| /* Originally written by Bodo Moeller for the OpenSSL project. |
| * ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The elliptic curve binary polynomial software is originally written by |
| * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| * Laboratories. */ |
| |
| #include <openssl/ec.h> |
| |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| // Most method functions in this file are designed to work with non-trivial |
| // representations of field elements if necessary (see ecp_mont.c): while |
| // standard modular addition and subtraction are used, the field_mul and |
| // field_sqr methods will be used for multiplication, and field_encode and |
| // field_decode (if defined) will be used for converting between |
| // representations. |
| // |
| // Functions here specifically assume that if a non-trivial representation is |
| // used, it is a Montgomery representation (i.e. 'encoding' means multiplying |
| // by some factor R). |
| |
| int ec_GFp_simple_group_init(EC_GROUP *group) { |
| BN_init(&group->field); |
| BN_init(&group->a); |
| BN_init(&group->b); |
| BN_init(&group->one); |
| group->a_is_minus3 = 0; |
| return 1; |
| } |
| |
| void ec_GFp_simple_group_finish(EC_GROUP *group) { |
| BN_free(&group->field); |
| BN_free(&group->a); |
| BN_free(&group->b); |
| BN_free(&group->one); |
| } |
| |
| int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| const BIGNUM *a, const BIGNUM *b, |
| BN_CTX *ctx) { |
| int ret = 0; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *tmp_a; |
| |
| // p must be a prime > 3 |
| if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
| return 0; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| tmp_a = BN_CTX_get(ctx); |
| if (tmp_a == NULL) { |
| goto err; |
| } |
| |
| // group->field |
| if (!BN_copy(&group->field, p)) { |
| goto err; |
| } |
| BN_set_negative(&group->field, 0); |
| |
| // group->a |
| if (!BN_nnmod(tmp_a, a, p, ctx)) { |
| goto err; |
| } |
| if (group->meth->field_encode) { |
| if (!group->meth->field_encode(group, &group->a, tmp_a, ctx)) { |
| goto err; |
| } |
| } else if (!BN_copy(&group->a, tmp_a)) { |
| goto err; |
| } |
| |
| // group->b |
| if (!BN_nnmod(&group->b, b, p, ctx)) { |
| goto err; |
| } |
| if (group->meth->field_encode && |
| !group->meth->field_encode(group, &group->b, &group->b, ctx)) { |
| goto err; |
| } |
| |
| // group->a_is_minus3 |
| if (!BN_add_word(tmp_a, 3)) { |
| goto err; |
| } |
| group->a_is_minus3 = (0 == BN_cmp(tmp_a, &group->field)); |
| |
| if (group->meth->field_encode != NULL) { |
| if (!group->meth->field_encode(group, &group->one, BN_value_one(), ctx)) { |
| goto err; |
| } |
| } else if (!BN_copy(&group->one, BN_value_one())) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| BIGNUM *b, BN_CTX *ctx) { |
| int ret = 0; |
| BN_CTX *new_ctx = NULL; |
| |
| if (p != NULL && !BN_copy(p, &group->field)) { |
| return 0; |
| } |
| |
| if (a != NULL || b != NULL) { |
| if (group->meth->field_decode) { |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| if (a != NULL && !group->meth->field_decode(group, a, &group->a, ctx)) { |
| goto err; |
| } |
| if (b != NULL && !group->meth->field_decode(group, b, &group->b, ctx)) { |
| goto err; |
| } |
| } else { |
