blob: c75d7845a7f30b1841a74d36484844b7ccd953e6 [file] [log] [blame]
#! /usr/bin/env perl
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
# Copyright (c) 2014, Intel Corporation. All Rights Reserved.
# Copyright (c) 2015 CloudFlare, Inc.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3)
# (1) Intel Corporation, Israel Development Center, Haifa, Israel
# (2) University of Haifa, Israel
# (3) CloudFlare, Inc.
#
# Reference:
# S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
# 256 Bit Primes"
# Further optimization by <appro@openssl.org>:
#
# this/original with/without -DECP_NISTZ256_ASM(*)
# Opteron +15-49% +150-195%
# Bulldozer +18-45% +175-240%
# P4 +24-46% +100-150%
# Westmere +18-34% +87-160%
# Sandy Bridge +14-35% +120-185%
# Ivy Bridge +11-35% +125-180%
# Haswell +10-37% +160-200%
# Broadwell +24-58% +210-270%
# Atom +20-50% +180-240%
# VIA Nano +50-160% +480-480%
#
# (*) "without -DECP_NISTZ256_ASM" refers to build with
# "enable-ec_nistp_64_gcc_128";
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. In "this/original" column lower coefficient is for
# ECDSA sign, while in "with/without" - for ECDH key agreement, and
# higher - for ECDSA sign, relatively fastest server-side operation.
# Keep in mind that +100% means 2x improvement.
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
*STDOUT=*OUT;
$avx = 2;
$addx = 1;
$code.=<<___;
.text
.extern OPENSSL_ia32cap_P
# The polynomial
.align 64
.Lpoly:
.quad 0xffffffffffffffff, 0x00000000ffffffff, 0x0000000000000000, 0xffffffff00000001
.LOne:
.long 1,1,1,1,1,1,1,1
.LTwo:
.long 2,2,2,2,2,2,2,2
.LThree:
.long 3,3,3,3,3,3,3,3
.LONE_mont:
.quad 0x0000000000000001, 0xffffffff00000000, 0xffffffffffffffff, 0x00000000fffffffe
# Constants for computations modulo ord(p256)
.Lord:
.quad 0xf3b9cac2fc632551, 0xbce6faada7179e84, 0xffffffffffffffff, 0xffffffff00000000
.LordK:
.quad 0xccd1c8aaee00bc4f
___
{
my ($a0,$a1,$a2,$a3)=map("%r$_",(8..11));
my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rdx","%rcx","%r12","%r13");
my ($r_ptr,$a_ptr,$b_ptr)=("%rdi","%rsi","%rdx");
$code.=<<___;
################################################################################
# void ecp_nistz256_neg(uint64_t res[4], uint64_t a[4]);
.globl ecp_nistz256_neg
.type ecp_nistz256_neg,\@function,2
.align 32
ecp_nistz256_neg:
.cfi_startproc
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
.Lneg_body:
xor $a0, $a0
xor $a1, $a1
xor $a2, $a2
xor $a3, $a3
xor $t4, $t4
sub 8*0($a_ptr), $a0
sbb 8*1($a_ptr), $a1
sbb 8*2($a_ptr), $a2
mov $a0, $t0
sbb 8*3($a_ptr), $a3
lea .Lpoly(%rip), $a_ptr
mov $a1, $t1
sbb \$0, $t4
add 8*0($a_ptr), $a0
mov $a2, $t2
adc 8*1($a_ptr), $a1
adc 8*2($a_ptr), $a2
mov $a3, $t3
adc 8*3($a_ptr), $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
mov 0(%rsp),%r13
.cfi_restore %r13
mov 8(%rsp),%r12
.cfi_restore %r12
lea 16(%rsp),%rsp
.cfi_adjust_cfa_offset -16
.Lneg_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_neg,.-ecp_nistz256_neg
___
}
{
my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx");
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15));
my ($t0,$t1,$t2,$t3,$t4)=("%rcx","%rbp","%rbx","%rdx","%rax");
my ($poly1,$poly3)=($acc6,$acc7);
$code.=<<___;
################################################################################
# void ecp_nistz256_ord_mul_mont(
# uint64_t res[4],
# uint64_t a[4],
# uint64_t b[4]);
.globl ecp_nistz256_ord_mul_mont
.type ecp_nistz256_ord_mul_mont,\@function,3
.align 32
ecp_nistz256_ord_mul_mont:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
cmp \$0x80100, %ecx
je .Lecp_nistz256_ord_mul_montx
___
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lord_mul_body:
mov 8*0($b_org), %rax
mov $b_org, $b_ptr
lea .Lord(%rip), %r14
mov .LordK(%rip), %r15
################################# * b[0]
mov %rax, $t0
mulq 8*0($a_ptr)
mov %rax, $acc0
mov $t0, %rax
mov %rdx, $acc1
mulq 8*1($a_ptr)
add %rax, $acc1
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $acc2
mulq 8*2($a_ptr)
add %rax, $acc2
mov $t0, %rax
adc \$0, %rdx
mov $acc0, $acc5
imulq %r15,$acc0
mov %rdx, $acc3
mulq 8*3($a_ptr)
add %rax, $acc3
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $acc4
################################# First reduction step
mulq 8*0(%r14)
mov $acc0, $t1
add %rax, $acc5 # guaranteed to be zero
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $t0
sub $acc0, $acc2
sbb \$0, $acc0 # can't borrow
mulq 8*1(%r14)
add $t0, $acc1
adc \$0, %rdx
add %rax, $acc1
mov $t1, %rax
adc %rdx, $acc2
mov $t1, %rdx
adc \$0, $acc0 # can't overflow
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc3
mov 8*1($b_ptr), %rax
sbb %rdx, $t1 # can't borrow
add $acc0, $acc3
adc $t1, $acc4
adc \$0, $acc5
################################# * b[1]
mov %rax, $t0
mulq 8*0($a_ptr)
add %rax, $acc1
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*1($a_ptr)
add $t1, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*2($a_ptr)
add $t1, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t0, %rax
adc \$0, %rdx
mov $acc1, $t0
imulq %r15, $acc1
mov %rdx, $t1
mulq 8*3($a_ptr)
add $t1, $acc4
adc \$0, %rdx
xor $acc0, $acc0
add %rax, $acc4
mov $acc1, %rax
adc %rdx, $acc5
adc \$0, $acc0
################################# Second reduction step
mulq 8*0(%r14)
mov $acc1, $t1
add %rax, $t0 # guaranteed to be zero
mov $acc1, %rax
adc %rdx, $t0
sub $acc1, $acc3
sbb \$0, $acc1 # can't borrow
mulq 8*1(%r14)
add $t0, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $t1, %rax
adc %rdx, $acc3
mov $t1, %rdx
adc \$0, $acc1 # can't overflow
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc4
mov 8*2($b_ptr), %rax
sbb %rdx, $t1 # can't borrow
add $acc1, $acc4
adc $t1, $acc5
adc \$0, $acc0
################################## * b[2]
mov %rax, $t0
mulq 8*0($a_ptr)
add %rax, $acc2
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*1($a_ptr)
add $t1, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*2($a_ptr)
add $t1, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t0, %rax
adc \$0, %rdx
mov $acc2, $t0
imulq %r15, $acc2
mov %rdx, $t1
mulq 8*3($a_ptr)
add $t1, $acc5
adc \$0, %rdx
xor $acc1, $acc1
add %rax, $acc5
mov $acc2, %rax
adc %rdx, $acc0
adc \$0, $acc1
################################# Third reduction step
mulq 8*0(%r14)
mov $acc2, $t1
add %rax, $t0 # guaranteed to be zero
mov $acc2, %rax
adc %rdx, $t0
sub $acc2, $acc4
sbb \$0, $acc2 # can't borrow
mulq 8*1(%r14)
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t1, %rax
adc %rdx, $acc4
mov $t1, %rdx
adc \$0, $acc2 # can't overflow
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc5
mov 8*3($b_ptr), %rax
sbb %rdx, $t1 # can't borrow
add $acc2, $acc5
adc $t1, $acc0
adc \$0, $acc1
################################# * b[3]
mov %rax, $t0
mulq 8*0($a_ptr)
add %rax, $acc3
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*1($a_ptr)
add $t1, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq 8*2($a_ptr)
add $t1, $acc5
adc \$0, %rdx
add %rax, $acc5
mov $t0, %rax
adc \$0, %rdx
mov $acc3, $t0
imulq %r15, $acc3
mov %rdx, $t1
mulq 8*3($a_ptr)
add $t1, $acc0
adc \$0, %rdx
xor $acc2, $acc2
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
adc \$0, $acc2
################################# Last reduction step
mulq 8*0(%r14)
mov $acc3, $t1
add %rax, $t0 # guaranteed to be zero
mov $acc3, %rax
adc %rdx, $t0
sub $acc3, $acc5
sbb \$0, $acc3 # can't borrow
mulq 8*1(%r14)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t1, %rax
adc %rdx, $acc5
mov $t1, %rdx
adc \$0, $acc3 # can't overflow
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc0
sbb %rdx, $t1 # can't borrow
add $acc3, $acc0
adc $t1, $acc1
adc \$0, $acc2
################################# Subtract ord
mov $acc4, $a_ptr
sub 8*0(%r14), $acc4
mov $acc5, $acc3
sbb 8*1(%r14), $acc5
mov $acc0, $t0
sbb 8*2(%r14), $acc0
mov $acc1, $t1
sbb 8*3(%r14), $acc1
sbb \$0, $acc2
cmovc $a_ptr, $acc4
cmovc $acc3, $acc5
cmovc $t0, $acc0
cmovc $t1, $acc1
mov $acc4, 8*0($r_ptr)
mov $acc5, 8*1($r_ptr)
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lord_mul_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_ord_mul_mont,.-ecp_nistz256_ord_mul_mont
################################################################################
# void ecp_nistz256_ord_sqr_mont(
# uint64_t res[4],
# uint64_t a[4],
# uint64_t rep);
.globl ecp_nistz256_ord_sqr_mont
.type ecp_nistz256_ord_sqr_mont,\@function,3
.align 32
ecp_nistz256_ord_sqr_mont:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
cmp \$0x80100, %ecx
je .Lecp_nistz256_ord_sqr_montx
___
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lord_sqr_body:
mov 8*0($a_ptr), $acc0
mov 8*1($a_ptr), %rax
mov 8*2($a_ptr), $acc6
mov 8*3($a_ptr), $acc7
lea .Lord(%rip), $a_ptr # pointer to modulus
mov $b_org, $b_ptr
jmp .Loop_ord_sqr
.align 32
.Loop_ord_sqr:
################################# a[1:] * a[0]
mov %rax, $t1 # put aside a[1]
mul $acc0 # a[1] * a[0]
mov %rax, $acc1
movq $t1, %xmm1 # offload a[1]
mov $acc6, %rax
mov %rdx, $acc2
mul $acc0 # a[2] * a[0]
add %rax, $acc2
mov $acc7, %rax
movq $acc6, %xmm2 # offload a[2]
adc \$0, %rdx
mov %rdx, $acc3
mul $acc0 # a[3] * a[0]
add %rax, $acc3
mov $acc7, %rax
movq $acc7, %xmm3 # offload a[3]
adc \$0, %rdx
mov %rdx, $acc4
################################# a[3] * a[2]
mul $acc6 # a[3] * a[2]
mov %rax, $acc5
mov $acc6, %rax
mov %rdx, $acc6
################################# a[2:] * a[1]
mul $t1 # a[2] * a[1]
add %rax, $acc3
mov $acc7, %rax
adc \$0, %rdx
mov %rdx, $acc7
mul $t1 # a[3] * a[1]
add %rax, $acc4
adc \$0, %rdx
add $acc7, $acc4
adc %rdx, $acc5
adc \$0, $acc6 # can't overflow
################################# *2
xor $acc7, $acc7
mov $acc0, %rax
add $acc1, $acc1
adc $acc2, $acc2
adc $acc3, $acc3
adc $acc4, $acc4
adc $acc5, $acc5
adc $acc6, $acc6
adc \$0, $acc7
################################# Missing products
mul %rax # a[0] * a[0]
mov %rax, $acc0
movq %xmm1, %rax
mov %rdx, $t1
mul %rax # a[1] * a[1]
add $t1, $acc1
adc %rax, $acc2
movq %xmm2, %rax
adc \$0, %rdx
mov %rdx, $t1
mul %rax # a[2] * a[2]
add $t1, $acc3
adc %rax, $acc4
movq %xmm3, %rax
adc \$0, %rdx
mov %rdx, $t1
mov $acc0, $t0
imulq 8*4($a_ptr), $acc0 # *= .LordK
mul %rax # a[3] * a[3]
add $t1, $acc5
adc %rax, $acc6
mov 8*0($a_ptr), %rax # modulus[0]
adc %rdx, $acc7 # can't overflow
################################# First reduction step
mul $acc0
mov $acc0, $t1
add %rax, $t0 # guaranteed to be zero
mov 8*1($a_ptr), %rax # modulus[1]
adc %rdx, $t0
sub $acc0, $acc2
sbb \$0, $t1 # can't borrow
mul $acc0
add $t0, $acc1
adc \$0, %rdx
add %rax, $acc1
mov $acc0, %rax
adc %rdx, $acc2
mov $acc0, %rdx
adc \$0, $t1 # can't overflow
mov $acc1, $t0
imulq 8*4($a_ptr), $acc1 # *= .LordK
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc3
mov 8*0($a_ptr), %rax
sbb %rdx, $acc0 # can't borrow
add $t1, $acc3
adc \$0, $acc0 # can't overflow
################################# Second reduction step
mul $acc1
mov $acc1, $t1
add %rax, $t0 # guaranteed to be zero
mov 8*1($a_ptr), %rax
adc %rdx, $t0
sub $acc1, $acc3
