blob: 39a3d52143c6fd1ad88d6536bace11b019c704d7 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/asn1.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/asn1t.h>
#include <openssl/mem.h>
#include "../internal.h"
#include "internal.h"
static int asn1_item_ex_i2d_opt(ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass,
int optional);
static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass,
int optional);
static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cont, int *out_omit,
int *putype, const ASN1_ITEM *it);
static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out,
int skcontlen, const ASN1_ITEM *item, int do_sort);
static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
const ASN1_TEMPLATE *tt, int tag, int aclass);
// Top level i2d equivalents
int ASN1_item_i2d(ASN1_VALUE *val, unsigned char **out, const ASN1_ITEM *it) {
if (out && !*out) {
unsigned char *p, *buf;
int len = ASN1_item_ex_i2d(&val, NULL, it, /*tag=*/-1, /*aclass=*/0);
if (len <= 0) {
return len;
}
buf = OPENSSL_malloc(len);
if (!buf) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
return -1;
}
p = buf;
int len2 = ASN1_item_ex_i2d(&val, &p, it, /*tag=*/-1, /*aclass=*/0);
if (len2 <= 0) {
return len2;
}
assert(len == len2);
*out = buf;
return len;
}
return ASN1_item_ex_i2d(&val, out, it, /*tag=*/-1, /*aclass=*/0);
}
// Encode an item, taking care of IMPLICIT tagging (if any). This function
// performs the normal item handling: it can be used in external types.
int ASN1_item_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass) {
int ret = asn1_item_ex_i2d_opt(pval, out, it, tag, aclass, /*optional=*/0);
assert(ret != 0);
return ret;
}
// asn1_item_ex_i2d_opt behaves like |ASN1_item_ex_i2d| but, if |optional| is
// non-zero and |*pval| is omitted, it returns zero and writes no bytes.
int asn1_item_ex_i2d_opt(ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass,
int optional) {
const ASN1_TEMPLATE *tt = NULL;
int i, seqcontlen, seqlen;
// Historically, |aclass| was repurposed to pass additional flags into the
// encoding process.
assert((aclass & ASN1_TFLG_TAG_CLASS) == aclass);
// If not overridding the tag, |aclass| is ignored and should be zero.
assert(tag != -1 || aclass == 0);
// All fields are pointers, except for boolean |ASN1_ITYPE_PRIMITIVE|s.
// Optional primitives are handled later.
if ((it->itype != ASN1_ITYPE_PRIMITIVE) && !*pval) {
if (optional) {
return 0;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE);
return -1;
}
switch (it->itype) {
case ASN1_ITYPE_PRIMITIVE:
if (it->templates) {
if (it->templates->flags & ASN1_TFLG_OPTIONAL) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
return asn1_template_ex_i2d(pval, out, it->templates, tag, aclass);
}
return asn1_i2d_ex_primitive(pval, out, it, tag, aclass, optional);
case ASN1_ITYPE_MSTRING:
// It never makes sense for multi-strings to have implicit tagging, so
// if tag != -1, then this looks like an error in the template.
if (tag != -1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
return asn1_i2d_ex_primitive(pval, out, it, -1, 0, optional);
case ASN1_ITYPE_CHOICE: {
// It never makes sense for CHOICE types to have implicit tagging, so if
// tag != -1, then this looks like an error in the template.
if (tag != -1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
i = asn1_get_choice_selector(pval, it);
if (i < 0 || i >= it->tcount) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NO_MATCHING_CHOICE_TYPE);
return -1;
}
const ASN1_TEMPLATE *chtt = it->templates + i;
if (chtt->flags & ASN1_TFLG_OPTIONAL) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
ASN1_VALUE **pchval = asn1_get_field_ptr(pval, chtt);
return asn1_template_ex_i2d(pchval, out, chtt, -1, 0);
}
case ASN1_ITYPE_EXTERN: {
// If new style i2d it does all the work
const ASN1_EXTERN_FUNCS *ef = it->funcs;
int ret = ef->asn1_ex_i2d(pval, out, it, tag, aclass);
if (ret == 0) {
// |asn1_ex_i2d| should never return zero. We have already checked
// for optional values generically, and |ASN1_ITYPE_EXTERN| fields
// must be pointers.
