce_len; }
size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead) { return aead->overhead; }
size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead) { return aead->max_tag_len; }
void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx) {
OPENSSL_memset(ctx, 0, sizeof(EVP_AEAD_CTX));
}
EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead, const uint8_t *key,
size_t key_len, size_t tag_len) {
EVP_AEAD_CTX *ctx =
reinterpret_cast<EVP_AEAD_CTX *>(OPENSSL_malloc(sizeof(EVP_AEAD_CTX)));
if (!ctx) {
return nullptr;
}
EVP_AEAD_CTX_zero(ctx);
if (EVP_AEAD_CTX_init(ctx, aead, key, key_len, tag_len, nullptr)) {
return ctx;
}
EVP_AEAD_CTX_free(ctx);
return nullptr;
}
void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx) {
if (ctx == nullptr) {
return;
}
EVP_AEAD_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
const uint8_t *key, size_t key_len, size_t tag_len,
ENGINE *impl) {
if (!aead->init) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_NO_DIRECTION_SET);
ctx->aead = nullptr;
return 0;
}
return EVP_AEAD_CTX_init_with_direction(ctx, aead, key, key_len, tag_len,
evp_aead_open);
}
int EVP_AEAD_CTX_init_with_direction(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
const uint8_t *key, size_t key_len,
size_t tag_len,
enum evp_aead_direction_t dir) {
if (key_len != aead->key_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_KEY_SIZE);
ctx->aead = nullptr;
return 0;
}
ctx->aead = aead;
int ok;
if (aead->init) {
ok = aead->init(ctx, key, key_len, tag_len);
} else {
ok = aead->init_with_direction(ctx, key, key_len, tag_len, dir);
}
if (!ok) {
ctx->aead = nullptr;
}
return ok;
}
void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx) {
if (ctx->aead == nullptr) {
return;
}
ctx->aead->cleanup(ctx);
ctx->aead = nullptr;
}
// check_alias returns 1 if |out| is compatible with |in| and 0 otherwise. If
// |in| and |out| alias, we require that |in| == |out|.
static int check_alias(const uint8_t *in, size_t in_len, const uint8_t *out,
size_t out_len) {
if (!buffers_alias(in, in_len, out, out_len)) {
return 1;
}
return in == out;
}
int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't send raw data.
OPENSSL_memset(out, 0, max_out_len);
*out_len = 0;
}
});
if (max_out_len < in_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (!ctx->aead->seal_scatter) {
CRYPTO_IOVEC iovec[1];
iovec[0].in = in;
iovec[0].out = out;
iovec[0].len = in_len;
CRYPTO_IVEC aadvec[1];
aadvec[0].in = ad;
aadvec[0].len = ad_len;
if (!EVP_AEAD_CTX_sealv(ctx, iovec, 1, out + in_len, out_len,
max_out_len - in_len, nonce, nonce_len, aadvec,
1)) {
*out_len = 0;
return 0;
}
*out_len += in_len;
ok = true;
return 1;
}
if (in_len + ctx->aead->overhead < in_len /* overflow */) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (!check_alias(in, in_len, out, max_out_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
size_t out_tag_len;
if (ctx->aead->seal_scatter(ctx, out, out + in_len, &out_tag_len,
max_out_len - in_len, nonce, nonce_len, in,
in_len, nullptr, 0, ad, ad_len)) {
*out_len = in_len + out_tag_len;
ok = true;
return 1;
}
return 0;
}
int EVP_AEAD_CTX_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
uint8_t *out_tag, size_t *out_tag_len,
size_t max_out_tag_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in,
size_t in_len, const uint8_t *extra_in,
size_t extra_in_len, const uint8_t *ad,
size_t ad_len) {
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't send raw data.
OPENSSL_memset(out, 0, in_len);
OPENSSL_memset(out_tag, 0, max_out_tag_len);
*out_tag_len = 0;
}
});
if (!ctx->aead->seal_scatter) {
CRYPTO_IOVEC iovec[2];
iovec[0].in = in;
iovec[0].out = out;
iovec[0].len = in_len;
iovec[1].in = extra_in;
iovec[1].out = out_tag;
iovec[1].len = extra_in_len;
CRYPTO_IVEC aadvec[1];
aadvec[0].in = ad;
aadvec[0].len = ad_len;
if (!EVP_AEAD_CTX_sealv(ctx, iovec, extra_in_len ? 2 : 1,
out_tag + extra_in_len, out_tag_len,
max_out_tag_len - extra_in_len, nonce, nonce_len,
aadvec, 1)) {
*out_tag_len = 0;
return 0;
}
*out_tag_len += extra_in_len;
ok = true;
return 1;
}
// |in| and |out| may alias exactly, |out_tag| may not alias.