sbb \$0, $t1 # can't borrow
mul $acc1
add $t0, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $acc1, %rax
adc %rdx, $acc3
mov $acc1, %rdx
adc \$0, $t1 # can't overflow
mov $acc2, $t0
imulq 8*4($a_ptr), $acc2 # *= .LordK
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc0
mov 8*0($a_ptr), %rax
sbb %rdx, $acc1 # can't borrow
add $t1, $acc0
adc \$0, $acc1 # can't overflow
################################# Third reduction step
mul $acc2
mov $acc2, $t1
add %rax, $t0 # guaranteed to be zero
mov 8*1($a_ptr), %rax
adc %rdx, $t0
sub $acc2, $acc0
sbb \$0, $t1 # can't borrow
mul $acc2
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $acc2, %rax
adc %rdx, $acc0
mov $acc2, %rdx
adc \$0, $t1 # can't overflow
mov $acc3, $t0
imulq 8*4($a_ptr), $acc3 # *= .LordK
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc1
mov 8*0($a_ptr), %rax
sbb %rdx, $acc2 # can't borrow
add $t1, $acc1
adc \$0, $acc2 # can't overflow
################################# Last reduction step
mul $acc3
mov $acc3, $t1
add %rax, $t0 # guaranteed to be zero
mov 8*1($a_ptr), %rax
adc %rdx, $t0
sub $acc3, $acc1
sbb \$0, $t1 # can't borrow
mul $acc3
add $t0, $acc0
adc \$0, %rdx
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
mov $acc3, %rdx
adc \$0, $t1 # can't overflow
shl \$32, %rax
shr \$32, %rdx
sub %rax, $acc2
sbb %rdx, $acc3 # can't borrow
add $t1, $acc2
adc \$0, $acc3 # can't overflow
################################# Add bits [511:256] of the sqr result
xor %rdx, %rdx
add $acc4, $acc0
adc $acc5, $acc1
mov $acc0, $acc4
adc $acc6, $acc2
adc $acc7, $acc3
mov $acc1, %rax
adc \$0, %rdx
################################# Compare to modulus
sub 8*0($a_ptr), $acc0
mov $acc2, $acc6
sbb 8*1($a_ptr), $acc1
sbb 8*2($a_ptr), $acc2
mov $acc3, $acc7
sbb 8*3($a_ptr), $acc3
sbb \$0, %rdx
cmovc $acc4, $acc0
cmovnc $acc1, %rax
cmovnc $acc2, $acc6
cmovnc $acc3, $acc7
dec $b_ptr
jnz .Loop_ord_sqr
mov $acc0, 8*0($r_ptr)
mov %rax, 8*1($r_ptr)
pxor %xmm1, %xmm1
mov $acc6, 8*2($r_ptr)
pxor %xmm2, %xmm2
mov $acc7, 8*3($r_ptr)
pxor %xmm3, %xmm3
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lord_sqr_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_ord_sqr_mont,.-ecp_nistz256_ord_sqr_mont
___
$code.=<<___ if ($addx);
################################################################################
.type ecp_nistz256_ord_mul_montx,\@function,3
.align 32
ecp_nistz256_ord_mul_montx:
.cfi_startproc
.Lecp_nistz256_ord_mul_montx:
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lord_mulx_body:
mov $b_org, $b_ptr
mov 8*0($b_org), %rdx
mov 8*0($a_ptr), $acc1
mov 8*1($a_ptr), $acc2
mov 8*2($a_ptr), $acc3
mov 8*3($a_ptr), $acc4
lea -128($a_ptr), $a_ptr # control u-op density
lea .Lord-128(%rip), %r14
mov .LordK(%rip), %r15
################################# Multiply by b[0]
mulx $acc1, $acc0, $acc1
mulx $acc2, $t0, $acc2
mulx $acc3, $t1, $acc3
add $t0, $acc1
mulx $acc4, $t0, $acc4
mov $acc0, %rdx
mulx %r15, %rdx, %rax
adc $t1, $acc2
adc $t0, $acc3
adc \$0, $acc4
################################# reduction
xor $acc5, $acc5 # $acc5=0, cf=0, of=0
mulx 8*0+128(%r14), $t0, $t1
adcx $t0, $acc0 # guaranteed to be zero
adox $t1, $acc1
mulx 8*1+128(%r14), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2
mulx 8*2+128(%r14), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*3+128(%r14), $t0, $t1
mov 8*1($b_ptr), %rdx
adcx $t0, $acc3
adox $t1, $acc4
adcx $acc0, $acc4
adox $acc0, $acc5
adc \$0, $acc5 # cf=0, of=0
################################# Multiply by b[1]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc1, %rdx
mulx %r15, %rdx, %rax
adcx $t0, $acc4
adox $t1, $acc5
adcx $acc0, $acc5
adox $acc0, $acc0
adc \$0, $acc0 # cf=0, of=0
################################# reduction
mulx 8*0+128(%r14), $t0, $t1
adcx $t0, $acc1 # guaranteed to be zero
adox $t1, $acc2
mulx 8*1+128(%r14), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*2+128(%r14), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*3+128(%r14), $t0, $t1
mov 8*2($b_ptr), %rdx
adcx $t0, $acc4
adox $t1, $acc5
adcx $acc1, $acc5
adox $acc1, $acc0
adc \$0, $acc0 # cf=0, of=0
################################# Multiply by b[2]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc2, %rdx
mulx %r15, %rdx, %rax
adcx $t0, $acc5
adox $t1, $acc0
adcx $acc1, $acc0
adox $acc1, $acc1
adc \$0, $acc1 # cf=0, of=0
################################# reduction
mulx 8*0+128(%r14), $t0, $t1
adcx $t0, $acc2 # guaranteed to be zero
adox $t1, $acc3
mulx 8*1+128(%r14), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*2+128(%r14), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*3+128(%r14), $t0, $t1
mov 8*3($b_ptr), %rdx
adcx $t0, $acc5
adox $t1, $acc0
adcx $acc2, $acc0
adox $acc2, $acc1
adc \$0, $acc1 # cf=0, of=0
################################# Multiply by b[3]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc5
adox $t1, $acc0
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc3, %rdx
mulx %r15, %rdx, %rax
adcx $t0, $acc0
adox $t1, $acc1
adcx $acc2, $acc1
adox $acc2, $acc2
adc \$0, $acc2 # cf=0, of=0
################################# reduction
mulx 8*0+128(%r14), $t0, $t1
adcx $t0, $acc3 # guranteed to be zero
adox $t1, $acc4
mulx 8*1+128(%r14), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*2+128(%r14), $t0, $t1
adcx $t0, $acc5
adox $t1, $acc0
mulx 8*3+128(%r14), $t0, $t1
lea 128(%r14),%r14
mov $acc4, $t2
adcx $t0, $acc0
adox $t1, $acc1
mov $acc5, $t3
adcx $acc3, $acc1
adox $acc3, $acc2
adc \$0, $acc2
#################################
# Branch-less conditional subtraction of P
mov $acc0, $t0
sub 8*0(%r14), $acc4
sbb 8*1(%r14), $acc5
sbb 8*2(%r14), $acc0
mov $acc1, $t1
sbb 8*3(%r14), $acc1
sbb \$0, $acc2
cmovc $t2, $acc4
cmovc $t3, $acc5
cmovc $t0, $acc0
cmovc $t1, $acc1
mov $acc4, 8*0($r_ptr)
mov $acc5, 8*1($r_ptr)
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lord_mulx_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_ord_mul_montx,.-ecp_nistz256_ord_mul_montx
.type ecp_nistz256_ord_sqr_montx,\@function,3
.align 32
ecp_nistz256_ord_sqr_montx:
.cfi_startproc
.Lecp_nistz256_ord_sqr_montx:
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lord_sqrx_body:
mov $b_org, $b_ptr
mov 8*0($a_ptr), %rdx
mov 8*1($a_ptr), $acc6
mov 8*2($a_ptr), $acc7
mov 8*3($a_ptr), $acc0
lea .Lord(%rip), $a_ptr
jmp .Loop_ord_sqrx
.align 32
.Loop_ord_sqrx:
mulx $acc6, $acc1, $acc2 # a[0]*a[1]
mulx $acc7, $t0, $acc3 # a[0]*a[2]
mov %rdx, %rax # offload a[0]
movq $acc6, %xmm1 # offload a[1]
mulx $acc0, $t1, $acc4 # a[0]*a[3]
mov $acc6, %rdx
add $t0, $acc2
movq $acc7, %xmm2 # offload a[2]
adc $t1, $acc3
adc \$0, $acc4
xor $acc5, $acc5 # $acc5=0,cf=0,of=0
#################################
mulx $acc7, $t0, $t1 # a[1]*a[2]
adcx $t0, $acc3
adox $t1, $acc4
mulx $acc0, $t0, $t1 # a[1]*a[3]
mov $acc7, %rdx
adcx $t0, $acc4
adox $t1, $acc5
adc \$0, $acc5
#################################
mulx $acc0, $t0, $acc6 # a[2]*a[3]
mov %rax, %rdx
movq $acc0, %xmm3 # offload a[3]
xor $acc7, $acc7 # $acc7=0,cf=0,of=0
adcx $acc1, $acc1 # acc1:6<<1
adox $t0, $acc5
adcx $acc2, $acc2
adox $acc7, $acc6 # of=0
################################# a[i]*a[i]
mulx %rdx, $acc0, $t1
movq %xmm1, %rdx
adcx $acc3, $acc3
adox $t1, $acc1
adcx $acc4, $acc4
mulx %rdx, $t0, $t4
movq %xmm2, %rdx
adcx $acc5, $acc5
adox $t0, $acc2
adcx $acc6, $acc6
mulx %rdx, $t0, $t1
.byte 0x67
movq %xmm3, %rdx
adox $t4, $acc3
adcx $acc7, $acc7
adox $t0, $acc4
adox $t1, $acc5
mulx %rdx, $t0, $t4
adox $t0, $acc6
adox $t4, $acc7
################################# reduction
mov $acc0, %rdx
mulx 8*4($a_ptr), %rdx, $t0
xor %rax, %rax # cf=0, of=0
mulx 8*0($a_ptr), $t0, $t1
adcx $t0, $acc0 # guaranteed to be zero
adox $t1, $acc1
mulx 8*1($a_ptr), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2
mulx 8*2($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*3($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc0 # of=0
adcx %rax, $acc0 # cf=0
#################################
mov $acc1, %rdx
mulx 8*4($a_ptr), %rdx, $t0
mulx 8*0($a_ptr), $t0, $t1
adox $t0, $acc1 # guaranteed to be zero
adcx $t1, $acc2
mulx 8*1($a_ptr), $t0, $t1
adox $t0, $acc2
adcx $t1, $acc3
mulx 8*2($a_ptr), $t0, $t1
adox $t0, $acc3
adcx $t1, $acc0
mulx 8*3($a_ptr), $t0, $t1
adox $t0, $acc0
adcx $t1, $acc1 # cf=0
adox %rax, $acc1 # of=0
#################################
mov $acc2, %rdx
mulx 8*4($a_ptr), %rdx, $t0
mulx 8*0($a_ptr), $t0, $t1
adcx $t0, $acc2 # guaranteed to be zero
adox $t1, $acc3
mulx 8*1($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc0
mulx 8*2($a_ptr), $t0, $t1
adcx $t0, $acc0
adox $t1, $acc1
mulx 8*3($a_ptr), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2 # of=0
adcx %rax, $acc2 # cf=0
#################################
mov $acc3, %rdx
mulx 8*4($a_ptr), %rdx, $t0
mulx 8*0($a_ptr), $t0, $t1
adox $t0, $acc3 # guaranteed to be zero
adcx $t1, $acc0
mulx 8*1($a_ptr), $t0, $t1
adox $t0, $acc0
adcx $t1, $acc1
mulx 8*2($a_ptr), $t0, $t1
adox $t0, $acc1
adcx $t1, $acc2
mulx 8*3($a_ptr), $t0, $t1
adox $t0, $acc2
adcx $t1, $acc3
adox %rax, $acc3
################################# accumulate upper half
add $acc0, $acc4 # add $acc4, $acc0
adc $acc5, $acc1
mov $acc4, %rdx
adc $acc6, $acc2
adc $acc7, $acc3
mov $acc1, $acc6
adc \$0, %rax
################################# compare to modulus
sub 8*0($a_ptr), $acc4
mov $acc2, $acc7
sbb 8*1($a_ptr), $acc1
sbb 8*2($a_ptr), $acc2
mov $acc3, $acc0
sbb 8*3($a_ptr), $acc3
sbb \$0, %rax
cmovnc $acc4, %rdx
cmovnc $acc1, $acc6
cmovnc $acc2, $acc7
cmovnc $acc3, $acc0
dec $b_ptr
jnz .Loop_ord_sqrx
mov %rdx, 8*0($r_ptr)
mov $acc6, 8*1($r_ptr)
pxor %xmm1, %xmm1
mov $acc7, 8*2($r_ptr)
pxor %xmm2, %xmm2
mov $acc0, 8*3($r_ptr)
pxor %xmm3, %xmm3
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lord_sqrx_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_ord_sqr_montx,.-ecp_nistz256_ord_sqr_montx
___
$code.=<<___;
################################################################################
# void ecp_nistz256_mul_mont(
# uint64_t res[4],
# uint64_t a[4],
# uint64_t b[4]);
.globl ecp_nistz256_mul_mont
.type ecp_nistz256_mul_mont,\@function,3
.align 32
ecp_nistz256_mul_mont:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
___
$code.=<<___;
.Lmul_mont:
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lmul_body:
___
$code.=<<___ if ($addx);
cmp \$0x80100, %ecx
je .Lmul_montx
___
$code.=<<___;
mov $b_org, $b_ptr
mov 8*0($b_org), %rax
mov 8*0($a_ptr), $acc1
mov 8*1($a_ptr), $acc2
mov 8*2($a_ptr), $acc3
mov 8*3($a_ptr), $acc4
call __ecp_nistz256_mul_montq
___
$code.=<<___ if ($addx);
jmp .Lmul_mont_done
.align 32
.Lmul_montx:
mov $b_org, $b_ptr
mov 8*0($b_org), %rdx
mov 8*0($a_ptr), $acc1
mov 8*1($a_ptr), $acc2
mov 8*2($a_ptr), $acc3
mov 8*3($a_ptr), $acc4
lea -128($a_ptr), $a_ptr # control u-op density
call __ecp_nistz256_mul_montx
___
$code.=<<___;
.Lmul_mont_done:
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lmul_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont
.type __ecp_nistz256_mul_montq,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_montq:
