|  | // Copyright 2016 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string_view> | 
|  | #include <utility> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/aes.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/chacha.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/hkdf.h> | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../crypto/fipsmodule/tls/internal.h" | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | static bool init_key_schedule(SSL_HANDSHAKE *hs, SSLTranscript *transcript, | 
|  | uint16_t version, const SSL_CIPHER *cipher) { | 
|  | if (!transcript->InitHash(version, cipher)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Initialize the secret to the zero key. | 
|  | hs->secret.clear(); | 
|  | hs->secret.Resize(transcript->DigestLen()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs, | 
|  | const SSLTranscript &transcript, | 
|  | Span<const uint8_t> in) { | 
|  | size_t len; | 
|  | if (!HKDF_extract(hs->secret.data(), &len, transcript.Digest(), in.data(), | 
|  | in.size(), hs->secret.data(), hs->secret.size())) { | 
|  | return false; | 
|  | } | 
|  | assert(len == hs->secret.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) { | 
|  | if (!init_key_schedule(hs, &hs->transcript, ssl_protocol_version(hs->ssl), | 
|  | hs->new_cipher)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handback includes the whole handshake transcript, so we cannot free the | 
|  | // transcript buffer in the handback case. | 
|  | if (!hs->handback) { | 
|  | hs->transcript.FreeBuffer(); | 
|  | } | 
|  | return hkdf_extract_to_secret(hs, hs->transcript, psk); | 
|  | } | 
|  |  | 
|  | bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session) { | 
|  | assert(!hs->ssl->server); | 
|  | // When offering ECH, early data is associated with ClientHelloInner, not | 
|  | // ClientHelloOuter. | 
|  | SSLTranscript *transcript = | 
|  | hs->selected_ech_config ? &hs->inner_transcript : &hs->transcript; | 
|  | return init_key_schedule(hs, transcript, | 
|  | ssl_session_protocol_version(session), | 
|  | session->cipher) && | 
|  | hkdf_extract_to_secret(hs, *transcript, session->secret); | 
|  | } | 
|  |  | 
|  | static bool hkdf_expand_label_with_prefix(Span<uint8_t> out, | 
|  | const EVP_MD *digest, | 
|  | Span<const uint8_t> secret, | 
|  | std::string_view label_prefix, | 
|  | std::string_view label, | 
|  | Span<const uint8_t> hash) { | 
|  | // This is a copy of CRYPTO_tls13_hkdf_expand_label, but modified to take an | 
|  | // arbitrary prefix for the label instead of using the hardcoded "tls13 " | 
|  | // prefix. | 
|  | CBB cbb, child; | 
|  | uint8_t *hkdf_label = NULL; | 
|  | size_t hkdf_label_len; | 
|  | CBB_zero(&cbb); | 
|  | if (!CBB_init(&cbb, | 
|  | 2 + 1 + label_prefix.size() + label.size() + 1 + hash.size()) || | 
|  | !CBB_add_u16(&cbb, out.size()) || | 
|  | !CBB_add_u8_length_prefixed(&cbb, &child) || | 
|  | !CBB_add_bytes(&child, | 
|  | reinterpret_cast<const uint8_t *>(label_prefix.data()), | 
|  | label_prefix.size()) || | 
|  | !CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()), | 
|  | label.size()) || | 
|  | !CBB_add_u8_length_prefixed(&cbb, &child) || | 
|  | !CBB_add_bytes(&child, hash.data(), hash.size()) || | 
|  | !CBB_finish(&cbb, &hkdf_label, &hkdf_label_len)) { | 
|  | CBB_cleanup(&cbb); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const int ret = HKDF_expand(out.data(), out.size(), digest, secret.data(), | 
|  | secret.size(), hkdf_label, hkdf_label_len); | 
|  | OPENSSL_free(hkdf_label); | 
|  | return ret == 1; | 
|  | } | 
|  |  | 
|  | static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest, | 
|  | Span<const uint8_t> secret, | 
|  | std::string_view label, Span<const uint8_t> hash, | 
|  | bool is_dtls) { | 
|  | if (is_dtls) { | 
|  | return hkdf_expand_label_with_prefix(out, digest, secret, "dtls13", label, | 
|  | hash); | 
|  | } | 
|  | return CRYPTO_tls13_hkdf_expand_label( | 
|  | out.data(), out.size(), digest, secret.data(), secret.size(), | 
|  | reinterpret_cast<const uint8_t *>(label.data()), label.size(), | 
|  | hash.data(), hash.size()) == 1; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelDerived[] = "derived"; | 
|  |  | 