if (!check_alias(in, in_len, out, in_len) ||
buffers_alias(out, in_len, out_tag, max_out_tag_len) ||
buffers_alias(in, in_len, out_tag, max_out_tag_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (!ctx->aead->seal_scatter_supports_extra_in && extra_in_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_OPERATION);
return 0;
}
if (ctx->aead->seal_scatter(ctx, out, out_tag, out_tag_len, max_out_tag_len,
nonce, nonce_len, in, in_len, extra_in,
extra_in_len, ad, ad_len)) {
ok = true;
return 1;
}
return 0;
}
static bool check_iovec_internal_alias(bssl::Span<const CRYPTO_IOVEC> iovecs) {
for (size_t i = 0; i < iovecs.size(); ++i) {
// Same index check.
if (!check_alias(iovecs[i].in, iovecs[i].len, iovecs[i].out,
iovecs[i].len)) {
return false;
}
#if !defined(NDEBUG)
// Unrealistic cases; they'd be harmful but also extremely unlikely anyone
// will ever get those wrong. Thus skip them in release builds.
for (size_t j = i + 1; j < iovecs.size(); ++j) {
if (buffers_alias(iovecs[i].in, iovecs[i].len, //
iovecs[j].out, iovecs[j].len) ||
buffers_alias(iovecs[i].out, iovecs[i].len, //
iovecs[j].in, iovecs[j].len) ||
buffers_alias(iovecs[i].out, iovecs[i].len, //
iovecs[j].out, iovecs[j].len)) {
return false;
}
}
#endif
}
return true;
}
#if !defined(NDEBUG)
static bool check_ivec_buf_alias(bssl::Span<const CRYPTO_IVEC> ivecs,
const uint8_t *buf, size_t buf_len) {
for (const CRYPTO_IVEC &ivec : ivecs) {
if (buffers_alias(ivec.in, ivec.len, buf, buf_len)) {
return false;
}
}
return true;
}
static bool check_iovec_out_ivec_alias(bssl::Span<const CRYPTO_IOVEC> iovecs,
bssl::Span<const CRYPTO_IVEC> ivecs) {
for (const CRYPTO_IOVEC &iovec : iovecs) {
if (!check_ivec_buf_alias(ivecs, iovec.out, iovec.len)) {
return false;
}
}
return true;
}
static bool check_iovec_buf_alias(bssl::Span<const CRYPTO_IOVEC> iovecs,
const uint8_t *buf, size_t buf_len) {
for (const CRYPTO_IOVEC &iovec : iovecs) {
if (buffers_alias(iovec.in, iovec.len, buf, buf_len)) {
return false;
}
if (buffers_alias(iovec.out, iovec.len, buf, buf_len)) {
return false;
}
}
return true;
}
static bool check_iovec_out_buf_alias(bssl::Span<const CRYPTO_IOVEC> iovecs,
const uint8_t *buf, size_t buf_len) {
for (const CRYPTO_IOVEC &iovec : iovecs) {
if (buffers_alias(iovec.out, iovec.len, buf, buf_len)) {
return false;
}
}
return true;
}
#endif
static bool check_iovec_alias(bssl::Span<const CRYPTO_IOVEC> iovecs,
bssl::Span<const CRYPTO_IVEC> aadvecs,
const uint8_t *out, size_t out_len,
const uint8_t *in1, size_t in1_len,
const uint8_t *in2, size_t in2_len) {
return
#if !defined(NDEBUG)
// Unrealistic cases; they'd be harmful but also extremely unlikely anyone
// will ever get those wrong. Thus skip them in release builds.
//
// iovec.out <-> aadvec.
check_iovec_out_ivec_alias(iovecs, aadvecs) &&
// iovec <-> out.
check_iovec_buf_alias(iovecs, out, out_len) &&
// iovec.out <-> in1.
check_iovec_out_buf_alias(iovecs, in1, in1_len) &&
// iovec.out <-> in2.
check_iovec_out_buf_alias(iovecs, in2, in2_len) &&
// aadvec <-> out.
check_ivec_buf_alias(aadvecs, out, out_len) &&
// out <-> in1.
!buffers_alias(out, out_len, in1, in1_len) &&
// out <-> in2.