.cfi_startproc
########################################################################
# Multiply a by b[0]
mov %rax, $t1
mulq $acc1
mov .Lpoly+8*1(%rip),$poly1
mov %rax, $acc0
mov $t1, %rax
mov %rdx, $acc1
mulq $acc2
mov .Lpoly+8*3(%rip),$poly3
add %rax, $acc1
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $acc2
mulq $acc3
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $acc3
mulq $acc4
add %rax, $acc3
mov $acc0, %rax
adc \$0, %rdx
xor $acc5, $acc5
mov %rdx, $acc4
########################################################################
# First reduction step
# Basically now we want to multiply acc[0] by p256,
# and add the result to the acc.
# Due to the special form of p256 we do some optimizations
#
# acc[0] x p256[0..1] = acc[0] x 2^96 - acc[0]
# then we add acc[0] and get acc[0] x 2^96
mov $acc0, $t1
shl \$32, $acc0
mulq $poly3
shr \$32, $t1
add $acc0, $acc1 # +=acc[0]<<96
adc $t1, $acc2
adc %rax, $acc3
mov 8*1($b_ptr), %rax
adc %rdx, $acc4
adc \$0, $acc5
xor $acc0, $acc0
########################################################################
# Multiply by b[1]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc1
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc2
adc \$0, %rdx
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $acc1, %rax
adc %rdx, $acc5
adc \$0, $acc0
########################################################################
# Second reduction step
mov $acc1, $t1
shl \$32, $acc1
mulq $poly3
shr \$32, $t1
add $acc1, $acc2
adc $t1, $acc3
adc %rax, $acc4
mov 8*2($b_ptr), %rax
adc %rdx, $acc5
adc \$0, $acc0
xor $acc1, $acc1
########################################################################
# Multiply by b[2]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc2
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc3
adc \$0, %rdx
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc5
adc \$0, %rdx
add %rax, $acc5
mov $acc2, %rax
adc %rdx, $acc0
adc \$0, $acc1
########################################################################
# Third reduction step
mov $acc2, $t1
shl \$32, $acc2
mulq $poly3
shr \$32, $t1
add $acc2, $acc3
adc $t1, $acc4
adc %rax, $acc5
mov 8*3($b_ptr), %rax
adc %rdx, $acc0
adc \$0, $acc1
xor $acc2, $acc2
########################################################################
# Multiply by b[3]
mov %rax, $t1
mulq 8*0($a_ptr)
add %rax, $acc3
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*1($a_ptr)
add $t0, $acc4
adc \$0, %rdx
add %rax, $acc4
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*2($a_ptr)
add $t0, $acc5
adc \$0, %rdx
add %rax, $acc5
mov $t1, %rax
adc \$0, %rdx
mov %rdx, $t0
mulq 8*3($a_ptr)
add $t0, $acc0
adc \$0, %rdx
add %rax, $acc0
mov $acc3, %rax
adc %rdx, $acc1
adc \$0, $acc2
########################################################################
# Final reduction step
mov $acc3, $t1
shl \$32, $acc3
mulq $poly3
shr \$32, $t1
add $acc3, $acc4
adc $t1, $acc5
mov $acc4, $t0
adc %rax, $acc0
adc %rdx, $acc1
mov $acc5, $t1
adc \$0, $acc2
########################################################################
# Branch-less conditional subtraction of P
sub \$-1, $acc4 # .Lpoly[0]
mov $acc0, $t2
sbb $poly1, $acc5 # .Lpoly[1]
sbb \$0, $acc0 # .Lpoly[2]
mov $acc1, $t3
sbb $poly3, $acc1 # .Lpoly[3]
sbb \$0, $acc2
cmovc $t0, $acc4
cmovc $t1, $acc5
mov $acc4, 8*0($r_ptr)
cmovc $t2, $acc0
mov $acc5, 8*1($r_ptr)
cmovc $t3, $acc1
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_mul_montq,.-__ecp_nistz256_mul_montq
################################################################################
# void ecp_nistz256_sqr_mont(
# uint64_t res[4],
# uint64_t a[4]);
# we optimize the square according to S.Gueron and V.Krasnov,
# "Speeding up Big-Number Squaring"
.globl ecp_nistz256_sqr_mont
.type ecp_nistz256_sqr_mont,\@function,2
.align 32
ecp_nistz256_sqr_mont:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
___
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
.Lsqr_body:
___
$code.=<<___ if ($addx);
cmp \$0x80100, %ecx
je .Lsqr_montx
___
$code.=<<___;
mov 8*0($a_ptr), %rax
mov 8*1($a_ptr), $acc6
mov 8*2($a_ptr), $acc7
mov 8*3($a_ptr), $acc0
call __ecp_nistz256_sqr_montq
___
$code.=<<___ if ($addx);
jmp .Lsqr_mont_done
.align 32
.Lsqr_montx:
mov 8*0($a_ptr), %rdx
mov 8*1($a_ptr), $acc6
mov 8*2($a_ptr), $acc7
mov 8*3($a_ptr), $acc0
lea -128($a_ptr), $a_ptr # control u-op density
call __ecp_nistz256_sqr_montx
___
$code.=<<___;
.Lsqr_mont_done:
mov 0(%rsp),%r15
.cfi_restore %r15
mov 8(%rsp),%r14
.cfi_restore %r14
mov 16(%rsp),%r13
.cfi_restore %r13
mov 24(%rsp),%r12
.cfi_restore %r12
mov 32(%rsp),%rbx
.cfi_restore %rbx
mov 40(%rsp),%rbp
.cfi_restore %rbp
lea 48(%rsp),%rsp
.cfi_adjust_cfa_offset -48
.Lsqr_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont
.type __ecp_nistz256_sqr_montq,\@abi-omnipotent
.align 32
__ecp_nistz256_sqr_montq:
.cfi_startproc
mov %rax, $acc5
mulq $acc6 # a[1]*a[0]
mov %rax, $acc1
mov $acc7, %rax
mov %rdx, $acc2
mulq $acc5 # a[0]*a[2]
add %rax, $acc2
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $acc3
mulq $acc5 # a[0]*a[3]
add %rax, $acc3
mov $acc7, %rax
adc \$0, %rdx
mov %rdx, $acc4
#################################
mulq $acc6 # a[1]*a[2]
add %rax, $acc3
mov $acc0, %rax
adc \$0, %rdx
mov %rdx, $t1
mulq $acc6 # a[1]*a[3]
add %rax, $acc4
mov $acc0, %rax
adc \$0, %rdx
add $t1, $acc4
mov %rdx, $acc5
adc \$0, $acc5
#################################
mulq $acc7 # a[2]*a[3]
xor $acc7, $acc7
add %rax, $acc5
mov 8*0($a_ptr), %rax
mov %rdx, $acc6
adc \$0, $acc6
add $acc1, $acc1 # acc1:6<<1
adc $acc2, $acc2
adc $acc3, $acc3
adc $acc4, $acc4
adc $acc5, $acc5
adc $acc6, $acc6
adc \$0, $acc7
mulq %rax
mov %rax, $acc0
mov 8*1($a_ptr), %rax
mov %rdx, $t0
mulq %rax
add $t0, $acc1
adc %rax, $acc2
mov 8*2($a_ptr), %rax
adc \$0, %rdx
mov %rdx, $t0
mulq %rax
add $t0, $acc3
adc %rax, $acc4
mov 8*3($a_ptr), %rax
adc \$0, %rdx
mov %rdx, $t0
mulq %rax
add $t0, $acc5
adc %rax, $acc6
mov $acc0, %rax
adc %rdx, $acc7
mov .Lpoly+8*1(%rip), $a_ptr
mov .Lpoly+8*3(%rip), $t1
##########################################
# Now the reduction
# First iteration
mov $acc0, $t0
shl \$32, $acc0
mulq $t1
shr \$32, $t0
add $acc0, $acc1 # +=acc[0]<<96
adc $t0, $acc2
adc %rax, $acc3
mov $acc1, %rax
adc \$0, %rdx
##########################################
# Second iteration
mov $acc1, $t0
shl \$32, $acc1
mov %rdx, $acc0
mulq $t1
shr \$32, $t0
add $acc1, $acc2
adc $t0, $acc3
adc %rax, $acc0
mov $acc2, %rax
adc \$0, %rdx
##########################################
# Third iteration
mov $acc2, $t0
shl \$32, $acc2
mov %rdx, $acc1
mulq $t1
shr \$32, $t0
add $acc2, $acc3
adc $t0, $acc0
adc %rax, $acc1
mov $acc3, %rax
adc \$0, %rdx
###########################################
# Last iteration
mov $acc3, $t0
shl \$32, $acc3
mov %rdx, $acc2
mulq $t1
shr \$32, $t0
add $acc3, $acc0
adc $t0, $acc1
adc %rax, $acc2
adc \$0, %rdx
xor $acc3, $acc3
############################################
# Add the rest of the acc
add $acc0, $acc4
adc $acc1, $acc5
mov $acc4, $acc0
adc $acc2, $acc6
adc %rdx, $acc7
mov $acc5, $acc1
adc \$0, $acc3
sub \$-1, $acc4 # .Lpoly[0]
mov $acc6, $acc2
sbb $a_ptr, $acc5 # .Lpoly[1]
sbb \$0, $acc6 # .Lpoly[2]
mov $acc7, $t0
sbb $t1, $acc7 # .Lpoly[3]
sbb \$0, $acc3
cmovc $acc0, $acc4
cmovc $acc1, $acc5
mov $acc4, 8*0($r_ptr)
cmovc $acc2, $acc6
mov $acc5, 8*1($r_ptr)
cmovc $t0, $acc7
mov $acc6, 8*2($r_ptr)
mov $acc7, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_sqr_montq,.-__ecp_nistz256_sqr_montq
___
if ($addx) {
$code.=<<___;
.type __ecp_nistz256_mul_montx,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_montx:
.cfi_startproc
########################################################################
# Multiply by b[0]
mulx $acc1, $acc0, $acc1
mulx $acc2, $t0, $acc2
mov \$32, $poly1
xor $acc5, $acc5 # cf=0
mulx $acc3, $t1, $acc3
mov .Lpoly+8*3(%rip), $poly3
adc $t0, $acc1
mulx $acc4, $t0, $acc4
mov $acc0, %rdx
adc $t1, $acc2
shlx $poly1,$acc0,$t1
adc $t0, $acc3
shrx $poly1,$acc0,$t0
adc \$0, $acc4
########################################################################
# First reduction step
add $t1, $acc1
adc $t0, $acc2
mulx $poly3, $t0, $t1
mov 8*1($b_ptr), %rdx
adc $t0, $acc3
adc $t1, $acc4
adc \$0, $acc5
xor $acc0, $acc0 # $acc0=0,cf=0,of=0
########################################################################
# Multiply by b[1]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc1
adox $t1, $acc2
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc1, %rdx
adcx $t0, $acc4
shlx $poly1, $acc1, $t0
adox $t1, $acc5
shrx $poly1, $acc1, $t1
adcx $acc0, $acc5
adox $acc0, $acc0
adc \$0, $acc0
########################################################################
# Second reduction step
add $t0, $acc2
adc $t1, $acc3
mulx $poly3, $t0, $t1