|  | bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) { | 
|  | uint8_t derive_context[EVP_MAX_MD_SIZE]; | 
|  | unsigned derive_context_len; | 
|  | return EVP_Digest(nullptr, 0, derive_context, &derive_context_len, | 
|  | hs->transcript.Digest(), nullptr) && | 
|  | hkdf_expand_label(Span(hs->secret), hs->transcript.Digest(), | 
|  | hs->secret, kTLS13LabelDerived, | 
|  | Span(derive_context, derive_context_len), | 
|  | SSL_is_dtls(hs->ssl)) && | 
|  | hkdf_extract_to_secret(hs, hs->transcript, in); | 
|  | } | 
|  |  | 
|  | // derive_secret_with_transcript derives a secret of length | 
|  | // |transcript.DigestLen()| and writes the result in |out| with the given label, | 
|  | // the current base secret, and the state of |transcript|. It returns true on | 
|  | // success and false on error. | 
|  | static bool derive_secret_with_transcript( | 
|  | const SSL_HANDSHAKE *hs, InplaceVector<uint8_t, SSL_MAX_MD_SIZE> *out, | 
|  | const SSLTranscript &transcript, std::string_view label) { | 
|  | uint8_t context_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t context_hash_len; | 
|  | if (!transcript.GetHash(context_hash, &context_hash_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out->ResizeForOverwrite(transcript.DigestLen()); | 
|  | return hkdf_expand_label(Span(*out), transcript.Digest(), hs->secret, label, | 
|  | Span(context_hash, context_hash_len), | 
|  | SSL_is_dtls(hs->ssl)); | 
|  | } | 
|  |  | 
|  | static bool derive_secret(SSL_HANDSHAKE *hs, | 
|  | InplaceVector<uint8_t, SSL_MAX_MD_SIZE> *out, | 
|  | std::string_view label) { | 
|  | return derive_secret_with_transcript(hs, out, hs->transcript, label); | 
|  | } | 
|  |  | 
|  | bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, | 
|  | enum evp_aead_direction_t direction, | 
|  | const SSL_SESSION *session, | 
|  | Span<const uint8_t> traffic_secret) { | 
|  | uint16_t version = ssl_session_protocol_version(session); | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  | bool is_dtls = SSL_is_dtls(ssl); | 
|  | UniquePtr<SSLAEADContext> traffic_aead; | 
|  | if (SSL_is_quic(ssl)) { | 
|  | // Install a placeholder SSLAEADContext so that SSL accessors work. The | 
|  | // encryption itself will be handled by the SSL_QUIC_METHOD. | 
|  | traffic_aead = SSLAEADContext::CreatePlaceholderForQUIC(session->cipher); | 
|  | } else { | 
|  | // Look up cipher suite properties. | 
|  | const EVP_AEAD *aead; | 
|  | size_t discard; | 
|  | if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher, | 
|  | version)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Derive the key and IV. | 
|  | uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH], iv_buf[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | auto key = Span(key_buf).first(EVP_AEAD_key_length(aead)); | 
|  | auto iv = Span(iv_buf).first(EVP_AEAD_nonce_length(aead)); | 
|  | if (!hkdf_expand_label(key, digest, traffic_secret, "key", {}, is_dtls) || | 
|  | !hkdf_expand_label(iv, digest, traffic_secret, "iv", {}, is_dtls)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | traffic_aead = SSLAEADContext::Create(direction, session->ssl_version, | 
|  | session->cipher, key, {}, iv); | 
|  | } | 
|  |  | 
|  | if (!traffic_aead) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (direction == evp_aead_open) { | 
|  | if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead), | 
|  | traffic_secret)) { | 
|  | return false; | 
|  | } | 
|  | ssl->s3->read_traffic_secret.CopyFrom(traffic_secret); | 
|  | } else { | 
|  | if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead), | 
|  | traffic_secret)) { | 
|  | return false; | 
|  | } | 
|  | ssl->s3->write_traffic_secret.CopyFrom(traffic_secret); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class AESRecordNumberEncrypter : public RecordNumberEncrypter { | 
|  | public: | 
|  | bool SetKey(Span<const uint8_t> key) override { | 
|  | return AES_set_encrypt_key(key.data(), key.size() * 8, &key_) == 0; | 
|  | } | 
|  |  | 
|  | bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override { | 
|  | if (sample.size() < AES_BLOCK_SIZE || out.size() > AES_BLOCK_SIZE) { | 
|  | return false; | 
|  | } | 
|  | uint8_t mask[AES_BLOCK_SIZE]; | 