OPENSSL_PUT_ERROR(ASN1, ERR_R_INTERNAL_ERROR);
return -1;
}
return ret;
}
case ASN1_ITYPE_SEQUENCE: {
i = asn1_enc_restore(&seqcontlen, out, pval, it);
// An error occurred
if (i < 0) {
return -1;
}
// We have a valid cached encoding...
if (i > 0) {
return seqcontlen;
}
// Otherwise carry on
seqcontlen = 0;
// If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL
if (tag == -1) {
tag = V_ASN1_SEQUENCE;
aclass = V_ASN1_UNIVERSAL;
}
// First work out sequence content length
for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) {
const ASN1_TEMPLATE *seqtt;
ASN1_VALUE **pseqval;
int tmplen;
seqtt = asn1_do_adb(pval, tt, 1);
if (!seqtt) {
return -1;
}
pseqval = asn1_get_field_ptr(pval, seqtt);
tmplen = asn1_template_ex_i2d(pseqval, NULL, seqtt, -1, 0);
if (tmplen == -1 || (tmplen > INT_MAX - seqcontlen)) {
return -1;
}
seqcontlen += tmplen;
}
seqlen = ASN1_object_size(/*constructed=*/1, seqcontlen, tag);
if (!out || seqlen == -1) {
return seqlen;
}
// Output SEQUENCE header
ASN1_put_object(out, /*constructed=*/1, seqcontlen, tag, aclass);
for (i = 0, tt = it->templates; i < it->tcount; tt++, i++) {
const ASN1_TEMPLATE *seqtt;
ASN1_VALUE **pseqval;
seqtt = asn1_do_adb(pval, tt, 1);
if (!seqtt) {
return -1;
}
pseqval = asn1_get_field_ptr(pval, seqtt);
if (asn1_template_ex_i2d(pseqval, out, seqtt, -1, 0) < 0) {
return -1;
}
}
return seqlen;
}
default:
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
}
// asn1_template_ex_i2d behaves like |asn1_item_ex_i2d_opt| but uses an
// |ASN1_TEMPLATE| instead of an |ASN1_ITEM|. An |ASN1_TEMPLATE| wraps an
// |ASN1_ITEM| with modifiers such as tagging, SEQUENCE or SET, etc. Instead of
// taking an |optional| parameter, it uses the |ASN1_TFLG_OPTIONAL| flag.
static int asn1_template_ex_i2d(ASN1_VALUE **pval, unsigned char **out,
const ASN1_TEMPLATE *tt, int tag, int iclass) {
int i, ret, flags, ttag, tclass;
size_t j;
flags = tt->flags;
// Historically, |iclass| was repurposed to pass additional flags into the
// encoding process.
assert((iclass & ASN1_TFLG_TAG_CLASS) == iclass);
// If not overridding the tag, |iclass| is ignored and should be zero.
assert(tag != -1 || iclass == 0);
// Work out tag and class to use: tagging may come either from the
// template or the arguments, not both because this would create
// ambiguity.
if (flags & ASN1_TFLG_TAG_MASK) {
// Error if argument and template tagging
if (tag != -1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
return -1;
}
// Get tagging from template
ttag = tt->tag;
tclass = flags & ASN1_TFLG_TAG_CLASS;
} else if (tag != -1) {
// No template tagging, get from arguments
ttag = tag;
tclass = iclass & ASN1_TFLG_TAG_CLASS;
} else {
ttag = -1;
tclass = 0;
}
const int optional = (flags & ASN1_TFLG_OPTIONAL) != 0;
// At this point 'ttag' contains the outer tag to use, and 'tclass' is the
// class.
if (flags & ASN1_TFLG_SK_MASK) {
// SET OF, SEQUENCE OF
STACK_OF(ASN1_VALUE) *sk = (STACK_OF(ASN1_VALUE) *)*pval;
int isset, sktag, skaclass;
int skcontlen, sklen;
ASN1_VALUE *skitem;
if (!*pval) {
if (optional) {
return 0;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE);
return -1;
}
if (flags & ASN1_TFLG_SET_OF) {
isset = 1;
// Historically, types with both bits set were mutated when
// serialized to apply the sort. We no longer support this.
assert((flags & ASN1_TFLG_SEQUENCE_OF) == 0);
} else {
isset = 0;
}
// Work out inner tag value: if EXPLICIT or no tagging use underlying
// type.