!buffers_alias(out, out_len, in2, in2_len) &&
#endif
// iovec <-> iovec.
check_iovec_internal_alias(iovecs);
}
static void clear_iovec(bssl::Span<const CRYPTO_IOVEC> iovecs) {
for (const CRYPTO_IOVEC &iovec : iovecs) {
OPENSSL_memset(iovec.out, 0, iovec.len);
}
}
int EVP_AEAD_CTX_sealv(const EVP_AEAD_CTX *ctx, const CRYPTO_IOVEC *iovec,
size_t num_iovec, uint8_t *out_tag, size_t *out_tag_len,
size_t max_out_tag_len, const uint8_t *nonce,
size_t nonce_len, const CRYPTO_IVEC *aadvec,
size_t num_aadvec) {
bssl::Span<const CRYPTO_IOVEC> iovecs(iovec, num_iovec);
bssl::Span<const CRYPTO_IVEC> aadvecs(aadvec, num_aadvec);
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't send raw data.
clear_iovec(iovecs);
OPENSSL_memset(out_tag, 0, max_out_tag_len);
*out_tag_len = 0;
}
});
if (!bssl::iovec::IsValid(iovecs) || !bssl::iovec::IsValid(aadvecs)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
// Enforce aliasing rules: no output may alias any input, with the one
// exception that an iovec member's |in| and |out| pointers may be identical
// for in-place operation.
if (!check_iovec_alias(iovecs, aadvecs, out_tag, max_out_tag_len, nonce,
nonce_len, nullptr, 0)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (!ctx->aead->sealv) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
if (ctx->aead->sealv(ctx, iovecs, out_tag, out_tag_len, max_out_tag_len,
nonce, nonce_len, aadvecs)) {
ok = true;
return 1;
}
return 0;
}
int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out, size_t *out_len,
size_t max_out_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len) {
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't try and process bad
// data.
OPENSSL_memset(out, 0, max_out_len);
*out_len = 0;
}
});
if (!ctx->aead->open && !ctx->aead->open_gather) {
if (ctx->tag_len) {
// If the tag length is known, the caller only needs to provide enough
// space for in_len - tag_len.
if (in_len < ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
size_t plaintext_len = in_len - ctx->tag_len;
if (max_out_len < plaintext_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
CRYPTO_IOVEC iovec[1];
iovec[0].in = in;
iovec[0].out = out;
iovec[0].len = plaintext_len;
CRYPTO_IVEC aadvec[1];
aadvec[0].in = ad;
aadvec[0].len = ad_len;
if (!EVP_AEAD_CTX_openv_detached(ctx, iovec, 1, nonce, nonce_len,
in + plaintext_len, ctx->tag_len, aadvec,
1)) {
return 0;
}
*out_len = plaintext_len;
ok = true;
return 1;
} else {
if (max_out_len < in_len) {
// Variable tag length AEADs need to be able to decrypt the entire
// plaintext before they can split it up. So the caller has to provide
// sufficient max_out_len for temporary data.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
CRYPTO_IOVEC iovec[1];
iovec[0].in = in;
iovec[0].out = out;
iovec[0].len = in_len;
CRYPTO_IVEC aadvec[1];
aadvec[0].in = ad;
aadvec[0].len = ad_len;
if (!EVP_AEAD_CTX_openv(ctx, iovec, 1, out_len, nonce, nonce_len, aadvec,
1)) {
return 0;
}
ok = true;
return 1;
}
}
if (!check_alias(in, in_len, out, max_out_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (ctx->aead->open) {
if (!ctx->aead->open(ctx, out, out_len, max_out_len, nonce, nonce_len, in,
in_len, ad, ad_len)) {
return 0;
}
ok = true;
return 1;
}
// AEADs that use the default implementation of open() must set |tag_len| at
// initialization time.
assert(ctx->tag_len);
if (in_len < ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
size_t plaintext_len = in_len - ctx->tag_len;
if (max_out_len < plaintext_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (ctx->aead->open_gather(ctx, out, nonce, nonce_len, in, plaintext_len,
in + plaintext_len, ctx->tag_len, ad, ad_len)) {
*out_len = plaintext_len;
ok = true;
return 1;
}
return 0;
}
int EVP_AEAD_CTX_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *in_tag, size_t in_tag_len,
const uint8_t *ad, size_t ad_len) {
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't try and process bad
// data.
OPENSSL_memset(out, 0, in_len);
}
});
if (!ctx->aead->open_gather) {
CRYPTO_IOVEC iovec[1];
iovec[0].in = in;
iovec[0].out = out;
iovec[0].len = in_len;
CRYPTO_IVEC aadvec[1];
aadvec[0].in = ad;
aadvec[0].len = ad_len;
if (EVP_AEAD_CTX_openv_detached(ctx, iovec, 1, nonce, nonce_len, in_tag,
in_tag_len, aadvec, 1)) {
ok = true;
return 1;
}
return 0;
}
if (!check_alias(in, in_len, out, in_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (!ctx->aead->open_gather) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
if (ctx->aead->open_gather(ctx, out, nonce, nonce_len, in, in_len, in_tag,
in_tag_len, ad, ad_len)) {
ok = true;
return 1;
}
return 0;
}
int EVP_AEAD_CTX_openv(const EVP_AEAD_CTX *ctx, const CRYPTO_IOVEC *iovec,
size_t num_iovec, size_t *out_total_bytes,
const uint8_t *nonce, size_t nonce_len,
const CRYPTO_IVEC *aadvec, size_t num_aadvec) {
bssl::Span<const CRYPTO_IOVEC> iovecs(iovec, num_iovec);
bssl::Span<const CRYPTO_IVEC> aadvecs(aadvec, num_aadvec);
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't try and process bad
// data.