|  | AES_encrypt(sample.data(), mask, &key_); | 
|  | OPENSSL_memcpy(out.data(), mask, out.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | AES_KEY key_; | 
|  | }; | 
|  |  | 
|  | class AES128RecordNumberEncrypter : public AESRecordNumberEncrypter { | 
|  | public: | 
|  | size_t KeySize() override { return 16; } | 
|  | }; | 
|  |  | 
|  | class AES256RecordNumberEncrypter : public AESRecordNumberEncrypter { | 
|  | public: | 
|  | size_t KeySize() override { return 32; } | 
|  | }; | 
|  |  | 
|  | class ChaChaRecordNumberEncrypter : public RecordNumberEncrypter { | 
|  | public: | 
|  | size_t KeySize() override { return kKeySize; } | 
|  |  | 
|  | bool SetKey(Span<const uint8_t> key) override { | 
|  | if (key.size() != kKeySize) { | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memcpy(key_, key.data(), key.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override { | 
|  | // RFC 9147 section 4.2.3 uses the first 4 bytes of the sample as the | 
|  | // counter and the next 12 bytes as the nonce. If we have less than 4+12=16 | 
|  | // bytes in the sample, then we'll read past the end of the |sample| buffer. | 
|  | // The counter is interpreted as little-endian per RFC 8439. | 
|  | if (sample.size() < 16) { | 
|  | return false; | 
|  | } | 
|  | uint32_t counter = CRYPTO_load_u32_le(sample.data()); | 
|  | Span<const uint8_t> nonce = sample.subspan(4); | 
|  | OPENSSL_memset(out.data(), 0, out.size()); | 
|  | CRYPTO_chacha_20(out.data(), out.data(), out.size(), key_, nonce.data(), | 
|  | counter); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static constexpr size_t kKeySize = 32; | 
|  | uint8_t key_[kKeySize]; | 
|  | }; | 
|  |  | 
|  | class NullRecordNumberEncrypter : public RecordNumberEncrypter { | 
|  | public: | 
|  | size_t KeySize() override { return 0; } | 
|  | bool SetKey(Span<const uint8_t> key) override { return true; } | 
|  | bool GenerateMask(Span<uint8_t> out, Span<const uint8_t> sample) override { | 
|  | OPENSSL_memset(out.data(), 0, out.size()); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | UniquePtr<RecordNumberEncrypter> RecordNumberEncrypter::Create( | 
|  | const SSL_CIPHER *cipher, Span<const uint8_t> traffic_secret) { | 
|  | const EVP_MD *digest = ssl_get_handshake_digest(TLS1_3_VERSION, cipher); | 
|  | UniquePtr<RecordNumberEncrypter> ret; | 
|  | if (CRYPTO_fuzzer_mode_enabled()) { | 
|  | ret = MakeUnique<NullRecordNumberEncrypter>(); | 
|  | } else if (cipher->algorithm_enc == SSL_AES128GCM) { | 
|  | ret = MakeUnique<AES128RecordNumberEncrypter>(); | 
|  | } else if (cipher->algorithm_enc == SSL_AES256GCM) { | 
|  | ret = MakeUnique<AES256RecordNumberEncrypter>(); | 
|  | } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) { | 
|  | ret = MakeUnique<ChaChaRecordNumberEncrypter>(); | 
|  | } else { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | } | 
|  | if (ret == nullptr) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | uint8_t rne_key_buf[RecordNumberEncrypter::kMaxKeySize]; | 
|  | auto rne_key = Span(rne_key_buf).first(ret->KeySize()); | 
|  | if (!hkdf_expand_label(rne_key, digest, traffic_secret, "sn", {}, | 
|  | /*is_dtls=*/true) || | 
|  | !ret->SetKey(rne_key)) { | 
|  | return nullptr; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelExporter[] = "exp master"; | 
|  |  | 
|  | static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic"; | 
|  | static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic"; | 
|  | static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic"; | 
|  | static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic"; | 
|  | static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic"; | 
|  |  | 
|  | bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | // When offering ECH on the client, early data is associated with | 
|  | // ClientHelloInner, not ClientHelloOuter. | 
|  | const SSLTranscript &transcript = (!ssl->server && hs->selected_ech_config) | 
|  | ? hs->inner_transcript | 
|  | : hs->transcript; | 
|  | if (!derive_secret_with_transcript(hs, &hs->early_traffic_secret, transcript, | 
|  | kTLS13LabelClientEarlyTraffic) || | 
|  | !ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET", | 
