| /* |
| * DTLS implementation written by Nagendra Modadugu |
| * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| // TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
| // for these values? Notably, why is kMinMTU a function of the transport |
| // protocol's overhead rather than, say, what's needed to hold a minimally-sized |
| // handshake fragment plus protocol overhead. |
| |
| // kMinMTU is the minimum acceptable MTU value. |
| static const unsigned int kMinMTU = 256 - 28; |
| |
| // kDefaultMTU is the default MTU value to use if neither the user nor |
| // the underlying BIO supplies one. |
| static const unsigned int kDefaultMTU = 1500 - 28; |
| |
| |
| // Receiving handshake messages. |
| |
| hm_fragment::~hm_fragment() { |
| OPENSSL_free(data); |
| OPENSSL_free(reassembly); |
| } |
| |
| static UniquePtr<hm_fragment> dtls1_hm_fragment_new( |
| const struct hm_header_st *msg_hdr) { |
| ScopedCBB cbb; |
| UniquePtr<hm_fragment> frag = MakeUnique<hm_fragment>(); |
| if (!frag) { |
| return nullptr; |
| } |
| frag->type = msg_hdr->type; |
| frag->seq = msg_hdr->seq; |
| frag->msg_len = msg_hdr->msg_len; |
| |
| // Allocate space for the reassembled message and fill in the header. |
| frag->data = |
| (uint8_t *)OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); |
| if (frag->data == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return nullptr; |
| } |
| |
| if (!CBB_init_fixed(cbb.get(), frag->data, DTLS1_HM_HEADER_LENGTH) || |
| !CBB_add_u8(cbb.get(), msg_hdr->type) || |
| !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| !CBB_add_u16(cbb.get(), msg_hdr->seq) || |
| !CBB_add_u24(cbb.get(), 0 /* frag_off */) || |
| !CBB_add_u24(cbb.get(), msg_hdr->msg_len) || |
| !CBB_finish(cbb.get(), NULL, NULL)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return nullptr; |
| } |
| |
| // If the handshake message is empty, |frag->reassembly| is NULL. |
| if (msg_hdr->msg_len > 0) { |
| // Initialize reassembly bitmask. |
| if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return nullptr; |
| } |
| size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; |
| frag->reassembly = (uint8_t *)OPENSSL_malloc(bitmask_len); |
| if (frag->reassembly == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return nullptr; |
| } |
| OPENSSL_memset(frag->reassembly, 0, bitmask_len); |
| } |
| |
| return frag; |
| } |
| |
| // bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, |
| // exclusive, set. |
| static uint8_t bit_range(size_t start, size_t end) { |
| return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); |
| } |
| |
| // dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, |
| // as received in |frag|. If |frag| becomes complete, it clears |
| // |frag->reassembly|. The range must be within the bounds of |frag|'s message |
| // and |frag->reassembly| must not be NULL. |
| static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, |
| size_t end) { |
| size_t msg_len = frag->msg_len; |
| |
| if (frag->reassembly == NULL || start > end || end > msg_len) { |
| assert(0); |
| return; |
| } |
| // A zero-length message will never have a pending reassembly. |
| assert(msg_len > 0); |
| |
| if (start == end) { |
| return; |
| } |
| |
| if ((start >> 3) == (end >> 3)) { |
| frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); |
| } else { |
| frag->reassembly[start >> 3] |= bit_range(start & 7, 8); |
| for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
| frag->reassembly[i] = 0xff; |
| } |
| if ((end & 7) != 0) { |
| frag->reassembly[end >> 3] |= bit_range(0, end & 7); |
| } |
| } |
| |
| // Check if the fragment is complete. |
| for (size_t i = 0; i < (msg_len >> 3); i++) { |
| if (frag->reassembly[i] != 0xff) { |
| return; |
| } |
| } |
| if ((msg_len & 7) != 0 && |
| frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { |
| return; |
| } |
| |
| OPENSSL_free(frag->reassembly); |
| frag->reassembly = NULL; |
| } |
| |
| // dtls1_is_current_message_complete returns whether the current handshake |
| // message is complete. |
| static bool dtls1_is_current_message_complete(const SSL *ssl) { |
| size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| return frag != NULL && frag->reassembly == NULL; |
| } |
| |
| // dtls1_get_incoming_message returns the incoming message corresponding to |
| // |msg_hdr|. If none exists, it creates a new one and inserts it in the |
| // queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
| // returns NULL on failure. The caller does not take ownership of the result. |
| static hm_fragment *dtls1_get_incoming_message( |
| SSL *ssl, uint8_t *out_alert, const struct hm_header_st *msg_hdr) { |
| if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
| msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return NULL; |
| } |
| |
| size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| if (frag != NULL) { |
| assert(frag->seq == msg_hdr->seq); |
| // The new fragment must be compatible with the previous fragments from this |
| // message. |
| if (frag->type != msg_hdr->type || |
| frag->msg_len != msg_hdr->msg_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return NULL; |
| } |
| return frag; |
| } |
| |
| // This is the first fragment from this message. |
| ssl->d1->incoming_messages[idx] = dtls1_hm_fragment_new(msg_hdr); |
| if (!ssl->d1->incoming_messages[idx]) { |
| *out_alert = SSL_AD_INTERNAL_ERROR; |
| return NULL; |
| } |
| return ssl->d1->incoming_messages[idx].get(); |
| } |
| |
| ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in) { |
| uint8_t type; |
| Span<uint8_t> record; |
| auto ret = dtls_open_record(ssl, &type, &record, out_consumed, out_alert, in); |
| if (ret != ssl_open_record_success) { |
| return ret; |
| } |
| |
| switch (type) { |
| case SSL3_RT_APPLICATION_DATA: |
| // Unencrypted application data records are always illegal. |
| if (ssl->s3->aead_read_ctx->is_null_cipher()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| // Out-of-order application data may be received between ChangeCipherSpec |
| // and finished. Discard it. |
| return ssl_open_record_discard; |
| |
| case SSL3_RT_CHANGE_CIPHER_SPEC: |
| // We do not support renegotiation, so encrypted ChangeCipherSpec records |
| // are illegal. |
| if (!ssl->s3->aead_read_ctx->is_null_cipher()) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| if (record.size() != 1u || record[0] != SSL3_MT_CCS) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_CHANGE_CIPHER_SPEC); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return ssl_open_record_error; |
| } |
| |
| // Flag the ChangeCipherSpec for later. |
| ssl->d1->has_change_cipher_spec = true; |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| record); |
| return ssl_open_record_success; |
| |
| case SSL3_RT_HANDSHAKE: |
| // Break out to main processing. |
| break; |
| |
| default: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, record.data(), record.size()); |
| while (CBS_len(&cbs) > 0) { |
| // Read a handshake fragment. |
| struct hm_header_st msg_hdr; |
| CBS body; |
| if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
| *out_alert = SSL_AD_DECODE_ERROR; |
| return ssl_open_record_error; |
| } |
| |
| const size_t frag_off = msg_hdr.frag_off; |
| const size_t frag_len = msg_hdr.frag_len; |
| const size_t msg_len = msg_hdr.msg_len; |
| if (frag_off > msg_len || frag_off + frag_len < frag_off || |
| frag_off + frag_len > msg_len || |
| msg_len > ssl_max_handshake_message_len(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
| *out_alert = SSL_AD_ILLEGAL_PARAMETER; |
| return ssl_open_record_error; |
| } |
| |
| // The encrypted epoch in DTLS has only one handshake message. |
| if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| *out_alert = SSL_AD_UNEXPECTED_MESSAGE; |
| return ssl_open_record_error; |
| } |
| |
| if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
| msg_hdr.seq > |
| (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { |
| // Ignore fragments from the past, or ones too far in the future. |
| continue; |
| } |
| |
| hm_fragment *frag = dtls1_get_incoming_message(ssl, out_alert, &msg_hdr); |
| if (frag == NULL) { |
| return ssl_open_record_error; |
| } |
| assert(frag->msg_len == msg_len); |
| |
| if (frag->reassembly == NULL) { |
| // The message is already assembled. |
| continue; |
| } |
| assert(msg_len > 0); |
| |
| // Copy the body into the fragment. |
| OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, |
| CBS_data(&body), CBS_len(&body)); |
| dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); |
| } |
| |
| return ssl_open_record_success; |
| } |
| |
| bool dtls1_get_message(const SSL *ssl, SSLMessage *out) { |
| if (!dtls1_is_current_message_complete(ssl)) { |