mov 8*2($b_ptr), %rdx
adc $t0, $acc4
adc $t1, $acc5
adc \$0, $acc0
xor $acc1 ,$acc1 # $acc1=0,cf=0,of=0
########################################################################
# Multiply by b[2]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc2
adox $t1, $acc3
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc2, %rdx
adcx $t0, $acc5
shlx $poly1, $acc2, $t0
adox $t1, $acc0
shrx $poly1, $acc2, $t1
adcx $acc1, $acc0
adox $acc1, $acc1
adc \$0, $acc1
########################################################################
# Third reduction step
add $t0, $acc3
adc $t1, $acc4
mulx $poly3, $t0, $t1
mov 8*3($b_ptr), %rdx
adc $t0, $acc5
adc $t1, $acc0
adc \$0, $acc1
xor $acc2, $acc2 # $acc2=0,cf=0,of=0
########################################################################
# Multiply by b[3]
mulx 8*0+128($a_ptr), $t0, $t1
adcx $t0, $acc3
adox $t1, $acc4
mulx 8*1+128($a_ptr), $t0, $t1
adcx $t0, $acc4
adox $t1, $acc5
mulx 8*2+128($a_ptr), $t0, $t1
adcx $t0, $acc5
adox $t1, $acc0
mulx 8*3+128($a_ptr), $t0, $t1
mov $acc3, %rdx
adcx $t0, $acc0
shlx $poly1, $acc3, $t0
adox $t1, $acc1
shrx $poly1, $acc3, $t1
adcx $acc2, $acc1
adox $acc2, $acc2
adc \$0, $acc2
########################################################################
# Fourth reduction step
add $t0, $acc4
adc $t1, $acc5
mulx $poly3, $t0, $t1
mov $acc4, $t2
mov .Lpoly+8*1(%rip), $poly1
adc $t0, $acc0
mov $acc5, $t3
adc $t1, $acc1
adc \$0, $acc2
########################################################################
# Branch-less conditional subtraction of P
xor %eax, %eax
mov $acc0, $t0
sbb \$-1, $acc4 # .Lpoly[0]
sbb $poly1, $acc5 # .Lpoly[1]
sbb \$0, $acc0 # .Lpoly[2]
mov $acc1, $t1
sbb $poly3, $acc1 # .Lpoly[3]
sbb \$0, $acc2
cmovc $t2, $acc4
cmovc $t3, $acc5
mov $acc4, 8*0($r_ptr)
cmovc $t0, $acc0
mov $acc5, 8*1($r_ptr)
cmovc $t1, $acc1
mov $acc0, 8*2($r_ptr)
mov $acc1, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_mul_montx,.-__ecp_nistz256_mul_montx
.type __ecp_nistz256_sqr_montx,\@abi-omnipotent
.align 32
__ecp_nistz256_sqr_montx:
.cfi_startproc
mulx $acc6, $acc1, $acc2 # a[0]*a[1]
mulx $acc7, $t0, $acc3 # a[0]*a[2]
xor %eax, %eax
adc $t0, $acc2
mulx $acc0, $t1, $acc4 # a[0]*a[3]
mov $acc6, %rdx
adc $t1, $acc3
adc \$0, $acc4
xor $acc5, $acc5 # $acc5=0,cf=0,of=0
#################################
mulx $acc7, $t0, $t1 # a[1]*a[2]
adcx $t0, $acc3
adox $t1, $acc4
mulx $acc0, $t0, $t1 # a[1]*a[3]
mov $acc7, %rdx
adcx $t0, $acc4
adox $t1, $acc5
adc \$0, $acc5
#################################
mulx $acc0, $t0, $acc6 # a[2]*a[3]
mov 8*0+128($a_ptr), %rdx
xor $acc7, $acc7 # $acc7=0,cf=0,of=0
adcx $acc1, $acc1 # acc1:6<<1
adox $t0, $acc5
adcx $acc2, $acc2
adox $acc7, $acc6 # of=0
mulx %rdx, $acc0, $t1
mov 8*1+128($a_ptr), %rdx
adcx $acc3, $acc3
adox $t1, $acc1
adcx $acc4, $acc4
mulx %rdx, $t0, $t4
mov 8*2+128($a_ptr), %rdx
adcx $acc5, $acc5
adox $t0, $acc2
adcx $acc6, $acc6
.byte 0x67
mulx %rdx, $t0, $t1
mov 8*3+128($a_ptr), %rdx
adox $t4, $acc3
adcx $acc7, $acc7
adox $t0, $acc4
mov \$32, $a_ptr
adox $t1, $acc5
.byte 0x67,0x67
mulx %rdx, $t0, $t4
mov .Lpoly+8*3(%rip), %rdx
adox $t0, $acc6
shlx $a_ptr, $acc0, $t0
adox $t4, $acc7
shrx $a_ptr, $acc0, $t4
mov %rdx,$t1
# reduction step 1
add $t0, $acc1
adc $t4, $acc2
mulx $acc0, $t0, $acc0
adc $t0, $acc3
shlx $a_ptr, $acc1, $t0
adc \$0, $acc0
shrx $a_ptr, $acc1, $t4
# reduction step 2
add $t0, $acc2
adc $t4, $acc3
mulx $acc1, $t0, $acc1
adc $t0, $acc0
shlx $a_ptr, $acc2, $t0
adc \$0, $acc1
shrx $a_ptr, $acc2, $t4
# reduction step 3
add $t0, $acc3
adc $t4, $acc0
mulx $acc2, $t0, $acc2
adc $t0, $acc1
shlx $a_ptr, $acc3, $t0
adc \$0, $acc2
shrx $a_ptr, $acc3, $t4
# reduction step 4
add $t0, $acc0
adc $t4, $acc1
mulx $acc3, $t0, $acc3
adc $t0, $acc2
adc \$0, $acc3
xor $t3, $t3
add $acc0, $acc4 # accumulate upper half
mov .Lpoly+8*1(%rip), $a_ptr
adc $acc1, $acc5
mov $acc4, $acc0
adc $acc2, $acc6
adc $acc3, $acc7
mov $acc5, $acc1
adc \$0, $t3
sub \$-1, $acc4 # .Lpoly[0]
mov $acc6, $acc2
sbb $a_ptr, $acc5 # .Lpoly[1]
sbb \$0, $acc6 # .Lpoly[2]
mov $acc7, $acc3
sbb $t1, $acc7 # .Lpoly[3]
sbb \$0, $t3
cmovc $acc0, $acc4
cmovc $acc1, $acc5
mov $acc4, 8*0($r_ptr)
cmovc $acc2, $acc6
mov $acc5, 8*1($r_ptr)
cmovc $acc3, $acc7
mov $acc6, 8*2($r_ptr)
mov $acc7, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_sqr_montx,.-__ecp_nistz256_sqr_montx
___
}
}
{
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($ONE,$INDEX,$Ra,$Rb,$Rc,$Rd,$Re,$Rf)=map("%xmm$_",(0..7));
my ($M0,$T0a,$T0b,$T0c,$T0d,$T0e,$T0f,$TMP0)=map("%xmm$_",(8..15));
my ($M1,$T2a,$T2b,$TMP2,$M2,$T2a,$T2b,$TMP2)=map("%xmm$_",(8..15));
$code.=<<___;
################################################################################
# void ecp_nistz256_select_w5(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w5
.type ecp_nistz256_select_w5,\@abi-omnipotent
.align 32
ecp_nistz256_select_w5:
.cfi_startproc
___
$code.=<<___ if ($avx>1);
leaq OPENSSL_ia32cap_P(%rip), %rax
mov 8(%rax), %rax
test \$`1<<5`, %eax
jnz .Lavx2_select_w5
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_select_w5:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax)
___
$code.=<<___;
movdqa .LOne(%rip), $ONE
movd $index, $INDEX
pxor $Ra, $Ra
pxor $Rb, $Rb
pxor $Rc, $Rc
pxor $Rd, $Rd
pxor $Re, $Re
pxor $Rf, $Rf
movdqa $ONE, $M0
pshufd \$0, $INDEX, $INDEX
mov \$16, %rax
.Lselect_loop_sse_w5:
movdqa $M0, $TMP0
paddd $ONE, $M0
pcmpeqd $INDEX, $TMP0
movdqa 16*0($in_t), $T0a
movdqa 16*1($in_t), $T0b
movdqa 16*2($in_t), $T0c
movdqa 16*3($in_t), $T0d
movdqa 16*4($in_t), $T0e
movdqa 16*5($in_t), $T0f
lea 16*6($in_t), $in_t
pand $TMP0, $T0a
pand $TMP0, $T0b
por $T0a, $Ra
pand $TMP0, $T0c
por $T0b, $Rb
pand $TMP0, $T0d
por $T0c, $Rc
pand $TMP0, $T0e
por $T0d, $Rd
pand $TMP0, $T0f
por $T0e, $Re
por $T0f, $Rf
dec %rax
jnz .Lselect_loop_sse_w5
movdqu $Ra, 16*0($val)
movdqu $Rb, 16*1($val)
movdqu $Rc, 16*2($val)
movdqu $Rd, 16*3($val)
movdqu $Re, 16*4($val)
movdqu $Rf, 16*5($val)
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
___
$code.=<<___;
ret
.cfi_endproc
.LSEH_end_ecp_nistz256_select_w5:
.size ecp_nistz256_select_w5,.-ecp_nistz256_select_w5
################################################################################
# void ecp_nistz256_select_w7(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_select_w7
.type ecp_nistz256_select_w7,\@abi-omnipotent
.align 32
ecp_nistz256_select_w7:
.cfi_startproc
___
$code.=<<___ if ($avx>1);
leaq OPENSSL_ia32cap_P(%rip), %rax
mov 8(%rax), %rax
test \$`1<<5`, %eax
jnz .Lavx2_select_w7
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_select_w7:
.byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax), %rsp
.byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6, -0x20(%rax)
.byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7, -0x10(%rax)
.byte 0x44,0x0f,0x29,0x00 #movaps %xmm8, 0(%rax)
.byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9, 0x10(%rax)
.byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10, 0x20(%rax)
.byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11, 0x30(%rax)
.byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12, 0x40(%rax)
.byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13, 0x50(%rax)
.byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14, 0x60(%rax)
.byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15, 0x70(%rax)
___
$code.=<<___;
movdqa .LOne(%rip), $M0
movd $index, $INDEX
pxor $Ra, $Ra
pxor $Rb, $Rb
pxor $Rc, $Rc
pxor $Rd, $Rd
movdqa $M0, $ONE
pshufd \$0, $INDEX, $INDEX
mov \$64, %rax
.Lselect_loop_sse_w7:
movdqa $M0, $TMP0
paddd $ONE, $M0
movdqa 16*0($in_t), $T0a
movdqa 16*1($in_t), $T0b
pcmpeqd $INDEX, $TMP0
movdqa 16*2($in_t), $T0c
movdqa 16*3($in_t), $T0d
lea 16*4($in_t), $in_t
pand $TMP0, $T0a
pand $TMP0, $T0b
por $T0a, $Ra
pand $TMP0, $T0c
por $T0b, $Rb
pand $TMP0, $T0d
por $T0c, $Rc
prefetcht0 255($in_t)
por $T0d, $Rd
dec %rax
jnz .Lselect_loop_sse_w7
movdqu $Ra, 16*0($val)
movdqu $Rb, 16*1($val)
movdqu $Rc, 16*2($val)
movdqu $Rd, 16*3($val)
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea 0xa8(%rsp), %rsp
___
$code.=<<___;
ret
.cfi_endproc
.LSEH_end_ecp_nistz256_select_w7:
.size ecp_nistz256_select_w7,.-ecp_nistz256_select_w7
___
}
if ($avx>1) {
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($TWO,$INDEX,$Ra,$Rb,$Rc)=map("%ymm$_",(0..4));
my ($M0,$T0a,$T0b,$T0c,$TMP0)=map("%ymm$_",(5..9));
my ($M1,$T1a,$T1b,$T1c,$TMP1)=map("%ymm$_",(10..14));
$code.=<<___;
################################################################################
# void ecp_nistz256_avx2_select_w5(uint64_t *val, uint64_t *in_t, int index);
.type ecp_nistz256_avx2_select_w5,\@abi-omnipotent
.align 32
ecp_nistz256_avx2_select_w5:
.cfi_startproc
.Lavx2_select_w5:
vzeroupper
___
$code.=<<___ if ($win64);