| if (a != NULL && !BN_copy(a, &group->a)) { |
| goto err; |
| } |
| if (b != NULL && !BN_copy(b, &group->b)) { |
| goto err; |
| } |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| unsigned ec_GFp_simple_group_get_degree(const EC_GROUP *group) { |
| return BN_num_bits(&group->field); |
| } |
| |
| int ec_GFp_simple_point_init(EC_POINT *point) { |
| BN_init(&point->X); |
| BN_init(&point->Y); |
| BN_init(&point->Z); |
| |
| return 1; |
| } |
| |
| void ec_GFp_simple_point_finish(EC_POINT *point) { |
| BN_free(&point->X); |
| BN_free(&point->Y); |
| BN_free(&point->Z); |
| } |
| |
| int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src) { |
| if (!BN_copy(&dest->X, &src->X) || |
| !BN_copy(&dest->Y, &src->Y) || |
| !BN_copy(&dest->Z, &src->Z)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
| EC_POINT *point) { |
| BN_zero(&point->Z); |
| return 1; |
| } |
| |
| static int set_Jprojective_coordinate_GFp(const EC_GROUP *group, BIGNUM *out, |
| const BIGNUM *in, BN_CTX *ctx) { |
| if (in == NULL) { |
| return 1; |
| } |
| if (BN_is_negative(in) || |
| BN_cmp(in, &group->field) >= 0) { |
| OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE); |
| return 0; |
| } |
| if (group->meth->field_encode) { |
| return group->meth->field_encode(group, out, in, ctx); |
| } |
| return BN_copy(out, in) != NULL; |
| } |
| |
| int ec_GFp_simple_set_Jprojective_coordinates_GFp( |
| const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, const BIGNUM *y, |
| const BIGNUM *z, BN_CTX *ctx) { |
| BN_CTX *new_ctx = NULL; |
| int ret = 0; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| if (!set_Jprojective_coordinate_GFp(group, &point->X, x, ctx) || |
| !set_Jprojective_coordinate_GFp(group, &point->Y, y, ctx) || |
| !set_Jprojective_coordinate_GFp(group, &point->Z, z, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| EC_POINT *point, const BIGNUM *x, |
| const BIGNUM *y, BN_CTX *ctx) { |
| if (x == NULL || y == NULL) { |
| // unlike for projective coordinates, we do not tolerate this |
| OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| return ec_point_set_Jprojective_coordinates_GFp(group, point, x, y, |
| BN_value_one(), ctx); |
| } |
| |
| int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *ctx) { |
| int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, |
| BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| const BIGNUM *p; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6; |
| int ret = 0; |
| |
| if (a == b) { |
| return EC_POINT_dbl(group, r, a, ctx); |
| } |
| if (EC_POINT_is_at_infinity(group, a)) { |
| return EC_POINT_copy(r, b); |
| } |
| if (EC_POINT_is_at_infinity(group, b)) { |
| return EC_POINT_copy(r, a); |
| } |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| p = &group->field; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| n0 = BN_CTX_get(ctx); |
| n1 = BN_CTX_get(ctx); |
| n2 = BN_CTX_get(ctx); |
| n3 = BN_CTX_get(ctx); |
| n4 = BN_CTX_get(ctx); |
| n5 = BN_CTX_get(ctx); |
| n6 = BN_CTX_get(ctx); |
| if (n6 == NULL) { |
| goto end; |
| } |
| |
| // Note that in this function we must not read components of 'a' or 'b' |
| // once we have written the corresponding components of 'r'. |
| // ('r' might be one of 'a' or 'b'.) |