| return false; |
| } |
| |
| size_t idx = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| hm_fragment *frag = ssl->d1->incoming_messages[idx].get(); |
| out->type = frag->type; |
| CBS_init(&out->body, frag->data + DTLS1_HM_HEADER_LENGTH, frag->msg_len); |
| CBS_init(&out->raw, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); |
| out->is_v2_hello = false; |
| if (!ssl->s3->has_message) { |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, out->raw); |
| ssl->s3->has_message = true; |
| } |
| return true; |
| } |
| |
| void dtls1_next_message(SSL *ssl) { |
| assert(ssl->s3->has_message); |
| assert(dtls1_is_current_message_complete(ssl)); |
| size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| ssl->d1->incoming_messages[index].reset(); |
| ssl->d1->handshake_read_seq++; |
| ssl->s3->has_message = false; |
| // If we previously sent a flight, mark it as having a reply, so |
| // |on_handshake_complete| can manage post-handshake retransmission. |
| if (ssl->d1->outgoing_messages_complete) { |
| ssl->d1->flight_has_reply = true; |
| } |
| } |
| |
| bool dtls_has_unprocessed_handshake_data(const SSL *ssl) { |
| size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
| // Skip the current message. |
| if (ssl->s3->has_message && i == current) { |
| assert(dtls1_is_current_message_complete(ssl)); |
| continue; |
| } |
| if (ssl->d1->incoming_messages[i] != nullptr) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, |
| CBS *out_body) { |
| OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
| |
| if (!CBS_get_u8(cbs, &out_hdr->type) || |
| !CBS_get_u24(cbs, &out_hdr->msg_len) || |
| !CBS_get_u16(cbs, &out_hdr->seq) || |
| !CBS_get_u24(cbs, &out_hdr->frag_off) || |
| !CBS_get_u24(cbs, &out_hdr->frag_len) || |
| !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in) { |
| if (!ssl->d1->has_change_cipher_spec) { |
| // dtls1_open_handshake processes both handshake and ChangeCipherSpec. |
| auto ret = dtls1_open_handshake(ssl, out_consumed, out_alert, in); |
| if (ret != ssl_open_record_success) { |
| return ret; |
| } |
| } |
| if (ssl->d1->has_change_cipher_spec) { |
| ssl->d1->has_change_cipher_spec = false; |
| return ssl_open_record_success; |
| } |
| return ssl_open_record_discard; |
| } |
| |
| |
| // Sending handshake messages. |
| |
| void DTLS_OUTGOING_MESSAGE::Clear() { data.Reset(); } |
| |
| void dtls_clear_outgoing_messages(SSL *ssl) { |
| for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
| ssl->d1->outgoing_messages[i].Clear(); |
| } |
| ssl->d1->outgoing_messages_len = 0; |
| ssl->d1->outgoing_written = 0; |
| ssl->d1->outgoing_offset = 0; |
| ssl->d1->outgoing_messages_complete = false; |
| ssl->d1->flight_has_reply = false; |
| } |
| |
| bool dtls1_init_message(const SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
| // Pick a modest size hint to save most of the |realloc| calls. |
| if (!CBB_init(cbb, 64) || |
| !CBB_add_u8(cbb, type) || |
| !CBB_add_u24(cbb, 0 /* length (filled in later) */) || |
| !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || |
| !CBB_add_u24(cbb, 0 /* offset */) || |
| !CBB_add_u24_length_prefixed(cbb, body)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool dtls1_finish_message(const SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg) { |
| if (!CBBFinishArray(cbb, out_msg) || |
| out_msg->size() < DTLS1_HM_HEADER_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| // Fix up the header. Copy the fragment length into the total message |
| // length. |
| OPENSSL_memcpy(out_msg->data() + 1, |
| out_msg->data() + DTLS1_HM_HEADER_LENGTH - 3, 3); |
| return true; |
| } |
| |
| // ssl_size_t_greater_than_32_bits returns whether |v| exceeds the bounds of a |
| // 32-bit value. The obvious thing doesn't work because, in some 32-bit build |
| // configurations, the compiler warns that the test is always false and breaks |
| // the build. |
| static bool ssl_size_t_greater_than_32_bits(size_t v) { |
| #if defined(OPENSSL_64_BIT) |
| return v > 0xffffffff; |
| #elif defined(OPENSSL_32_BIT) |
| return false; |
| #else |
| #error "Building for neither 32- nor 64-bits." |
| #endif |
| } |
| |
| // add_outgoing adds a new handshake message or ChangeCipherSpec to the current |
| // outgoing flight. It returns true on success and false on error. |
| static bool add_outgoing(SSL *ssl, bool is_ccs, Array<uint8_t> data) { |