lea -0x88(%rsp), %rax
mov %rsp,%r11
.LSEH_begin_ecp_nistz256_avx2_select_w5:
.byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax), %rsp
.byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6, -0x20(%rax)
.byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7, -0x10(%rax)
.byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8, 8(%rax)
.byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9, 0x10(%rax)
.byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10, 0x20(%rax)
.byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11, 0x30(%rax)
.byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12, 0x40(%rax)
.byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13, 0x50(%rax)
.byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14, 0x60(%rax)
.byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15, 0x70(%rax)
___
$code.=<<___;
vmovdqa .LTwo(%rip), $TWO
vpxor $Ra, $Ra, $Ra
vpxor $Rb, $Rb, $Rb
vpxor $Rc, $Rc, $Rc
vmovdqa .LOne(%rip), $M0
vmovdqa .LTwo(%rip), $M1
vmovd $index, %xmm1
vpermd $INDEX, $Ra, $INDEX
mov \$8, %rax
.Lselect_loop_avx2_w5:
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vmovdqa 32*2($in_t), $T0c
vmovdqa 32*3($in_t), $T1a
vmovdqa 32*4($in_t), $T1b
vmovdqa 32*5($in_t), $T1c
vpcmpeqd $INDEX, $M0, $TMP0
vpcmpeqd $INDEX, $M1, $TMP1
vpaddd $TWO, $M0, $M0
vpaddd $TWO, $M1, $M1
lea 32*6($in_t), $in_t
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpand $TMP0, $T0c, $T0c
vpand $TMP1, $T1a, $T1a
vpand $TMP1, $T1b, $T1b
vpand $TMP1, $T1c, $T1c
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vpxor $T0c, $Rc, $Rc
vpxor $T1a, $Ra, $Ra
vpxor $T1b, $Rb, $Rb
vpxor $T1c, $Rc, $Rc
dec %rax
jnz .Lselect_loop_avx2_w5
vmovdqu $Ra, 32*0($val)
vmovdqu $Rb, 32*1($val)
vmovdqu $Rc, 32*2($val)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea (%r11), %rsp
___
$code.=<<___;
ret
.cfi_endproc
.LSEH_end_ecp_nistz256_avx2_select_w5:
.size ecp_nistz256_avx2_select_w5,.-ecp_nistz256_avx2_select_w5
___
}
if ($avx>1) {
my ($val,$in_t,$index)=$win64?("%rcx","%rdx","%r8d"):("%rdi","%rsi","%edx");
my ($THREE,$INDEX,$Ra,$Rb)=map("%ymm$_",(0..3));
my ($M0,$T0a,$T0b,$TMP0)=map("%ymm$_",(4..7));
my ($M1,$T1a,$T1b,$TMP1)=map("%ymm$_",(8..11));
my ($M2,$T2a,$T2b,$TMP2)=map("%ymm$_",(12..15));
$code.=<<___;
################################################################################
# void ecp_nistz256_avx2_select_w7(uint64_t *val, uint64_t *in_t, int index);
.globl ecp_nistz256_avx2_select_w7
.type ecp_nistz256_avx2_select_w7,\@abi-omnipotent
.align 32
ecp_nistz256_avx2_select_w7:
.cfi_startproc
.Lavx2_select_w7:
vzeroupper
___
$code.=<<___ if ($win64);
mov %rsp,%r11
lea -0x88(%rsp), %rax
.LSEH_begin_ecp_nistz256_avx2_select_w7:
.byte 0x48,0x8d,0x60,0xe0 # lea -0x20(%rax), %rsp
.byte 0xc5,0xf8,0x29,0x70,0xe0 # vmovaps %xmm6, -0x20(%rax)
.byte 0xc5,0xf8,0x29,0x78,0xf0 # vmovaps %xmm7, -0x10(%rax)
.byte 0xc5,0x78,0x29,0x40,0x00 # vmovaps %xmm8, 8(%rax)
.byte 0xc5,0x78,0x29,0x48,0x10 # vmovaps %xmm9, 0x10(%rax)
.byte 0xc5,0x78,0x29,0x50,0x20 # vmovaps %xmm10, 0x20(%rax)
.byte 0xc5,0x78,0x29,0x58,0x30 # vmovaps %xmm11, 0x30(%rax)
.byte 0xc5,0x78,0x29,0x60,0x40 # vmovaps %xmm12, 0x40(%rax)
.byte 0xc5,0x78,0x29,0x68,0x50 # vmovaps %xmm13, 0x50(%rax)
.byte 0xc5,0x78,0x29,0x70,0x60 # vmovaps %xmm14, 0x60(%rax)
.byte 0xc5,0x78,0x29,0x78,0x70 # vmovaps %xmm15, 0x70(%rax)
___
$code.=<<___;
vmovdqa .LThree(%rip), $THREE
vpxor $Ra, $Ra, $Ra
vpxor $Rb, $Rb, $Rb
vmovdqa .LOne(%rip), $M0
vmovdqa .LTwo(%rip), $M1
vmovdqa .LThree(%rip), $M2
vmovd $index, %xmm1
vpermd $INDEX, $Ra, $INDEX
# Skip index = 0, because it is implicitly the point at infinity
mov \$21, %rax
.Lselect_loop_avx2_w7:
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vmovdqa 32*2($in_t), $T1a
vmovdqa 32*3($in_t), $T1b
vmovdqa 32*4($in_t), $T2a
vmovdqa 32*5($in_t), $T2b
vpcmpeqd $INDEX, $M0, $TMP0
vpcmpeqd $INDEX, $M1, $TMP1
vpcmpeqd $INDEX, $M2, $TMP2
vpaddd $THREE, $M0, $M0
vpaddd $THREE, $M1, $M1
vpaddd $THREE, $M2, $M2
lea 32*6($in_t), $in_t
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpand $TMP1, $T1a, $T1a
vpand $TMP1, $T1b, $T1b
vpand $TMP2, $T2a, $T2a
vpand $TMP2, $T2b, $T2b
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vpxor $T1a, $Ra, $Ra
vpxor $T1b, $Rb, $Rb
vpxor $T2a, $Ra, $Ra
vpxor $T2b, $Rb, $Rb
dec %rax
jnz .Lselect_loop_avx2_w7
vmovdqa 32*0($in_t), $T0a
vmovdqa 32*1($in_t), $T0b
vpcmpeqd $INDEX, $M0, $TMP0
vpand $TMP0, $T0a, $T0a
vpand $TMP0, $T0b, $T0b
vpxor $T0a, $Ra, $Ra
vpxor $T0b, $Rb, $Rb
vmovdqu $Ra, 32*0($val)
vmovdqu $Rb, 32*1($val)
vzeroupper
___
$code.=<<___ if ($win64);
movaps (%rsp), %xmm6
movaps 0x10(%rsp), %xmm7
movaps 0x20(%rsp), %xmm8
movaps 0x30(%rsp), %xmm9
movaps 0x40(%rsp), %xmm10
movaps 0x50(%rsp), %xmm11
movaps 0x60(%rsp), %xmm12
movaps 0x70(%rsp), %xmm13
movaps 0x80(%rsp), %xmm14
movaps 0x90(%rsp), %xmm15
lea (%r11), %rsp
___
$code.=<<___;
ret
.cfi_endproc
.LSEH_end_ecp_nistz256_avx2_select_w7:
.size ecp_nistz256_avx2_select_w7,.-ecp_nistz256_avx2_select_w7
___
} else {
$code.=<<___;
.globl ecp_nistz256_avx2_select_w7
.type ecp_nistz256_avx2_select_w7,\@function,3
.align 32
ecp_nistz256_avx2_select_w7:
.byte 0x0f,0x0b # ud2
ret
.size ecp_nistz256_avx2_select_w7,.-ecp_nistz256_avx2_select_w7
___
}
{{{
########################################################################
# This block implements higher level point_double, point_add and
# point_add_affine. The key to performance in this case is to allow
# out-of-order execution logic to overlap computations from next step
# with tail processing from current step. By using tailored calling
# sequence we minimize inter-step overhead to give processor better
# shot at overlapping operations...
#
# You will notice that input data is copied to stack. Trouble is that
# there are no registers to spare for holding original pointers and
# reloading them, pointers, would create undesired dependencies on
# effective addresses calculation paths. In other words it's too done
# to favour out-of-order execution logic.
# <appro@openssl.org>
my ($r_ptr,$a_ptr,$b_org,$b_ptr)=("%rdi","%rsi","%rdx","%rbx");
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("%r$_",(8..15));
my ($t0,$t1,$t2,$t3,$t4)=("%rax","%rbp","%rcx",$acc4,$acc4);
my ($poly1,$poly3)=($acc6,$acc7);
sub load_for_mul () {
my ($a,$b,$src0) = @_;
my $bias = $src0 eq "%rax" ? 0 : -128;
" mov $b, $src0
lea $b, $b_ptr
mov 8*0+$a, $acc1
mov 8*1+$a, $acc2
lea $bias+$a, $a_ptr
mov 8*2+$a, $acc3
mov 8*3+$a, $acc4"
}
sub load_for_sqr () {
my ($a,$src0) = @_;
my $bias = $src0 eq "%rax" ? 0 : -128;
" mov 8*0+$a, $src0
mov 8*1+$a, $acc6
lea $bias+$a, $a_ptr
mov 8*2+$a, $acc7
mov 8*3+$a, $acc0"
}
{
########################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
$code.=<<___;
.type __ecp_nistz256_add_toq,\@abi-omnipotent
.align 32
__ecp_nistz256_add_toq:
.cfi_startproc
xor $t4,$t4
add 8*0($b_ptr), $a0
adc 8*1($b_ptr), $a1
mov $a0, $t0
adc 8*2($b_ptr), $a2
adc 8*3($b_ptr), $a3
mov $a1, $t1
adc \$0, $t4
sub \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
sbb \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_add_toq,.-__ecp_nistz256_add_toq
.type __ecp_nistz256_sub_fromq,\@abi-omnipotent
.align 32
__ecp_nistz256_sub_fromq:
.cfi_startproc
sub 8*0($b_ptr), $a0
sbb 8*1($b_ptr), $a1
mov $a0, $t0
sbb 8*2($b_ptr), $a2
sbb 8*3($b_ptr), $a3
mov $a1, $t1
sbb $t4, $t4
add \$-1, $a0
mov $a2, $t2
adc $poly1, $a1
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
test $t4, $t4
cmovz $t0, $a0
cmovz $t1, $a1
mov $a0, 8*0($r_ptr)
cmovz $t2, $a2
mov $a1, 8*1($r_ptr)
cmovz $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_sub_fromq,.-__ecp_nistz256_sub_fromq
.type __ecp_nistz256_subq,\@abi-omnipotent
.align 32
__ecp_nistz256_subq:
.cfi_startproc
sub $a0, $t0
sbb $a1, $t1
mov $t0, $a0
sbb $a2, $t2
sbb $a3, $t3
mov $t1, $a1
sbb $t4, $t4
add \$-1, $t0
mov $t2, $a2
adc $poly1, $t1
adc \$0, $t2
mov $t3, $a3
adc $poly3, $t3
test $t4, $t4
cmovnz $t0, $a0
cmovnz $t1, $a1
cmovnz $t2, $a2
cmovnz $t3, $a3
ret
.cfi_endproc
.size __ecp_nistz256_subq,.-__ecp_nistz256_subq
.type __ecp_nistz256_mul_by_2q,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_by_2q:
.cfi_startproc
xor $t4, $t4
add $a0, $a0 # a0:a3+a0:a3
adc $a1, $a1
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
adc \$0, $t4
sub \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
sbb \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_mul_by_2q,.-__ecp_nistz256_mul_by_2q
___
}
sub gen_double () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($S,$M,$Zsqr,$in_x,$tmp0)=map(32*$_,(0..4));
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_double
.type ecp_nistz256_point_double,\@function,2
.align 32