| |
| // n1, n2 |
| int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0; |
| |
| if (b_Z_is_one) { |
| if (!BN_copy(n1, &a->X) || !BN_copy(n2, &a->Y)) { |
| goto end; |
| } |
| // n1 = X_a |
| // n2 = Y_a |
| } else { |
| if (!field_sqr(group, n0, &b->Z, ctx) || |
| !field_mul(group, n1, &a->X, n0, ctx)) { |
| goto end; |
| } |
| // n1 = X_a * Z_b^2 |
| |
| if (!field_mul(group, n0, n0, &b->Z, ctx) || |
| !field_mul(group, n2, &a->Y, n0, ctx)) { |
| goto end; |
| } |
| // n2 = Y_a * Z_b^3 |
| } |
| |
| // n3, n4 |
| int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0; |
| if (a_Z_is_one) { |
| if (!BN_copy(n3, &b->X) || !BN_copy(n4, &b->Y)) { |
| goto end; |
| } |
| // n3 = X_b |
| // n4 = Y_b |
| } else { |
| if (!field_sqr(group, n0, &a->Z, ctx) || |
| !field_mul(group, n3, &b->X, n0, ctx)) { |
| goto end; |
| } |
| // n3 = X_b * Z_a^2 |
| |
| if (!field_mul(group, n0, n0, &a->Z, ctx) || |
| !field_mul(group, n4, &b->Y, n0, ctx)) { |
| goto end; |
| } |
| // n4 = Y_b * Z_a^3 |
| } |
| |
| // n5, n6 |
| if (!BN_mod_sub_quick(n5, n1, n3, p) || |
| !BN_mod_sub_quick(n6, n2, n4, p)) { |
| goto end; |
| } |
| // n5 = n1 - n3 |
| // n6 = n2 - n4 |
| |
| if (BN_is_zero(n5)) { |
| if (BN_is_zero(n6)) { |
| // a is the same point as b |
| BN_CTX_end(ctx); |
| ret = EC_POINT_dbl(group, r, a, ctx); |
| ctx = NULL; |
| goto end; |
| } else { |
| // a is the inverse of b |
| BN_zero(&r->Z); |
| ret = 1; |
| goto end; |
| } |
| } |
| |
| // 'n7', 'n8' |
| if (!BN_mod_add_quick(n1, n1, n3, p) || |
| !BN_mod_add_quick(n2, n2, n4, p)) { |
| goto end; |
| } |
| // 'n7' = n1 + n3 |
| // 'n8' = n2 + n4 |
| |
| // Z_r |
| if (a_Z_is_one && b_Z_is_one) { |
| if (!BN_copy(&r->Z, n5)) { |
| goto end; |
| } |
| } else { |
| if (a_Z_is_one) { |
| if (!BN_copy(n0, &b->Z)) { |
| goto end; |
| } |
| } else if (b_Z_is_one) { |
| if (!BN_copy(n0, &a->Z)) { |
| goto end; |
| } |
| } else if (!field_mul(group, n0, &a->Z, &b->Z, ctx)) { |
| goto end; |
| } |
| if (!field_mul(group, &r->Z, n0, n5, ctx)) { |
| goto end; |
| } |
| } |
| |
| // Z_r = Z_a * Z_b * n5 |
| |
| // X_r |
| if (!field_sqr(group, n0, n6, ctx) || |
| !field_sqr(group, n4, n5, ctx) || |
| !field_mul(group, n3, n1, n4, ctx) || |
| !BN_mod_sub_quick(&r->X, n0, n3, p)) { |
| goto end; |
| } |
| // X_r = n6^2 - n5^2 * 'n7' |
| |
| // 'n9' |
| if (!BN_mod_lshift1_quick(n0, &r->X, p) || |
| !BN_mod_sub_quick(n0, n3, n0, p)) { |
| goto end; |
| } |
| // n9 = n5^2 * 'n7' - 2 * X_r |
| |
| // Y_r |
| if (!field_mul(group, n0, n0, n6, ctx) || |
| !field_mul(group, n5, n4, n5, ctx)) { |
| goto end; // now n5 is n5^3 |
| } |
| if (!field_mul(group, n1, n2, n5, ctx) || |
| !BN_mod_sub_quick(n0, n0, n1, p)) { |
| goto end; |
| } |
| if (BN_is_odd(n0) && !BN_add(n0, n0, p)) { |
| goto end; |
| } |
| // now 0 <= n0 < 2*p, and n0 is even |
| if (!BN_rshift1(&r->Y, n0)) { |
| goto end; |
| } |
| // Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 |
| |
| ret = 1; |
| |
| end: |
| if (ctx) { |
| // otherwise we already called BN_CTX_end |
| BN_CTX_end(ctx); |
| } |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| BN_CTX *ctx) { |
| int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, |
| BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| const BIGNUM *p; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *n0, *n1, *n2, *n3; |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, a)) { |
| BN_zero(&r->Z); |
| return 1; |
| } |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| p = &group->field; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| n0 = BN_CTX_get(ctx); |
| n1 = BN_CTX_get(ctx); |
| n2 = BN_CTX_get(ctx); |
| n3 = BN_CTX_get(ctx); |
| if (n3 == NULL) { |
| goto err; |
| } |
| |
| // Note that in this function we must not read components of 'a' |
| // once we have written the corresponding components of 'r'. |
| // ('r' might the same as 'a'.) |
| |
| // n1 |
| if (BN_cmp(&a->Z, &group->one) == 0) { |
| if (!field_sqr(group, n0, &a->X, ctx) || |
| !BN_mod_lshift1_quick(n1, n0, p) || |
| !BN_mod_add_quick(n0, n0, n1, p) || |
| !BN_mod_add_quick(n1, n0, &group->a, p)) { |
| goto err; |
| } |
| // n1 = 3 * X_a^2 + a_curve |
| } else if (group->a_is_minus3) { |
| if (!field_sqr(group, n1, &a->Z, ctx) || |
| !BN_mod_add_quick(n0, &a->X, n1, p) || |
| !BN_mod_sub_quick(n2, &a->X, n1, p) || |
| !field_mul(group, n1, n0, n2, ctx) || |
| !BN_mod_lshift1_quick(n0, n1, p) || |
| !BN_mod_add_quick(n1, n0, n1, p)) { |
| goto err; |
| } |
| // n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2) |
| // = 3 * X_a^2 - 3 * Z_a^4 |
| } else { |
| if (!field_sqr(group, n0, &a->X, ctx) || |
| !BN_mod_lshift1_quick(n1, n0, p) || |
| !BN_mod_add_quick(n0, n0, n1, p) || |
| !field_sqr(group, n1, &a->Z, ctx) || |
| !field_sqr(group, n1, n1, ctx) || |
| !field_mul(group, n1, n1, &group->a, ctx) || |
| !BN_mod_add_quick(n1, n1, n0, p)) { |
| goto err; |
| } |
| // n1 = 3 * X_a^2 + a_curve * Z_a^4 |
| } |
| |
| // Z_r |
| if (BN_cmp(&a->Z, &group->one) == 0) { |
| if (!BN_copy(n0, &a->Y)) { |
| goto err; |
| } |
| } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) { |
| goto err; |
| } |
| if (!BN_mod_lshift1_quick(&r->Z, n0, p)) { |
| goto err; |
| } |
| // Z_r = 2 * Y_a * Z_a |
| |
| // n2 |
| if (!field_sqr(group, n3, &a->Y, ctx) || |
| !field_mul(group, n2, &a->X, n3, ctx) || |
| !BN_mod_lshift_quick(n2, n2, 2, p)) { |
| goto err; |
| } |
| // n2 = 4 * X_a * Y_a^2 |
| |
| // X_r |
| if (!BN_mod_lshift1_quick(n0, n2, p) || |
| !field_sqr(group, &r->X, n1, ctx) || |
| !BN_mod_sub_quick(&r->X, &r->X, n0, p)) { |
| goto err; |
| } |
| // X_r = n1^2 - 2 * n2 |
| |
| // n3 |
| if (!field_sqr(group, n0, n3, ctx) || |
| !BN_mod_lshift_quick(n3, n0, 3, p)) { |
| goto err; |
| } |
| // n3 = 8 * Y_a^4 |
| |
| // Y_r |
| if (!BN_mod_sub_quick(n0, n2, &r->X, p) || |
| !field_mul(group, n0, n1, n0, ctx) || |
| !BN_mod_sub_quick(&r->Y, n0, n3, p)) { |
| goto err; |
| } |
| // Y_r = n1 * (n2 - X_r) - n3 |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) { |
| if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(&point->Y)) { |
| // point is its own inverse |
| return 1; |
| } |
| |
| return BN_usub(&point->Y, &group->field, &point->Y); |
| } |
| |
| int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { |
| return BN_is_zero(&point->Z); |
| } |
| |
| int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| BN_CTX *ctx) { |
| int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, |
| BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| const BIGNUM *p; |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *rh, *tmp, *Z4, *Z6; |
| int ret = 0; |
| |
| if (EC_POINT_is_at_infinity(group, point)) { |
| return 1; |
| } |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| p = &group->field; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| rh = BN_CTX_get(ctx); |
| tmp = BN_CTX_get(ctx); |
| Z4 = BN_CTX_get(ctx); |
| Z6 = BN_CTX_get(ctx); |
| if (Z6 == NULL) { |
| goto err; |
| } |
| |
| // We have a curve defined by a Weierstrass equation |
| // y^2 = x^3 + a*x + b. |
| // The point to consider is given in Jacobian projective coordinates |
| // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
| // Substituting this and multiplying by Z^6 transforms the above equation |
| // into |
| // Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
| // To test this, we add up the right-hand side in 'rh'. |
| |
| // rh := X^2 |
| if (!field_sqr(group, rh, &point->X, ctx)) { |
| goto err; |
| } |
| |
| if (BN_cmp(&point->Z, &group->one) != 0) { |
| if (!field_sqr(group, tmp, &point->Z, ctx) || |
| !field_sqr(group, Z4, tmp, ctx) || |
| !field_mul(group, Z6, Z4, tmp, ctx)) { |
| goto err; |
| } |
| |
| // rh := (rh + a*Z^4)*X |
| if (group->a_is_minus3) { |
| if (!BN_mod_lshift1_quick(tmp, Z4, p) || |
| !BN_mod_add_quick(tmp, tmp, Z4, p) || |
| !BN_mod_sub_quick(rh, rh, tmp, p) || |
| !field_mul(group, rh, rh, &point->X, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!field_mul(group, tmp, Z4, &group->a, ctx) || |
| !BN_mod_add_quick(rh, rh, tmp, p) || |
| !field_mul(group, rh, rh, &point->X, ctx)) { |
| goto err; |
| } |
| } |
| |
| // rh := rh + b*Z^6 |
| if (!field_mul(group, tmp, &group->b, Z6, ctx) || |
| !BN_mod_add_quick(rh, rh, tmp, p)) { |
| goto err; |
| } |
| } else { |
| // rh := (rh + a)*X |
| if (!BN_mod_add_quick(rh, rh, &group->a, p) || |
| !field_mul(group, rh, rh, &point->X, ctx)) { |
| goto err; |
| } |
| // rh := rh + b |
| if (!BN_mod_add_quick(rh, rh, &group->b, p)) { |
| goto err; |
| } |
| } |
| |
| // 'lh' := Y^2 |
| if (!field_sqr(group, tmp, &point->Y, ctx)) { |
| goto err; |
| } |
| |
| ret = (0 == BN_ucmp(tmp, rh)); |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
| const EC_POINT *b, BN_CTX *ctx) { |
| // return values: |
| // -1 error |
| // 0 equal (in affine coordinates) |
| // 1 not equal |
| |
| int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *, |
| BN_CTX *); |
| int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *tmp1, *tmp2, *Za23, *Zb23; |
| const BIGNUM *tmp1_, *tmp2_; |
| int ret = -1; |
| |
| if (ec_GFp_simple_is_at_infinity(group, a)) { |
| return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1; |
| } |
| |
| if (ec_GFp_simple_is_at_infinity(group, b)) { |
| return 1; |
| } |
| |
| int a_Z_is_one = BN_cmp(&a->Z, &group->one) == 0; |
| int b_Z_is_one = BN_cmp(&b->Z, &group->one) == 0; |
| |
| if (a_Z_is_one && b_Z_is_one) { |
| return ((BN_cmp(&a->X, &b->X) == 0) && BN_cmp(&a->Y, &b->Y) == 0) ? 0 : 1; |
| } |
| |
| field_mul = group->meth->field_mul; |
| field_sqr = group->meth->field_sqr; |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return -1; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| tmp1 = BN_CTX_get(ctx); |