| if (ssl->d1->outgoing_messages_complete) { |
| // If we've begun writing a new flight, we received the peer flight. Discard |
| // the timer and the our flight. |
| dtls1_stop_timer(ssl); |
| dtls_clear_outgoing_messages(ssl); |
| } |
| |
| static_assert(SSL_MAX_HANDSHAKE_FLIGHT < |
| (1 << 8 * sizeof(ssl->d1->outgoing_messages_len)), |
| "outgoing_messages_len is too small"); |
| if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT || |
| ssl_size_t_greater_than_32_bits(data.size())) { |
| assert(false); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| |
| if (!is_ccs) { |
| // TODO(svaldez): Move this up a layer to fix abstraction for SSLTranscript |
| // on hs. |
| if (ssl->s3->hs != NULL && |
| !ssl->s3->hs->transcript.Update(data)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| ssl->d1->handshake_write_seq++; |
| } |
| |
| DTLS_OUTGOING_MESSAGE *msg = |
| &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
| msg->data = std::move(data); |
| msg->epoch = ssl->d1->w_epoch; |
| msg->is_ccs = is_ccs; |
| |
| ssl->d1->outgoing_messages_len++; |
| return true; |
| } |
| |
| bool dtls1_add_message(SSL *ssl, Array<uint8_t> data) { |
| return add_outgoing(ssl, false /* handshake */, std::move(data)); |
| } |
| |
| bool dtls1_add_change_cipher_spec(SSL *ssl) { |
| return add_outgoing(ssl, true /* ChangeCipherSpec */, Array<uint8_t>()); |
| } |
| |
| // dtls1_update_mtu updates the current MTU from the BIO, ensuring it is above |
| // the minimum. |
| static void dtls1_update_mtu(SSL *ssl) { |
| // TODO(davidben): No consumer implements |BIO_CTRL_DGRAM_SET_MTU| and the |
| // only |BIO_CTRL_DGRAM_QUERY_MTU| implementation could use |
| // |SSL_set_mtu|. Does this need to be so complex? |
| if (ssl->d1->mtu < dtls1_min_mtu() && |
| !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
| long mtu = BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
| if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
| ssl->d1->mtu = (unsigned)mtu; |
| } else { |
| ssl->d1->mtu = kDefaultMTU; |
| BIO_ctrl(ssl->wbio.get(), BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
| } |
| } |
| |
| // The MTU should be above the minimum now. |
| assert(ssl->d1->mtu >= dtls1_min_mtu()); |
| } |
| |
| enum seal_result_t { |
| seal_error, |
| seal_no_progress, |
| seal_partial, |
| seal_success, |
| }; |
| |
| // seal_next_message seals |msg|, which must be the next message, to |out|. If |
| // progress was made, it returns |seal_partial| or |seal_success| and sets |
| // |*out_len| to the number of bytes written. |
| static enum seal_result_t seal_next_message(SSL *ssl, uint8_t *out, |
| size_t *out_len, size_t max_out, |
| const DTLS_OUTGOING_MESSAGE *msg) { |
| assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
| assert(msg == &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]); |
| |
| enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; |
| if (ssl->d1->w_epoch >= 1 && msg->epoch == ssl->d1->w_epoch - 1) { |
| use_epoch = dtls1_use_previous_epoch; |
| } else if (msg->epoch != ssl->d1->w_epoch) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return seal_error; |
| } |
| |
| size_t overhead = dtls_max_seal_overhead(ssl, use_epoch); |
| size_t prefix = dtls_seal_prefix_len(ssl, use_epoch); |
| |
| if (msg->is_ccs) { |
| // Check there is room for the ChangeCipherSpec. |
| static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
| if (max_out < sizeof(kChangeCipherSpec) + overhead) { |
| return seal_no_progress; |
| } |
| |
| if (!dtls_seal_record(ssl, out, out_len, max_out, |
| SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
| sizeof(kChangeCipherSpec), use_epoch)) { |
| return seal_error; |
| } |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| kChangeCipherSpec); |
| return seal_success; |
| } |
| |
| // DTLS messages are serialized as a single fragment in |msg|. |
| CBS cbs, body; |
| struct hm_header_st hdr; |
| CBS_init(&cbs, msg->data.data(), msg->data.size()); |
| if (!dtls1_parse_fragment(&cbs, &hdr, &body) || |
| hdr.frag_off != 0 || |
| hdr.frag_len != CBS_len(&body) || |
| hdr.msg_len != CBS_len(&body) || |
| !CBS_skip(&body, ssl->d1->outgoing_offset) || |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return seal_error; |
| } |
| |
| // Determine how much progress can be made. |