clear_iovec(iovecs);
*out_total_bytes = 0;
}
});
if (!bssl::iovec::IsValid(iovecs) || !bssl::iovec::IsValid(aadvecs)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
// Enforce aliasing rules: no output may alias any input, with the one
// exception that an iovec member's |in| and |out| pointers may be identical
// for in-place operation.
if (!check_iovec_alias(iovecs, aadvecs, nullptr, 0, nonce, nonce_len, nullptr,
0)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (!ctx->aead->openv) {
if (ctx->tag_len && ctx->aead->openv_detached) {
// Try with a detached tag.
bssl::InplaceVector<CRYPTO_IOVEC, CRYPTO_IOVEC_MAX> detached_iovecs;
detached_iovecs.CopyFrom(iovecs);
uint8_t tagbuf[EVP_AEAD_MAX_OVERHEAD];
std::optional<bssl::Span<const uint8_t>> tag =
bssl::iovec::GetAndRemoveSuffix(
bssl::Span(tagbuf).first(ctx->tag_len),
bssl::Span(detached_iovecs));
if (!tag.has_value()) { // I.e. no |ctx->tag_len| bytes available.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
if (ctx->aead->openv_detached(ctx, detached_iovecs, nonce, nonce_len,
tag->data(), tag->size(), aadvecs)) {
ok = true;
*out_total_bytes =
bssl::iovec::TotalLength(bssl::Span(detached_iovecs));
return 1;
}
return 0;
}
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
if (ctx->aead->openv(ctx, iovecs, out_total_bytes, nonce, nonce_len,
aadvecs)) {
ok = true;
return 1;
}
return 0;
}
int EVP_AEAD_CTX_openv_detached(const EVP_AEAD_CTX *ctx,
const CRYPTO_IOVEC *iovec, size_t num_iovec,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in_tag, size_t in_tag_len,
const CRYPTO_IVEC *aadvec, size_t num_aadvec) {
bssl::Span<const CRYPTO_IOVEC> iovecs(iovec, num_iovec);
bssl::Span<const CRYPTO_IVEC> aadvecs(aadvec, num_aadvec);
bool ok = false;
bssl::Cleanup cleanup([&] {
if (!ok) {
// In the event of an error, clear the output buffer so that a caller
// that doesn't check the return value doesn't try and process bad
// data.
clear_iovec(iovecs);
}
});
if (!bssl::iovec::IsValid(iovecs) || !bssl::iovec::IsValid(aadvecs)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (in_tag_len > EVP_AEAD_MAX_OPEN_OVERHEAD) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_TAG_SIZE);
return 0;
}
// Enforce aliasing rules: no output may alias any input, with the one
// exception that an iovec member's |in| and |out| pointers may be identical
// for in-place operation.
if (!check_iovec_alias(iovecs, aadvecs, nullptr, 0, nonce, nonce_len, in_tag,
in_tag_len)) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_OUTPUT_ALIASES_INPUT);
return 0;
}
if (!ctx->aead->openv_detached) {
// AEADs with variable overhead may provide openv instead of openv_detached.
// While one might call openv and then, on success, discard the result if
// the length was wrong, this requires callers to predict the plaintext
// length first. We do not expect callers to do this, especially in the TLS
// CBC construction, where this length is sensitive to the Lucky 13 attack.
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_CTRL_NOT_IMPLEMENTED);
return 0;
}
if (ctx->aead->openv_detached(ctx, iovecs, nonce, nonce_len, in_tag,
in_tag_len, aadvecs)) {
ok = true;
return 1;
}
return 0;
}
const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx) { return ctx->aead; }
int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx, const uint8_t **out_iv,
size_t *out_len) {
if (ctx->aead->get_iv == nullptr) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return ctx->aead->get_iv(ctx, out_iv, out_len);
}
int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx, size_t *out_tag_len,
const size_t in_len, const size_t extra_in_len) {
assert(ctx->aead->seal_scatter_supports_extra_in || !extra_in_len);
if (ctx->aead->tag_len) {
*out_tag_len = ctx->aead->tag_len(ctx, in_len, extra_in_len);
return 1;
}
if (extra_in_len + ctx->tag_len < extra_in_len) {
OPENSSL_PUT_ERROR(CIPHER, ERR_R_OVERFLOW);
*out_tag_len = 0;
return 0;
}
*out_tag_len = extra_in_len + ctx->tag_len;
return 1;
}