ecp_nistz256_point_double:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
cmp \$0x80100, %ecx
je .Lpoint_doublex
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_doublex,\@function,2
.align 32
ecp_nistz256_point_doublex:
.cfi_startproc
.Lpoint_doublex:
___
}
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$32*5+8, %rsp
.cfi_adjust_cfa_offset 32*5+8
.Lpoint_double${x}_body:
.Lpoint_double_shortcut$x:
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr.x
mov $a_ptr, $b_ptr # backup copy
movdqu 0x10($a_ptr), %xmm1
mov 0x20+8*0($a_ptr), $acc4 # load in_y in "5-4-0-1" order
mov 0x20+8*1($a_ptr), $acc5
mov 0x20+8*2($a_ptr), $acc0
mov 0x20+8*3($a_ptr), $acc1
mov .Lpoly+8*1(%rip), $poly1
mov .Lpoly+8*3(%rip), $poly3
movdqa %xmm0, $in_x(%rsp)
movdqa %xmm1, $in_x+0x10(%rsp)
lea 0x20($r_ptr), $acc2
lea 0x40($r_ptr), $acc3
movq $r_ptr, %xmm0
movq $acc2, %xmm1
movq $acc3, %xmm2
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(S, in_y);
mov 0x40+8*0($a_ptr), $src0
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
lea 0x40-$bias($a_ptr), $a_ptr
lea $Zsqr(%rsp), $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Zsqr, in_z);
`&load_for_sqr("$S(%rsp)", "$src0")`
lea $S(%rsp), $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(S, S);
mov 0x20($b_ptr), $src0 # $b_ptr is still valid
mov 0x40+8*0($b_ptr), $acc1
mov 0x40+8*1($b_ptr), $acc2
mov 0x40+8*2($b_ptr), $acc3
mov 0x40+8*3($b_ptr), $acc4
lea 0x40-$bias($b_ptr), $a_ptr
lea 0x20($b_ptr), $b_ptr
movq %xmm2, $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, in_z, in_y);
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(res_z, res_z);
mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order
mov $in_x+8*1(%rsp), $acc5
lea $Zsqr(%rsp), $b_ptr
mov $in_x+8*2(%rsp), $acc0
mov $in_x+8*3(%rsp), $acc1
lea $M(%rsp), $r_ptr
call __ecp_nistz256_add_to$x # p256_add(M, in_x, Zsqr);
mov $in_x+8*0(%rsp), $acc4 # "5-4-0-1" order
mov $in_x+8*1(%rsp), $acc5
lea $Zsqr(%rsp), $b_ptr
mov $in_x+8*2(%rsp), $acc0
mov $in_x+8*3(%rsp), $acc1
lea $Zsqr(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(Zsqr, in_x, Zsqr);
`&load_for_sqr("$S(%rsp)", "$src0")`
movq %xmm1, $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_y, S);
___
{
######## ecp_nistz256_div_by_2(res_y, res_y); ##########################
# operate in 4-5-6-7 "name space" that matches squaring output
#
my ($poly1,$poly3)=($a_ptr,$t1);
my ($a0,$a1,$a2,$a3,$t3,$t4,$t1)=($acc4,$acc5,$acc6,$acc7,$acc0,$acc1,$acc2);
$code.=<<___;
xor $t4, $t4
mov $a0, $t0
add \$-1, $a0
mov $a1, $t1
adc $poly1, $a1
mov $a2, $t2
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
adc \$0, $t4
xor $a_ptr, $a_ptr # borrow $a_ptr
test \$1, $t0
cmovz $t0, $a0
cmovz $t1, $a1
cmovz $t2, $a2
cmovz $t3, $a3
cmovz $a_ptr, $t4
mov $a1, $t0 # a0:a3>>1
shr \$1, $a0
shl \$63, $t0
mov $a2, $t1
shr \$1, $a1
or $t0, $a0
shl \$63, $t1
mov $a3, $t2
shr \$1, $a2
or $t1, $a1
shl \$63, $t2
mov $a0, 8*0($r_ptr)
shr \$1, $a3
mov $a1, 8*1($r_ptr)
shl \$63, $t4
or $t2, $a2
or $t4, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$M(%rsp)", "$Zsqr(%rsp)", "$src0")`
lea $M(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(M, M, Zsqr);
lea $tmp0(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x
lea $M(%rsp), $b_ptr
lea $M(%rsp), $r_ptr
call __ecp_nistz256_add_to$x # p256_mul_by_3(M, M);
`&load_for_mul("$S(%rsp)", "$in_x(%rsp)", "$src0")`
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, in_x);
lea $tmp0(%rsp), $r_ptr
call __ecp_nistz256_mul_by_2$x # p256_mul_by_2(tmp0, S);
`&load_for_sqr("$M(%rsp)", "$src0")`
movq %xmm0, $r_ptr
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(res_x, M);
lea $tmp0(%rsp), $b_ptr
mov $acc6, $acc0 # harmonize sqr output and sub input
mov $acc7, $acc1
mov $a_ptr, $poly1
mov $t1, $poly3
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, tmp0);
mov $S+8*0(%rsp), $t0
mov $S+8*1(%rsp), $t1
mov $S+8*2(%rsp), $t2
mov $S+8*3(%rsp), $acc2 # "4-5-0-1" order
lea $S(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(S, S, res_x);
mov $M(%rsp), $src0
lea $M(%rsp), $b_ptr
mov $acc4, $acc6 # harmonize sub output and mul input
xor %ecx, %ecx
mov $acc4, $S+8*0(%rsp) # have to save:-(
mov $acc5, $acc2
mov $acc5, $S+8*1(%rsp)
cmovz $acc0, $acc3
mov $acc0, $S+8*2(%rsp)
lea $S-$bias(%rsp), $a_ptr
cmovz $acc1, $acc4
mov $acc1, $S+8*3(%rsp)
mov $acc6, $acc1
lea $S(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S, S, M);
movq %xmm1, $b_ptr
movq %xmm1, $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, S, res_y);
lea 32*5+56(%rsp), %rsi
.cfi_def_cfa %rsi,8
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbx
.cfi_restore %rbx
mov -8(%rsi),%rbp
.cfi_restore %rbp
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lpoint_double${x}_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_point_double$sfx,.-ecp_nistz256_point_double$sfx
___
}
&gen_double("q");
sub gen_add () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2,
$res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,$in2_z)=map(32*$_,(0..17));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_add
.type ecp_nistz256_point_add,\@function,3
.align 32
ecp_nistz256_point_add:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
cmp \$0x80100, %ecx
je .Lpoint_addx
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_addx,\@function,3
.align 32
ecp_nistz256_point_addx:
.cfi_startproc
.Lpoint_addx:
___
}
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$32*18+8, %rsp
.cfi_adjust_cfa_offset 32*18+8
.Lpoint_add${x}_body:
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
movdqu 0x30($a_ptr), %xmm3
movdqu 0x40($a_ptr), %xmm4
movdqu 0x50($a_ptr), %xmm5
mov $a_ptr, $b_ptr # reassign
mov $b_org, $a_ptr # reassign
movdqa %xmm0, $in1_x(%rsp)
movdqa %xmm1, $in1_x+0x10(%rsp)
movdqa %xmm2, $in1_y(%rsp)
movdqa %xmm3, $in1_y+0x10(%rsp)
movdqa %xmm4, $in1_z(%rsp)
movdqa %xmm5, $in1_z+0x10(%rsp)
por %xmm4, %xmm5
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$b_ptr
pshufd \$0xb1, %xmm5, %xmm3
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
por %xmm3, %xmm5
movdqu 0x30($a_ptr), %xmm3
mov 0x40+8*0($a_ptr), $src0 # load original in2_z
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
movdqa %xmm0, $in2_x(%rsp)
pshufd \$0x1e, %xmm5, %xmm4
movdqa %xmm1, $in2_x+0x10(%rsp)
movdqu 0x40($a_ptr),%xmm0 # in2_z again
movdqu 0x50($a_ptr),%xmm1
movdqa %xmm2, $in2_y(%rsp)
movdqa %xmm3, $in2_y+0x10(%rsp)
por %xmm4, %xmm5
pxor %xmm4, %xmm4
por %xmm0, %xmm1
movq $r_ptr, %xmm0 # save $r_ptr
lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid
mov $src0, $in2_z+8*0(%rsp) # make in2_z copy
mov $acc6, $in2_z+8*1(%rsp)
mov $acc7, $in2_z+8*2(%rsp)
mov $acc0, $in2_z+8*3(%rsp)
lea $Z2sqr(%rsp), $r_ptr # Z2^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z2sqr, in2_z);
pcmpeqd %xmm4, %xmm5
pshufd \$0xb1, %xmm1, %xmm4
por %xmm1, %xmm4
pshufd \$0, %xmm5, %xmm5 # in1infty
pshufd \$0x1e, %xmm4, %xmm3
por %xmm3, %xmm4
pxor %xmm3, %xmm3
pcmpeqd %xmm3, %xmm4
pshufd \$0, %xmm4, %xmm4 # in2infty
mov 0x40+8*0($b_ptr), $src0 # load original in1_z
mov 0x40+8*1($b_ptr), $acc6
mov 0x40+8*2($b_ptr), $acc7
mov 0x40+8*3($b_ptr), $acc0
movq $b_ptr, %xmm1
lea 0x40-$bias($b_ptr), $a_ptr
lea $Z1sqr(%rsp), $r_ptr # Z1^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z);
`&load_for_mul("$Z2sqr(%rsp)", "$in2_z(%rsp)", "$src0")`
lea $S1(%rsp), $r_ptr # S1 = Z2^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, Z2sqr, in2_z);
`&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z);
`&load_for_mul("$S1(%rsp)", "$in1_y(%rsp)", "$src0")`
lea $S1(%rsp), $r_ptr # S1 = Y1*Z2^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S1, S1, in1_y);
`&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y);
lea $S1(%rsp), $b_ptr
lea $R(%rsp), $r_ptr # R = S2 - S1
call __ecp_nistz256_sub_from$x # p256_sub(R, S2, S1);
or $acc5, $acc4 # see if result is zero
movdqa %xmm4, %xmm2
or $acc0, $acc4
or $acc1, $acc4
por %xmm5, %xmm2 # in1infty || in2infty
movq $acc4, %xmm3
`&load_for_mul("$Z2sqr(%rsp)", "$in1_x(%rsp)", "$src0")`
lea $U1(%rsp), $r_ptr # U1 = X1*Z2^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U1, in1_x, Z2sqr);
`&load_for_mul("$Z1sqr(%rsp)", "$in2_x(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in2_x, Z1sqr);
lea $U1(%rsp), $b_ptr
lea $H(%rsp), $r_ptr # H = U2 - U1
call __ecp_nistz256_sub_from$x # p256_sub(H, U2, U1);
or $acc5, $acc4 # see if result is zero
or $acc0, $acc4
or $acc1, $acc4 # !is_equal(U1, U2)
movq %xmm2, $acc0
movq %xmm3, $acc1
or $acc0, $acc4
.byte 0x3e # predict taken
jnz .Ladd_proceed$x # !is_equal(U1, U2) || in1infty || in2infty
# We now know A = B or A = -B and neither is infinity. Compare the
# y-coordinates via S1 and S2.
test $acc1, $acc1
jz .Ladd_double$x # is_equal(S1, S2)