if ((ttag != -1) && !(flags & ASN1_TFLG_EXPTAG)) {
sktag = ttag;
skaclass = tclass;
} else {
skaclass = V_ASN1_UNIVERSAL;
if (isset) {
sktag = V_ASN1_SET;
} else {
sktag = V_ASN1_SEQUENCE;
}
}
// Determine total length of items
skcontlen = 0;
for (j = 0; j < sk_ASN1_VALUE_num(sk); j++) {
int tmplen;
skitem = sk_ASN1_VALUE_value(sk, j);
tmplen = ASN1_item_ex_i2d(&skitem, NULL, ASN1_ITEM_ptr(tt->item), -1, 0);
if (tmplen == -1 || (skcontlen > INT_MAX - tmplen)) {
return -1;
}
skcontlen += tmplen;
}
sklen = ASN1_object_size(/*constructed=*/1, skcontlen, sktag);
if (sklen == -1) {
return -1;
}
// If EXPLICIT need length of surrounding tag
if (flags & ASN1_TFLG_EXPTAG) {
ret = ASN1_object_size(/*constructed=*/1, sklen, ttag);
} else {
ret = sklen;
}
if (!out || ret == -1) {
return ret;
}
// Now encode this lot...
// EXPLICIT tag
if (flags & ASN1_TFLG_EXPTAG) {
ASN1_put_object(out, /*constructed=*/1, sklen, ttag, tclass);
}
// SET or SEQUENCE and IMPLICIT tag
ASN1_put_object(out, /*constructed=*/1, skcontlen, sktag, skaclass);
// And the stuff itself
if (!asn1_set_seq_out(sk, out, skcontlen, ASN1_ITEM_ptr(tt->item), isset)) {
return -1;
}
return ret;
}
if (flags & ASN1_TFLG_EXPTAG) {
// EXPLICIT tagging
// Find length of tagged item
i = asn1_item_ex_i2d_opt(pval, NULL, ASN1_ITEM_ptr(tt->item), -1, 0,
optional);
if (i <= 0) {
return i;
}
// Find length of EXPLICIT tag
ret = ASN1_object_size(/*constructed=*/1, i, ttag);
if (out && ret != -1) {
// Output tag and item
ASN1_put_object(out, /*constructed=*/1, i, ttag, tclass);
if (ASN1_item_ex_i2d(pval, out, ASN1_ITEM_ptr(tt->item), -1, 0) < 0) {
return -1;
}
}
return ret;
}
// Either normal or IMPLICIT tagging
return asn1_item_ex_i2d_opt(pval, out, ASN1_ITEM_ptr(tt->item), ttag, tclass,
optional);
}
// Temporary structure used to hold DER encoding of items for SET OF
typedef struct {
unsigned char *data;
int length;
} DER_ENC;
static int der_cmp(const void *a, const void *b) {
const DER_ENC *d1 = a, *d2 = b;
int cmplen, i;
cmplen = (d1->length < d2->length) ? d1->length : d2->length;
i = OPENSSL_memcmp(d1->data, d2->data, cmplen);
if (i) {
return i;
}
return d1->length - d2->length;
}
// asn1_set_seq_out writes |sk| to |out| under the i2d output convention,
// excluding the tag and length. It returns one on success and zero on error.
// |skcontlen| must be the total encoded size. If |do_sort| is non-zero, the
// elements are sorted for a SET OF type. Each element of |sk| has type
// |item|.
static int asn1_set_seq_out(STACK_OF(ASN1_VALUE) *sk, unsigned char **out,
int skcontlen, const ASN1_ITEM *item, int do_sort) {
// No need to sort if there are fewer than two items.
if (!do_sort || sk_ASN1_VALUE_num(sk) < 2) {
for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) {
ASN1_VALUE *skitem = sk_ASN1_VALUE_value(sk, i);
if (ASN1_item_ex_i2d(&skitem, out, item, -1, 0) < 0) {
return 0;
}
}
return 1;
}
if (sk_ASN1_VALUE_num(sk) > ((size_t)-1) / sizeof(DER_ENC)) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_OVERFLOW);
return 0;
}
int ret = 0;
unsigned char *const buf = OPENSSL_malloc(skcontlen);
DER_ENC *encoded = OPENSSL_malloc(sk_ASN1_VALUE_num(sk) * sizeof(*encoded));
if (encoded == NULL || buf == NULL) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
goto err;
}
// Encode all the elements into |buf| and populate |encoded|.