| tmp2 = BN_CTX_get(ctx); |
| Za23 = BN_CTX_get(ctx); |
| Zb23 = BN_CTX_get(ctx); |
| if (Zb23 == NULL) { |
| goto end; |
| } |
| |
| // We have to decide whether |
| // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
| // or equivalently, whether |
| // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
| |
| if (!b_Z_is_one) { |
| if (!field_sqr(group, Zb23, &b->Z, ctx) || |
| !field_mul(group, tmp1, &a->X, Zb23, ctx)) { |
| goto end; |
| } |
| tmp1_ = tmp1; |
| } else { |
| tmp1_ = &a->X; |
| } |
| if (!a_Z_is_one) { |
| if (!field_sqr(group, Za23, &a->Z, ctx) || |
| !field_mul(group, tmp2, &b->X, Za23, ctx)) { |
| goto end; |
| } |
| tmp2_ = tmp2; |
| } else { |
| tmp2_ = &b->X; |
| } |
| |
| // compare X_a*Z_b^2 with X_b*Z_a^2 |
| if (BN_cmp(tmp1_, tmp2_) != 0) { |
| ret = 1; // points differ |
| goto end; |
| } |
| |
| |
| if (!b_Z_is_one) { |
| if (!field_mul(group, Zb23, Zb23, &b->Z, ctx) || |
| !field_mul(group, tmp1, &a->Y, Zb23, ctx)) { |
| goto end; |
| } |
| // tmp1_ = tmp1 |
| } else { |
| tmp1_ = &a->Y; |
| } |
| if (!a_Z_is_one) { |
| if (!field_mul(group, Za23, Za23, &a->Z, ctx) || |
| !field_mul(group, tmp2, &b->Y, Za23, ctx)) { |
| goto end; |
| } |
| // tmp2_ = tmp2 |
| } else { |
| tmp2_ = &b->Y; |
| } |
| |
| // compare Y_a*Z_b^3 with Y_b*Z_a^3 |
| if (BN_cmp(tmp1_, tmp2_) != 0) { |
| ret = 1; // points differ |
| goto end; |
| } |
| |
| // points are equal |
| ret = 0; |
| |
| end: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
| BN_CTX *ctx) { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *x, *y; |
| int ret = 0; |
| |
| if (BN_cmp(&point->Z, &group->one) == 0 || |
| EC_POINT_is_at_infinity(group, point)) { |
| return 1; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) { |
| goto err; |
| } |
| |
| if (!EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx) || |
| !EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx)) { |
| goto err; |
| } |
| if (BN_cmp(&point->Z, &group->one) != 0) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| return ret; |
| } |
| |
| int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, |
| EC_POINT *points[], BN_CTX *ctx) { |
| BN_CTX *new_ctx = NULL; |
| BIGNUM *tmp, *tmp_Z; |
| BIGNUM **prod_Z = NULL; |
| int ret = 0; |
| |
| if (num == 0) { |
| return 1; |
| } |
| |
| if (ctx == NULL) { |
| ctx = new_ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return 0; |
| } |
| } |
| |
| BN_CTX_start(ctx); |
| tmp = BN_CTX_get(ctx); |
| tmp_Z = BN_CTX_get(ctx); |
| if (tmp == NULL || tmp_Z == NULL) { |
| goto err; |
| } |
| |
| prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0])); |
| if (prod_Z == NULL) { |
| goto err; |
| } |
| OPENSSL_memset(prod_Z, 0, num * sizeof(prod_Z[0])); |
| for (size_t i = 0; i < num; i++) { |
| prod_Z[i] = BN_new(); |
| if (prod_Z[i] == NULL) { |
| goto err; |
| } |
| } |
| |
| // Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z, |
| // skipping any zero-valued inputs (pretend that they're 1). |
| |
| if (!BN_is_zero(&points[0]->Z)) { |
| if (!BN_copy(prod_Z[0], &points[0]->Z)) { |
| goto err; |
| } |
| } else { |
| if (BN_copy(prod_Z[0], &group->one) == NULL) { |
| goto err; |
| } |
| } |
| |
| for (size_t i = 1; i < num; i++) { |