| if (max_out < DTLS1_HM_HEADER_LENGTH + 1 + overhead || max_out < prefix) { |
| return seal_no_progress; |
| } |
| size_t todo = CBS_len(&body); |
| if (todo > max_out - DTLS1_HM_HEADER_LENGTH - overhead) { |
| todo = max_out - DTLS1_HM_HEADER_LENGTH - overhead; |
| } |
| |
| // Assemble a fragment, to be sealed in-place. |
| ScopedCBB cbb; |
| uint8_t *frag = out + prefix; |
| size_t max_frag = max_out - prefix, frag_len; |
| if (!CBB_init_fixed(cbb.get(), frag, max_frag) || |
| !CBB_add_u8(cbb.get(), hdr.type) || |
| !CBB_add_u24(cbb.get(), hdr.msg_len) || |
| !CBB_add_u16(cbb.get(), hdr.seq) || |
| !CBB_add_u24(cbb.get(), ssl->d1->outgoing_offset) || |
| !CBB_add_u24(cbb.get(), todo) || |
| !CBB_add_bytes(cbb.get(), CBS_data(&body), todo) || |
| !CBB_finish(cbb.get(), NULL, &frag_len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return seal_error; |
| } |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, |
| MakeSpan(frag, frag_len)); |
| |
| if (!dtls_seal_record(ssl, out, out_len, max_out, SSL3_RT_HANDSHAKE, |
| out + prefix, frag_len, use_epoch)) { |
| return seal_error; |
| } |
| |
| if (todo == CBS_len(&body)) { |
| // The next message is complete. |
| ssl->d1->outgoing_offset = 0; |
| return seal_success; |
| } |
| |
| ssl->d1->outgoing_offset += todo; |
| return seal_partial; |
| } |
| |
| // seal_next_packet writes as much of the next flight as possible to |out| and |
| // advances |ssl->d1->outgoing_written| and |ssl->d1->outgoing_offset| as |
| // appropriate. |
| static bool seal_next_packet(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out) { |
| bool made_progress = false; |
| size_t total = 0; |
| assert(ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len); |
| for (; ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len; |
| ssl->d1->outgoing_written++) { |
| const DTLS_OUTGOING_MESSAGE *msg = |
| &ssl->d1->outgoing_messages[ssl->d1->outgoing_written]; |
| size_t len; |
| enum seal_result_t ret = seal_next_message(ssl, out, &len, max_out, msg); |
| switch (ret) { |
| case seal_error: |
| return false; |
| |
| case seal_no_progress: |
| goto packet_full; |
| |
| case seal_partial: |
| case seal_success: |
| out += len; |
| max_out -= len; |
| total += len; |
| made_progress = true; |
| |
| if (ret == seal_partial) { |
| goto packet_full; |
| } |
| break; |
| } |
| } |
| |
| packet_full: |
| // The MTU was too small to make any progress. |
| if (!made_progress) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
| return false; |
| } |
| |
| *out_len = total; |
| return true; |
| } |
| |
| static int send_flight(SSL *ssl) { |
| if (ssl->s3->write_shutdown != ssl_shutdown_none) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| return -1; |
| } |
| |
| if (ssl->wbio == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BIO_NOT_SET); |
| return -1; |
| } |
| |
| dtls1_update_mtu(ssl); |
| |
| Array<uint8_t> packet; |
| if (!packet.Init(ssl->d1->mtu)) { |
| return -1; |
| } |
| |
| while (ssl->d1->outgoing_written < ssl->d1->outgoing_messages_len) { |
| uint8_t old_written = ssl->d1->outgoing_written; |
| uint32_t old_offset = ssl->d1->outgoing_offset; |
| |
| size_t packet_len; |
| if (!seal_next_packet(ssl, packet.data(), &packet_len, packet.size())) { |
| return -1; |
| } |
| |
| int bio_ret = BIO_write(ssl->wbio.get(), packet.data(), packet_len); |
| if (bio_ret <= 0) { |
| // Retry this packet the next time around. |
| ssl->d1->outgoing_written = old_written; |
| ssl->d1->outgoing_offset = old_offset; |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return bio_ret; |
| } |
| } |
| |
| if (BIO_flush(ssl->wbio.get()) <= 0) { |
| ssl->s3->rwstate = SSL_ERROR_WANT_WRITE; |
| return -1; |
| } |
| |
| return 1; |
| } |
| |
| int dtls1_flush_flight(SSL *ssl) { |
| ssl->d1->outgoing_messages_complete = true; |
| // Start the retransmission timer for the next flight (if any). |
| dtls1_start_timer(ssl); |
| return send_flight(ssl); |
| } |
| |
| int dtls1_retransmit_outgoing_messages(SSL *ssl) { |
| // Rewind to the start of the flight and write it again. |
| // |
| // TODO(davidben): This does not allow retransmits to be resumed on |
| // non-blocking write. |
| ssl->d1->outgoing_written = 0; |
| ssl->d1->outgoing_offset = 0; |
| |
| return send_flight(ssl); |
| } |
| |
| unsigned int dtls1_min_mtu(void) { |
| return kMinMTU; |
| } |
| |
| BSSL_NAMESPACE_END |