# A = -B, so the result is infinity.
#
# TODO(davidben): Does .Ladd_proceed handle this case? It seems to, in
# which case we should eliminate this special-case and simplify the
# timing analysis.
movq %xmm0, $r_ptr # restore $r_ptr
pxor %xmm0, %xmm0
movdqu %xmm0, 0x00($r_ptr)
movdqu %xmm0, 0x10($r_ptr)
movdqu %xmm0, 0x20($r_ptr)
movdqu %xmm0, 0x30($r_ptr)
movdqu %xmm0, 0x40($r_ptr)
movdqu %xmm0, 0x50($r_ptr)
jmp .Ladd_done$x
.align 32
.Ladd_double$x:
movq %xmm1, $a_ptr # restore $a_ptr
movq %xmm0, $r_ptr # restore $r_ptr
add \$`32*(18-5)`, %rsp # difference in frame sizes
.cfi_adjust_cfa_offset `-32*(18-5)`
jmp .Lpoint_double_shortcut$x
.cfi_adjust_cfa_offset `32*(18-5)`
.align 32
.Ladd_proceed$x:
`&load_for_sqr("$R(%rsp)", "$src0")`
lea $Rsqr(%rsp), $r_ptr # R^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R);
`&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z);
`&load_for_sqr("$H(%rsp)", "$src0")`
lea $Hsqr(%rsp), $r_ptr # H^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H);
`&load_for_mul("$res_z(%rsp)", "$in2_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, res_z, in2_z);
`&load_for_mul("$Hsqr(%rsp)", "$H(%rsp)", "$src0")`
lea $Hcub(%rsp), $r_ptr # H^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H);
`&load_for_mul("$Hsqr(%rsp)", "$U1(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U1*H^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, U1, Hsqr);
___
{
#######################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
my ($poly1, $poly3)=($acc6,$acc7);
$code.=<<___;
#lea $U2(%rsp), $a_ptr
#lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2
#call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2);
xor $t4, $t4
add $acc0, $acc0 # a0:a3+a0:a3
lea $Rsqr(%rsp), $a_ptr
adc $acc1, $acc1
mov $acc0, $t0
adc $acc2, $acc2
adc $acc3, $acc3
mov $acc1, $t1
adc \$0, $t4
sub \$-1, $acc0
mov $acc2, $t2
sbb $poly1, $acc1
sbb \$0, $acc2
mov $acc3, $t3
sbb $poly3, $acc3
sbb \$0, $t4
cmovc $t0, $acc0
mov 8*0($a_ptr), $t0
cmovc $t1, $acc1
mov 8*1($a_ptr), $t1
cmovc $t2, $acc2
mov 8*2($a_ptr), $t2
cmovc $t3, $acc3
mov 8*3($a_ptr), $t3
call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr);
lea $Hcub(%rsp), $b_ptr
lea $res_x(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub);
mov $U2+8*0(%rsp), $t0
mov $U2+8*1(%rsp), $t1
mov $U2+8*2(%rsp), $t2
mov $U2+8*3(%rsp), $t3
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(res_y, U2, res_x);
mov $acc0, 8*0($r_ptr) # save the result, as
mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't
mov $acc2, 8*2($r_ptr)
mov $acc3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$S1(%rsp)", "$Hcub(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S1, Hcub);
`&load_for_mul("$R(%rsp)", "$res_y(%rsp)", "$src0")`
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_y, R, res_y);
lea $S2(%rsp), $b_ptr
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, res_y, S2);
movq %xmm0, $r_ptr # restore $r_ptr
movdqa %xmm5, %xmm0 # copy_conditional(res_z, in2_z, in1infty);
movdqa %xmm5, %xmm1
pandn $res_z(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_z+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_z(%rsp), %xmm2
pand $in2_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_z(%rsp), %xmm2
pand $in1_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x40($r_ptr)
movdqu %xmm3, 0x50($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty);
movdqa %xmm5, %xmm1
pandn $res_x(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_x+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_x(%rsp), %xmm2
pand $in2_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_x(%rsp), %xmm2
pand $in1_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x00($r_ptr)
movdqu %xmm3, 0x10($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty);
movdqa %xmm5, %xmm1
pandn $res_y(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_y+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_y(%rsp), %xmm2
pand $in2_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_y(%rsp), %xmm2
pand $in1_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x20($r_ptr)
movdqu %xmm3, 0x30($r_ptr)
.Ladd_done$x:
lea 32*18+56(%rsp), %rsi
.cfi_def_cfa %rsi,8
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbx
.cfi_restore %rbx
mov -8(%rsi),%rbp
.cfi_restore %rbp
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Lpoint_add${x}_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_point_add$sfx,.-ecp_nistz256_point_add$sfx
___
}
&gen_add("q");
sub gen_add_affine () {
my $x = shift;
my ($src0,$sfx,$bias);
my ($U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr,
$res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y)=map(32*$_,(0..14));
my $Z1sqr = $S2;
if ($x ne "x") {
$src0 = "%rax";
$sfx = "";
$bias = 0;
$code.=<<___;
.globl ecp_nistz256_point_add_affine
.type ecp_nistz256_point_add_affine,\@function,3
.align 32
ecp_nistz256_point_add_affine:
.cfi_startproc
___
$code.=<<___ if ($addx);
leaq OPENSSL_ia32cap_P(%rip), %rcx
mov 8(%rcx), %rcx
and \$0x80100, %ecx
cmp \$0x80100, %ecx
je .Lpoint_add_affinex
___
} else {
$src0 = "%rdx";
$sfx = "x";
$bias = 128;
$code.=<<___;
.type ecp_nistz256_point_add_affinex,\@function,3
.align 32
ecp_nistz256_point_add_affinex:
.cfi_startproc
.Lpoint_add_affinex:
___
}
$code.=<<___;
push %rbp
.cfi_push %rbp
push %rbx
.cfi_push %rbx
push %r12
.cfi_push %r12
push %r13
.cfi_push %r13
push %r14
.cfi_push %r14
push %r15
.cfi_push %r15
sub \$32*15+8, %rsp
.cfi_adjust_cfa_offset 32*15+8
.Ladd_affine${x}_body:
movdqu 0x00($a_ptr), %xmm0 # copy *(P256_POINT *)$a_ptr
mov $b_org, $b_ptr # reassign
movdqu 0x10($a_ptr), %xmm1
movdqu 0x20($a_ptr), %xmm2
movdqu 0x30($a_ptr), %xmm3
movdqu 0x40($a_ptr), %xmm4
movdqu 0x50($a_ptr), %xmm5
mov 0x40+8*0($a_ptr), $src0 # load original in1_z
mov 0x40+8*1($a_ptr), $acc6
mov 0x40+8*2($a_ptr), $acc7
mov 0x40+8*3($a_ptr), $acc0
movdqa %xmm0, $in1_x(%rsp)
movdqa %xmm1, $in1_x+0x10(%rsp)
movdqa %xmm2, $in1_y(%rsp)
movdqa %xmm3, $in1_y+0x10(%rsp)
movdqa %xmm4, $in1_z(%rsp)
movdqa %xmm5, $in1_z+0x10(%rsp)
por %xmm4, %xmm5
movdqu 0x00($b_ptr), %xmm0 # copy *(P256_POINT_AFFINE *)$b_ptr
pshufd \$0xb1, %xmm5, %xmm3
movdqu 0x10($b_ptr), %xmm1
movdqu 0x20($b_ptr), %xmm2
por %xmm3, %xmm5
movdqu 0x30($b_ptr), %xmm3
movdqa %xmm0, $in2_x(%rsp)
pshufd \$0x1e, %xmm5, %xmm4
movdqa %xmm1, $in2_x+0x10(%rsp)
por %xmm0, %xmm1
movq $r_ptr, %xmm0 # save $r_ptr
movdqa %xmm2, $in2_y(%rsp)
movdqa %xmm3, $in2_y+0x10(%rsp)
por %xmm2, %xmm3
por %xmm4, %xmm5
pxor %xmm4, %xmm4
por %xmm1, %xmm3
lea 0x40-$bias($a_ptr), $a_ptr # $a_ptr is still valid
lea $Z1sqr(%rsp), $r_ptr # Z1^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Z1sqr, in1_z);
pcmpeqd %xmm4, %xmm5
pshufd \$0xb1, %xmm3, %xmm4
mov 0x00($b_ptr), $src0 # $b_ptr is still valid
#lea 0x00($b_ptr), $b_ptr
mov $acc4, $acc1 # harmonize sqr output and mul input
por %xmm3, %xmm4
pshufd \$0, %xmm5, %xmm5 # in1infty
pshufd \$0x1e, %xmm4, %xmm3
mov $acc5, $acc2
por %xmm3, %xmm4
pxor %xmm3, %xmm3
mov $acc6, $acc3
pcmpeqd %xmm3, %xmm4
pshufd \$0, %xmm4, %xmm4 # in2infty
lea $Z1sqr-$bias(%rsp), $a_ptr
mov $acc7, $acc4
lea $U2(%rsp), $r_ptr # U2 = X2*Z1^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, Z1sqr, in2_x);
lea $in1_x(%rsp), $b_ptr
lea $H(%rsp), $r_ptr # H = U2 - U1
call __ecp_nistz256_sub_from$x # p256_sub(H, U2, in1_x);
`&load_for_mul("$Z1sqr(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Z1sqr, in1_z);
`&load_for_mul("$H(%rsp)", "$in1_z(%rsp)", "$src0")`
lea $res_z(%rsp), $r_ptr # Z3 = H*Z1*Z2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(res_z, H, in1_z);
`&load_for_mul("$S2(%rsp)", "$in2_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr # S2 = Y2*Z1^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, S2, in2_y);
lea $in1_y(%rsp), $b_ptr
lea $R(%rsp), $r_ptr # R = S2 - S1
call __ecp_nistz256_sub_from$x # p256_sub(R, S2, in1_y);
`&load_for_sqr("$H(%rsp)", "$src0")`
lea $Hsqr(%rsp), $r_ptr # H^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Hsqr, H);
`&load_for_sqr("$R(%rsp)", "$src0")`
lea $Rsqr(%rsp), $r_ptr # R^2
call __ecp_nistz256_sqr_mont$x # p256_sqr_mont(Rsqr, R);
`&load_for_mul("$H(%rsp)", "$Hsqr(%rsp)", "$src0")`
lea $Hcub(%rsp), $r_ptr # H^3
call __ecp_nistz256_mul_mont$x # p256_mul_mont(Hcub, Hsqr, H);
`&load_for_mul("$Hsqr(%rsp)", "$in1_x(%rsp)", "$src0")`
lea $U2(%rsp), $r_ptr # U1*H^2
call __ecp_nistz256_mul_mont$x # p256_mul_mont(U2, in1_x, Hsqr);
___
{
#######################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($acc0,$acc1,$acc2,$acc3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
my ($poly1, $poly3)=($acc6,$acc7);
$code.=<<___;
#lea $U2(%rsp), $a_ptr
#lea $Hsqr(%rsp), $r_ptr # 2*U1*H^2
#call __ecp_nistz256_mul_by_2 # ecp_nistz256_mul_by_2(Hsqr, U2);
xor $t4, $t4
add $acc0, $acc0 # a0:a3+a0:a3
lea $Rsqr(%rsp), $a_ptr
adc $acc1, $acc1
mov $acc0, $t0
adc $acc2, $acc2
adc $acc3, $acc3
mov $acc1, $t1
adc \$0, $t4
sub \$-1, $acc0
mov $acc2, $t2
sbb $poly1, $acc1
sbb \$0, $acc2
mov $acc3, $t3
sbb $poly3, $acc3
sbb \$0, $t4
cmovc $t0, $acc0
mov 8*0($a_ptr), $t0
cmovc $t1, $acc1
mov 8*1($a_ptr), $t1
cmovc $t2, $acc2
mov 8*2($a_ptr), $t2
cmovc $t3, $acc3
mov 8*3($a_ptr), $t3
call __ecp_nistz256_sub$x # p256_sub(res_x, Rsqr, Hsqr);
lea $Hcub(%rsp), $b_ptr
lea $res_x(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_x, res_x, Hcub);
mov $U2+8*0(%rsp), $t0
mov $U2+8*1(%rsp), $t1
mov $U2+8*2(%rsp), $t2
mov $U2+8*3(%rsp), $t3
lea $H(%rsp), $r_ptr
call __ecp_nistz256_sub$x # p256_sub(H, U2, res_x);
mov $acc0, 8*0($r_ptr) # save the result, as
mov $acc1, 8*1($r_ptr) # __ecp_nistz256_sub doesn't
mov $acc2, 8*2($r_ptr)
mov $acc3, 8*3($r_ptr)
___
}
$code.=<<___;
`&load_for_mul("$Hcub(%rsp)", "$in1_y(%rsp)", "$src0")`
lea $S2(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(S2, Hcub, in1_y);
`&load_for_mul("$H(%rsp)", "$R(%rsp)", "$src0")`
lea $H(%rsp), $r_ptr
call __ecp_nistz256_mul_mont$x # p256_mul_mont(H, H, R);
lea $S2(%rsp), $b_ptr
lea $res_y(%rsp), $r_ptr
call __ecp_nistz256_sub_from$x # p256_sub(res_y, H, S2);
movq %xmm0, $r_ptr # restore $r_ptr
movdqa %xmm5, %xmm0 # copy_conditional(res_z, ONE, in1infty);
movdqa %xmm5, %xmm1
pandn $res_z(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_z+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand .LONE_mont(%rip), %xmm2
pand .LONE_mont+0x10(%rip), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_z, in1_z, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_z(%rsp), %xmm2
pand $in1_z+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x40($r_ptr)
movdqu %xmm3, 0x50($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_x, in2_x, in1infty);
movdqa %xmm5, %xmm1
pandn $res_x(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_x+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_x(%rsp), %xmm2