|  | hs->early_traffic_secret)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | if (!derive_secret(hs, &hs->client_handshake_secret, | 
|  | kTLS13LabelClientHandshakeTraffic) || | 
|  | !ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET", | 
|  | hs->client_handshake_secret) || | 
|  | !derive_secret(hs, &hs->server_handshake_secret, | 
|  | kTLS13LabelServerHandshakeTraffic) || | 
|  | !ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET", | 
|  | hs->server_handshake_secret)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | if (!derive_secret(hs, &hs->client_traffic_secret_0, | 
|  | kTLS13LabelClientApplicationTraffic) || | 
|  | !ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0", | 
|  | hs->client_traffic_secret_0) || | 
|  | !derive_secret(hs, &hs->server_traffic_secret_0, | 
|  | kTLS13LabelServerApplicationTraffic) || | 
|  | !ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0", | 
|  | hs->server_traffic_secret_0) || | 
|  | !derive_secret(hs, &ssl->s3->exporter_secret, kTLS13LabelExporter) || | 
|  | !ssl_log_secret(ssl, "EXPORTER_SECRET", ssl->s3->exporter_secret)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelApplicationTraffic[] = "traffic upd"; | 
|  |  | 
|  | bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { | 
|  | Span<uint8_t> secret = direction == evp_aead_open | 
|  | ? Span(ssl->s3->read_traffic_secret) | 
|  | : Span(ssl->s3->write_traffic_secret); | 
|  |  | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  | return hkdf_expand_label(secret, digest, secret, | 
|  | kTLS13LabelApplicationTraffic, {}, | 
|  | SSL_is_dtls(ssl)) && | 
|  | tls13_set_traffic_key(ssl, ssl_encryption_application, direction, | 
|  | session, secret); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelResumption[] = "res master"; | 
|  |  | 
|  | bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) { | 
|  | return derive_secret(hs, &hs->new_session->secret, kTLS13LabelResumption); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelFinished[] = "finished"; | 
|  |  | 
|  | // tls13_verify_data sets |out| to be the HMAC of |context| using a derived | 
|  | // Finished key for both Finished messages and the PSK binder. |out| must have | 
|  | // space available for |EVP_MAX_MD_SIZE| bytes. | 
|  | static bool tls13_verify_data(uint8_t *out, size_t *out_len, | 
|  | const EVP_MD *digest, uint16_t version, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const uint8_t> context, bool is_dtls) { | 
|  | uint8_t key_buf[EVP_MAX_MD_SIZE]; | 
|  | auto key = Span(key_buf, EVP_MD_size(digest)); | 
|  | unsigned len; | 
|  | if (!hkdf_expand_label(key, digest, secret, kTLS13LabelFinished, {}, | 
|  | is_dtls) || | 
|  | HMAC(digest, key.data(), key.size(), context.data(), context.size(), out, | 
|  | &len) == nullptr) { | 
|  | return false; | 
|  | } | 
|  | *out_len = len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, | 
|  | bool is_server) { | 
|  | Span<const uint8_t> traffic_secret = | 
|  | is_server ? hs->server_handshake_secret : hs->client_handshake_secret; | 
|  |  | 
|  | uint8_t context_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t context_hash_len; | 
|  | if (!hs->transcript.GetHash(context_hash, &context_hash_len) || | 
|  | !tls13_verify_data(out, out_len, hs->transcript.Digest(), | 
|  | hs->ssl->s3->version, traffic_secret, | 
|  | Span(context_hash, context_hash_len), | 
|  | SSL_is_dtls(hs->ssl))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelResumptionPSK[] = "resumption"; | 
|  |  | 
|  | bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce, | 
|  | bool is_dtls) { | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  | // The session initially stores the resumption_master_secret, which we | 
|  | // override with the PSK. | 
|  | assert(session->secret.size() == EVP_MD_size(digest)); | 
|  | return hkdf_expand_label(Span(session->secret), digest, session->secret, | 
|  | kTLS13LabelResumptionPSK, nonce, is_dtls); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelExportKeying[] = "exporter"; | 
|  |  | 
|  | bool tls13_export_keying_material(const SSL *ssl, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, | 
|  | std::string_view label, | 
|  | Span<const uint8_t> context) { | 
|  | if (secret.empty()) { | 