| if (!BN_is_zero(&points[i]->Z)) { |
| if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], |
| &points[i]->Z, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_copy(prod_Z[i], prod_Z[i - 1])) { |
| goto err; |
| } |
| } |
| } |
| |
| // Now use a single explicit inversion to replace every non-zero points[i]->Z |
| // by its inverse. We use |BN_mod_inverse_odd| instead of doing a constant- |
| // time inversion using Fermat's Little Theorem because this function is |
| // usually only used for converting multiples of a public key point to |
| // affine, and a public key point isn't secret. If we were to use Fermat's |
| // Little Theorem then the cost of the inversion would usually be so high |
| // that converting the multiples to affine would be counterproductive. |
| int no_inverse; |
| if (!BN_mod_inverse_odd(tmp, &no_inverse, prod_Z[num - 1], &group->field, |
| ctx)) { |
| OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| if (group->meth->field_encode != NULL) { |
| // In the Montgomery case, we just turned R*H (representing H) |
| // into 1/(R*H), but we need R*(1/H) (representing 1/H); |
| // i.e. we need to multiply by the Montgomery factor twice. |
| if (!group->meth->field_encode(group, tmp, tmp, ctx) || |
| !group->meth->field_encode(group, tmp, tmp, ctx)) { |
| goto err; |
| } |
| } |
| |
| for (size_t i = num - 1; i > 0; --i) { |
| // Loop invariant: tmp is the product of the inverses of |
| // points[0]->Z .. points[i]->Z (zero-valued inputs skipped). |
| if (BN_is_zero(&points[i]->Z)) { |
| continue; |
| } |
| |
| // Set tmp_Z to the inverse of points[i]->Z (as product |
| // of Z inverses 0 .. i, Z values 0 .. i - 1). |
| if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) || |
| // Update tmp to satisfy the loop invariant for i - 1. |
| !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) || |
| // Replace points[i]->Z by its inverse. |
| !BN_copy(&points[i]->Z, tmp_Z)) { |
| goto err; |
| } |
| } |
| |
| // Replace points[0]->Z by its inverse. |
| if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) { |
| goto err; |
| } |
| |
| // Finally, fix up the X and Y coordinates for all points. |
| for (size_t i = 0; i < num; i++) { |
| EC_POINT *p = points[i]; |
| |
| if (!BN_is_zero(&p->Z)) { |
| // turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). |
| if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) || |
| !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) || |
| !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) || |
| !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) { |
| goto err; |
| } |
| |
| if (BN_copy(&p->Z, &group->one) == NULL) { |
| goto err; |
| } |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_CTX_free(new_ctx); |
| if (prod_Z != NULL) { |
| for (size_t i = 0; i < num; i++) { |
| if (prod_Z[i] == NULL) { |
| break; |
| } |
| BN_clear_free(prod_Z[i]); |
| } |
| OPENSSL_free(prod_Z); |
| } |
| |
| return ret; |
| } |
| |
| int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| const BIGNUM *b, BN_CTX *ctx) { |
| return BN_mod_mul(r, a, b, &group->field, ctx); |
| } |
| |
| int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a, |
| BN_CTX *ctx) { |
| return BN_mod_sqr(r, a, &group->field, ctx); |
| } |