pand $in2_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_x, in1_x, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_x(%rsp), %xmm2
pand $in1_x+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x00($r_ptr)
movdqu %xmm3, 0x10($r_ptr)
movdqa %xmm5, %xmm0 # copy_conditional(res_y, in2_y, in1infty);
movdqa %xmm5, %xmm1
pandn $res_y(%rsp), %xmm0
movdqa %xmm5, %xmm2
pandn $res_y+0x10(%rsp), %xmm1
movdqa %xmm5, %xmm3
pand $in2_y(%rsp), %xmm2
pand $in2_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqa %xmm4, %xmm0 # copy_conditional(res_y, in1_y, in2infty);
movdqa %xmm4, %xmm1
pandn %xmm2, %xmm0
movdqa %xmm4, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm4, %xmm3
pand $in1_y(%rsp), %xmm2
pand $in1_y+0x10(%rsp), %xmm3
por %xmm0, %xmm2
por %xmm1, %xmm3
movdqu %xmm2, 0x20($r_ptr)
movdqu %xmm3, 0x30($r_ptr)
lea 32*15+56(%rsp), %rsi
.cfi_def_cfa %rsi,8
mov -48(%rsi),%r15
.cfi_restore %r15
mov -40(%rsi),%r14
.cfi_restore %r14
mov -32(%rsi),%r13
.cfi_restore %r13
mov -24(%rsi),%r12
.cfi_restore %r12
mov -16(%rsi),%rbx
.cfi_restore %rbx
mov -8(%rsi),%rbp
.cfi_restore %rbp
lea (%rsi),%rsp
.cfi_def_cfa_register %rsp
.Ladd_affine${x}_epilogue:
ret
.cfi_endproc
.size ecp_nistz256_point_add_affine$sfx,.-ecp_nistz256_point_add_affine$sfx
___
}
&gen_add_affine("q");
########################################################################
# AD*X magic
#
if ($addx) { {
########################################################################
# operate in 4-5-0-1 "name space" that matches multiplication output
#
my ($a0,$a1,$a2,$a3,$t3,$t4)=($acc4,$acc5,$acc0,$acc1,$acc2,$acc3);
$code.=<<___;
.type __ecp_nistz256_add_tox,\@abi-omnipotent
.align 32
__ecp_nistz256_add_tox:
.cfi_startproc
xor $t4, $t4
adc 8*0($b_ptr), $a0
adc 8*1($b_ptr), $a1
mov $a0, $t0
adc 8*2($b_ptr), $a2
adc 8*3($b_ptr), $a3
mov $a1, $t1
adc \$0, $t4
xor $t3, $t3
sbb \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
sbb \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_add_tox,.-__ecp_nistz256_add_tox
.type __ecp_nistz256_sub_fromx,\@abi-omnipotent
.align 32
__ecp_nistz256_sub_fromx:
.cfi_startproc
xor $t4, $t4
sbb 8*0($b_ptr), $a0
sbb 8*1($b_ptr), $a1
mov $a0, $t0
sbb 8*2($b_ptr), $a2
sbb 8*3($b_ptr), $a3
mov $a1, $t1
sbb \$0, $t4
xor $t3, $t3
adc \$-1, $a0
mov $a2, $t2
adc $poly1, $a1
adc \$0, $a2
mov $a3, $t3
adc $poly3, $a3
bt \$0, $t4
cmovnc $t0, $a0
cmovnc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovnc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovnc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_sub_fromx,.-__ecp_nistz256_sub_fromx
.type __ecp_nistz256_subx,\@abi-omnipotent
.align 32
__ecp_nistz256_subx:
.cfi_startproc
xor $t4, $t4
sbb $a0, $t0
sbb $a1, $t1
mov $t0, $a0
sbb $a2, $t2
sbb $a3, $t3
mov $t1, $a1
sbb \$0, $t4
xor $a3 ,$a3
adc \$-1, $t0
mov $t2, $a2
adc $poly1, $t1
adc \$0, $t2
mov $t3, $a3
adc $poly3, $t3
bt \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
cmovc $t2, $a2
cmovc $t3, $a3
ret
.cfi_endproc
.size __ecp_nistz256_subx,.-__ecp_nistz256_subx
.type __ecp_nistz256_mul_by_2x,\@abi-omnipotent
.align 32
__ecp_nistz256_mul_by_2x:
.cfi_startproc
xor $t4, $t4
adc $a0, $a0 # a0:a3+a0:a3
adc $a1, $a1
mov $a0, $t0
adc $a2, $a2
adc $a3, $a3
mov $a1, $t1
adc \$0, $t4
xor $t3, $t3
sbb \$-1, $a0
mov $a2, $t2
sbb $poly1, $a1
sbb \$0, $a2
mov $a3, $t3
sbb $poly3, $a3
sbb \$0, $t4
cmovc $t0, $a0
cmovc $t1, $a1
mov $a0, 8*0($r_ptr)
cmovc $t2, $a2
mov $a1, 8*1($r_ptr)
cmovc $t3, $a3
mov $a2, 8*2($r_ptr)
mov $a3, 8*3($r_ptr)
ret
.cfi_endproc
.size __ecp_nistz256_mul_by_2x,.-__ecp_nistz256_mul_by_2x
___
}
&gen_double("x");
&gen_add("x");
&gen_add_affine("x");
}
}}}
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type short_handler,\@abi-omnipotent
.align 16
short_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # end of prologue label
cmp %r10,%rbx # context->Rip<end of prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
lea 16(%rax),%rax
mov -8(%rax),%r12
mov -16(%rax),%r13
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
jmp .Lcommon_seh_tail
.size short_handler,.-short_handler
.type full_handler,\@abi-omnipotent
.align 16
full_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
mov 8($disp),%rsi # disp->ImageBase
mov 56($disp),%r11 # disp->HandlerData
mov 0(%r11),%r10d # HandlerData[0]
lea (%rsi,%r10),%r10 # end of prologue label
cmp %r10,%rbx # context->Rip<end of prologue label
jb .Lcommon_seh_tail
mov 152($context),%rax # pull context->Rsp
mov 4(%r11),%r10d # HandlerData[1]
lea (%rsi,%r10),%r10 # epilogue label
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lcommon_seh_tail
mov 8(%r11),%r10d # HandlerData[2]
lea (%rax,%r10),%rax
mov -8(%rax),%rbp
mov -16(%rax),%rbx
mov -24(%rax),%r12
mov -32(%rax),%r13
mov -40(%rax),%r14
mov -48(%rax),%r15
mov %rbx,144($context) # restore context->Rbx
mov %rbp,160($context) # restore context->Rbp
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
mov %r14,232($context) # restore context->R14
mov %r15,240($context) # restore context->R15
.Lcommon_seh_tail:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size full_handler,.-full_handler
.section .pdata
.align 4
.rva .LSEH_begin_ecp_nistz256_neg
.rva .LSEH_end_ecp_nistz256_neg
.rva .LSEH_info_ecp_nistz256_neg
.rva .LSEH_begin_ecp_nistz256_ord_mul_mont
.rva .LSEH_end_ecp_nistz256_ord_mul_mont
.rva .LSEH_info_ecp_nistz256_ord_mul_mont
.rva .LSEH_begin_ecp_nistz256_ord_sqr_mont
.rva .LSEH_end_ecp_nistz256_ord_sqr_mont
.rva .LSEH_info_ecp_nistz256_ord_sqr_mont
___
$code.=<<___ if ($addx);
.rva .LSEH_begin_ecp_nistz256_ord_mul_montx
.rva .LSEH_end_ecp_nistz256_ord_mul_montx
.rva .LSEH_info_ecp_nistz256_ord_mul_montx
.rva .LSEH_begin_ecp_nistz256_ord_sqr_montx
.rva .LSEH_end_ecp_nistz256_ord_sqr_montx
.rva .LSEH_info_ecp_nistz256_ord_sqr_montx
___
$code.=<<___;
.rva .LSEH_begin_ecp_nistz256_mul_mont
.rva .LSEH_end_ecp_nistz256_mul_mont
.rva .LSEH_info_ecp_nistz256_mul_mont
.rva .LSEH_begin_ecp_nistz256_sqr_mont
.rva .LSEH_end_ecp_nistz256_sqr_mont
.rva .LSEH_info_ecp_nistz256_sqr_mont
.rva .LSEH_begin_ecp_nistz256_select_w5
.rva .LSEH_end_ecp_nistz256_select_w5
.rva .LSEH_info_ecp_nistz256_select_wX
.rva .LSEH_begin_ecp_nistz256_select_w7
.rva .LSEH_end_ecp_nistz256_select_w7
.rva .LSEH_info_ecp_nistz256_select_wX
___
$code.=<<___ if ($avx>1);
.rva .LSEH_begin_ecp_nistz256_avx2_select_w5
.rva .LSEH_end_ecp_nistz256_avx2_select_w5
.rva .LSEH_info_ecp_nistz256_avx2_select_wX
.rva .LSEH_begin_ecp_nistz256_avx2_select_w7
.rva .LSEH_end_ecp_nistz256_avx2_select_w7
.rva .LSEH_info_ecp_nistz256_avx2_select_wX
___
$code.=<<___;
.rva .LSEH_begin_ecp_nistz256_point_double
.rva .LSEH_end_ecp_nistz256_point_double
.rva .LSEH_info_ecp_nistz256_point_double
.rva .LSEH_begin_ecp_nistz256_point_add
.rva .LSEH_end_ecp_nistz256_point_add
.rva .LSEH_info_ecp_nistz256_point_add
.rva .LSEH_begin_ecp_nistz256_point_add_affine
.rva .LSEH_end_ecp_nistz256_point_add_affine
.rva .LSEH_info_ecp_nistz256_point_add_affine
___
$code.=<<___ if ($addx);
.rva .LSEH_begin_ecp_nistz256_point_doublex
.rva .LSEH_end_ecp_nistz256_point_doublex
.rva .LSEH_info_ecp_nistz256_point_doublex
.rva .LSEH_begin_ecp_nistz256_point_addx
.rva .LSEH_end_ecp_nistz256_point_addx
.rva .LSEH_info_ecp_nistz256_point_addx
.rva .LSEH_begin_ecp_nistz256_point_add_affinex
.rva .LSEH_end_ecp_nistz256_point_add_affinex
.rva .LSEH_info_ecp_nistz256_point_add_affinex
___
$code.=<<___;
.section .xdata
.align 8
.LSEH_info_ecp_nistz256_neg:
.byte 9,0,0,0
.rva short_handler
.rva .Lneg_body,.Lneg_epilogue # HandlerData[]
.LSEH_info_ecp_nistz256_ord_mul_mont:
.byte 9,0,0,0
.rva full_handler
.rva .Lord_mul_body,.Lord_mul_epilogue # HandlerData[]
.long 48,0
.LSEH_info_ecp_nistz256_ord_sqr_mont:
.byte 9,0,0,0
.rva full_handler
.rva .Lord_sqr_body,.Lord_sqr_epilogue # HandlerData[]
.long 48,0
___
$code.=<<___ if ($addx);
.LSEH_info_ecp_nistz256_ord_mul_montx:
.byte 9,0,0,0
.rva full_handler
.rva .Lord_mulx_body,.Lord_mulx_epilogue # HandlerData[]
.long 48,0
.LSEH_info_ecp_nistz256_ord_sqr_montx:
.byte 9,0,0,0
.rva full_handler
.rva .Lord_sqrx_body,.Lord_sqrx_epilogue # HandlerData[]
.long 48,0
___
$code.=<<___;
.LSEH_info_ecp_nistz256_mul_mont:
.byte 9,0,0,0
.rva full_handler
.rva .Lmul_body,.Lmul_epilogue # HandlerData[]
.long 48,0
.LSEH_info_ecp_nistz256_sqr_mont:
.byte 9,0,0,0
.rva full_handler
.rva .Lsqr_body,.Lsqr_epilogue # HandlerData[]
.long 48,0
.LSEH_info_ecp_nistz256_select_wX:
.byte 0x01,0x33,0x16,0x00
.byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15
.byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14
.byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13
.byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12
.byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11
.byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
.byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
.byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
.byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
.byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
.byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8
.align 8
___
$code.=<<___ if ($avx>1);
.LSEH_info_ecp_nistz256_avx2_select_wX:
.byte 0x01,0x36,0x17,0x0b
.byte 0x36,0xf8,0x09,0x00 # vmovaps 0x90(rsp),xmm15
.byte 0x31,0xe8,0x08,0x00 # vmovaps 0x80(rsp),xmm14
.byte 0x2c,0xd8,0x07,0x00 # vmovaps 0x70(rsp),xmm13
.byte 0x27,0xc8,0x06,0x00 # vmovaps 0x60(rsp),xmm12
.byte 0x22,0xb8,0x05,0x00 # vmovaps 0x50(rsp),xmm11
.byte 0x1d,0xa8,0x04,0x00 # vmovaps 0x40(rsp),xmm10
.byte 0x18,0x98,0x03,0x00 # vmovaps 0x30(rsp),xmm9
.byte 0x13,0x88,0x02,0x00 # vmovaps 0x20(rsp),xmm8
.byte 0x0e,0x78,0x01,0x00 # vmovaps 0x10(rsp),xmm7
.byte 0x09,0x68,0x00,0x00 # vmovaps 0x00(rsp),xmm6
.byte 0x04,0x01,0x15,0x00 # sub rsp,0xa8
.byte 0x00,0xb3,0x00,0x00 # set_frame r11
.align 8
___
$code.=<<___;
.LSEH_info_ecp_nistz256_point_double:
.byte 9,0,0,0
.rva full_handler
.rva .Lpoint_doubleq_body,.Lpoint_doubleq_epilogue # HandlerData[]
.long 32*5+56,0
.LSEH_info_ecp_nistz256_point_add:
.byte 9,0,0,0
.rva full_handler
.rva .Lpoint_addq_body,.Lpoint_addq_epilogue # HandlerData[]
.long 32*18+56,0
.LSEH_info_ecp_nistz256_point_add_affine:
.byte 9,0,0,0
.rva full_handler
.rva .Ladd_affineq_body,.Ladd_affineq_epilogue # HandlerData[]
.long 32*15+56,0
___
$code.=<<___ if ($addx);
.align 8
.LSEH_info_ecp_nistz256_point_doublex:
.byte 9,0,0,0
.rva full_handler
.rva .Lpoint_doublex_body,.Lpoint_doublex_epilogue # HandlerData[]
.long 32*5+56,0
.LSEH_info_ecp_nistz256_point_addx:
.byte 9,0,0,0
.rva full_handler
.rva .Lpoint_addx_body,.Lpoint_addx_epilogue # HandlerData[]
.long 32*18+56,0
.LSEH_info_ecp_nistz256_point_add_affinex:
.byte 9,0,0,0
.rva full_handler
.rva .Ladd_affinex_body,.Ladd_affinex_epilogue # HandlerData[]
.long 32*15+56,0
___
}
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT or die "error closing STDOUT: $!";