|  | assert(0); | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); | 
|  |  | 
|  | uint8_t hash_buf[EVP_MAX_MD_SIZE]; | 
|  | uint8_t export_context_buf[EVP_MAX_MD_SIZE]; | 
|  | unsigned hash_len; | 
|  | unsigned export_context_len; | 
|  | if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest, | 
|  | nullptr) || | 
|  | !EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest, | 
|  | nullptr)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto hash = Span(hash_buf, hash_len); | 
|  | auto export_context = Span(export_context_buf, export_context_len); | 
|  | uint8_t derived_secret_buf[EVP_MAX_MD_SIZE]; | 
|  | auto derived_secret = Span(derived_secret_buf, EVP_MD_size(digest)); | 
|  | return hkdf_expand_label(derived_secret, digest, secret, label, | 
|  | export_context, SSL_is_dtls(ssl)) && | 
|  | hkdf_expand_label(out, digest, derived_secret, kTLS13LabelExportKeying, | 
|  | hash, SSL_is_dtls(ssl)); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelPSKBinder[] = "res binder"; | 
|  |  | 
|  | static bool tls13_psk_binder(uint8_t *out, size_t *out_len, | 
|  | const SSL_SESSION *session, | 
|  | const SSLTranscript &transcript, | 
|  | Span<const uint8_t> client_hello, | 
|  | size_t binders_len, bool is_dtls) { | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  |  | 
|  | // Compute the binder key. | 
|  | // | 
|  | // TODO(davidben): Ideally we wouldn't recompute early secret and the binder | 
|  | // key each time. | 
|  | uint8_t binder_context[EVP_MAX_MD_SIZE]; | 
|  | unsigned binder_context_len; | 
|  | uint8_t early_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | size_t early_secret_len; | 
|  | uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0}; | 
|  | auto binder_key = Span(binder_key_buf, EVP_MD_size(digest)); | 
|  | if (!EVP_Digest(nullptr, 0, binder_context, &binder_context_len, digest, | 
|  | nullptr) || | 
|  | !HKDF_extract(early_secret, &early_secret_len, digest, | 
|  | session->secret.data(), session->secret.size(), nullptr, | 
|  | 0) || | 
|  | !hkdf_expand_label(binder_key, digest, | 
|  | Span(early_secret, early_secret_len), | 
|  | kTLS13LabelPSKBinder, | 
|  | Span(binder_context, binder_context_len), is_dtls)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Hash the transcript and truncated ClientHello. | 
|  | if (client_hello.size() < binders_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | auto truncated = client_hello.subspan(0, client_hello.size() - binders_len); | 
|  | uint8_t context[EVP_MAX_MD_SIZE]; | 
|  | unsigned context_len; | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!is_dtls) { | 
|  | if (!transcript.CopyToHashContext(ctx.get(), digest) || | 
|  | !EVP_DigestUpdate(ctx.get(), truncated.data(), truncated.size()) || | 
|  | !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // In DTLS 1.3, the transcript hash is computed over only the TLS 1.3 | 
|  | // handshake messages (i.e. only type and length in the header), not the | 
|  | // full DTLSHandshake messages that are in |truncated|. This code pulls | 
|  | // the header and body out of the truncated ClientHello and writes those | 
|  | // to the hash context so the correct binder value is computed. | 
|  | if (truncated.size() < DTLS1_HM_HEADER_LENGTH) { | 
|  | return false; | 
|  | } | 
|  | auto header = truncated.subspan(0, 4); | 
|  | auto body = truncated.subspan(12); | 
|  | if (!transcript.CopyToHashContext(ctx.get(), digest) || | 
|  | !EVP_DigestUpdate(ctx.get(), header.data(), header.size()) || | 
|  | !EVP_DigestUpdate(ctx.get(), body.data(), body.size()) || | 
|  | !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!tls13_verify_data(out, out_len, digest, session->ssl_version, binder_key, | 
|  | Span(context, context_len), is_dtls)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(*out_len == EVP_MD_size(digest)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSLTranscript &transcript, Span<uint8_t> msg, | 
|  | size_t *out_binder_len) { | 
|  | const SSL *const ssl = hs->ssl; | 
|  | const EVP_MD *digest = ssl_session_get_digest(ssl->session.get()); | 
|  | const size_t hash_len = EVP_MD_size(digest); | 
|  | // We only offer one PSK, so the binders are a u16 and u8 length | 
|  | // prefix, followed by the binder. The caller is assumed to have constructed | 
|  | // |msg| with placeholder binders. | 
|  | const size_t binders_len = 3 + hash_len; | 
|  | uint8_t verify_data[EVP_MAX_MD_SIZE]; | 
|  | size_t verify_data_len; | 
|  | if (!tls13_psk_binder(verify_data, &verify_data_len, ssl->session.get(), | 
|  | transcript, msg, binders_len, SSL_is_dtls(hs->ssl)) || | 
|  | verify_data_len != hash_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto msg_binder = msg.last(verify_data_len); | 
|  | OPENSSL_memcpy(msg_binder.data(), verify_data, verify_data_len); | 
|  | if (out_binder_len != nullptr) { | 
|  | *out_binder_len = verify_data_len; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session, const SSLMessage &msg, | 
|  | CBS *binders) { | 
|  | uint8_t verify_data[EVP_MAX_MD_SIZE]; | 
|  | size_t verify_data_len; | 
|  | CBS binder; | 
|  | // The binders are computed over |msg| with |binders| and its u16 length | 
|  | // prefix removed. The caller is assumed to have parsed |msg|, extracted | 
|  | // |binders|, and verified the PSK extension is last. | 
|  | if (!tls13_psk_binder(verify_data, &verify_data_len, session, hs->transcript, | 
|  | msg.raw, 2 + CBS_len(binders), SSL_is_dtls(hs->ssl)) || | 
|  | // We only consider the first PSK, so compare against the first binder. | 
|  | !CBS_get_u8_length_prefixed(binders, &binder)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool binder_ok = | 
|  | CBS_len(&binder) == verify_data_len && | 
|  | CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0; | 
|  | if (CRYPTO_fuzzer_mode_enabled()) { | 
|  | binder_ok = true; | 
|  | } | 
|  | if (!binder_ok) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl) { | 
|  | static_assert(ECH_CONFIRMATION_SIGNAL_LEN < SSL3_RANDOM_SIZE, | 
|  | "the confirmation signal is a suffix of the random"); | 
|  | const size_t header_len = | 
|  | SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; | 
|  | return header_len + 2 /* version */ + SSL3_RANDOM_SIZE - | 
|  | ECH_CONFIRMATION_SIGNAL_LEN; | 
|  | } | 
|  |  | 
|  | bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out, | 
|  | Span<const uint8_t> client_random, | 
|  | const SSLTranscript &transcript, bool is_hrr, | 
|  | Span<const uint8_t> msg, size_t offset) { | 
|  | // See draft-ietf-tls-esni-13, sections 7.2 and 7.2.1. | 
|  | static const uint8_t kZeros[EVP_MAX_MD_SIZE] = {0}; | 
|  |  | 
|  | // We hash |msg|, with bytes from |offset| zeroed. | 
|  | if (msg.size() < offset + ECH_CONFIRMATION_SIGNAL_LEN) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We represent DTLS messages with the longer DTLS 1.2 header, but DTLS 1.3 | 
|  | // removes the extra fields from the transcript. | 
|  | auto header = msg.subspan(0, SSL3_HM_HEADER_LENGTH); | 
|  | size_t full_header_len = | 
|  | SSL_is_dtls(hs->ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; | 
|  | auto before_zeros = msg.subspan(full_header_len, offset - full_header_len); | 
|  | auto after_zeros = msg.subspan(offset + ECH_CONFIRMATION_SIGNAL_LEN); | 
|  |  | 
|  | uint8_t context[EVP_MAX_MD_SIZE]; | 
|  | unsigned context_len; | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!transcript.CopyToHashContext(ctx.get(), transcript.Digest()) || | 
|  | !EVP_DigestUpdate(ctx.get(), header.data(), header.size()) || | 
|  | !EVP_DigestUpdate(ctx.get(), before_zeros.data(), before_zeros.size()) || | 
|  | !EVP_DigestUpdate(ctx.get(), kZeros, ECH_CONFIRMATION_SIGNAL_LEN) || | 
|  | !EVP_DigestUpdate(ctx.get(), after_zeros.data(), after_zeros.size()) || | 
|  | !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t secret[EVP_MAX_MD_SIZE]; | 
|  | size_t secret_len; | 
|  | if (!HKDF_extract(secret, &secret_len, transcript.Digest(), | 
|  | client_random.data(), client_random.size(), kZeros, | 
|  | transcript.DigestLen())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(out.size() == ECH_CONFIRMATION_SIGNAL_LEN); | 
|  | return hkdf_expand_label( | 
|  | out, transcript.Digest(), Span(secret, secret_len), | 
|  | is_hrr ? "hrr ech accept confirmation" : "ech accept confirmation", | 
|  | Span(context, context_len), SSL_is_dtls(hs->ssl)); | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END |