unsigned char *p = buf;
for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) {
ASN1_VALUE *skitem = sk_ASN1_VALUE_value(sk, i);
encoded[i].data = p;
encoded[i].length = ASN1_item_ex_i2d(&skitem, &p, item, -1, 0);
if (encoded[i].length < 0) {
goto err;
}
assert(p - buf <= skcontlen);
}
qsort(encoded, sk_ASN1_VALUE_num(sk), sizeof(*encoded), der_cmp);
// Output the elements in sorted order.
p = *out;
for (size_t i = 0; i < sk_ASN1_VALUE_num(sk); i++) {
OPENSSL_memcpy(p, encoded[i].data, encoded[i].length);
p += encoded[i].length;
}
*out = p;
ret = 1;
err:
OPENSSL_free(encoded);
OPENSSL_free(buf);
return ret;
}
// asn1_i2d_ex_primitive behaves like |ASN1_item_ex_i2d| but |item| must be a
// a PRIMITIVE or MSTRING type that is not an |ASN1_ITEM_TEMPLATE|.
static int asn1_i2d_ex_primitive(ASN1_VALUE **pval, unsigned char **out,
const ASN1_ITEM *it, int tag, int aclass,
int optional) {
// Get length of content octets and maybe find out the underlying type.
int omit;
int utype = it->utype;
int len = asn1_ex_i2c(pval, NULL, &omit, &utype, it);
if (len < 0) {
return -1;
}
if (omit) {
if (optional) {
return 0;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_MISSING_VALUE);
return -1;
}
// If SEQUENCE, SET or OTHER then header is included in pseudo content
// octets so don't include tag+length. We need to check here because the
// call to asn1_ex_i2c() could change utype.
int usetag =
utype != V_ASN1_SEQUENCE && utype != V_ASN1_SET && utype != V_ASN1_OTHER;
// If not implicitly tagged get tag from underlying type
if (tag == -1) {
tag = utype;
}
// Output tag+length followed by content octets
if (out) {
if (usetag) {
ASN1_put_object(out, /*constructed=*/0, len, tag, aclass);
}
int len2 = asn1_ex_i2c(pval, *out, &omit, &utype, it);
if (len2 < 0) {
return -1;
}
assert(len == len2);
assert(!omit);
*out += len;
}
if (usetag) {
return ASN1_object_size(/*constructed=*/0, len, tag);
}
return len;
}
// asn1_ex_i2c writes the |*pval| to |cout| under the i2d output convention,
// excluding the tag and length. It returns the number of bytes written,
// possibly zero, on success or -1 on error. If |*pval| should be omitted, it
// returns zero and sets |*out_omit| to true.
//
// If |it| is an MSTRING or ANY type, it gets the underlying type from |*pval|,
// which must be an |ASN1_STRING| or |ASN1_TYPE|, respectively. It then updates
// |*putype| with the tag number of type used, or |V_ASN1_OTHER| if it was not a
// universal type. If |*putype| is set to |V_ASN1_SEQUENCE|, |V_ASN1_SET|, or
// |V_ASN1_OTHER|, it additionally outputs the tag and length, so the caller
// must not do so.
//
// Otherwise, |*putype| must contain |it->utype|.
//
// WARNING: Unlike most functions in this file, |asn1_ex_i2c| can return zero
// without omitting the element. ASN.1 values may have empty contents.
static int asn1_ex_i2c(ASN1_VALUE **pval, unsigned char *cout, int *out_omit,
int *putype, const ASN1_ITEM *it) {
ASN1_BOOLEAN *tbool = NULL;
ASN1_STRING *strtmp;
ASN1_OBJECT *otmp;
int utype;
const unsigned char *cont;
unsigned char c;
int len;
// Historically, |it->funcs| for primitive types contained an
// |ASN1_PRIMITIVE_FUNCS| table of callbacks.
assert(it->funcs == NULL);
*out_omit = 0;
// Should type be omitted?
if ((it->itype != ASN1_ITYPE_PRIMITIVE) || (it->utype != V_ASN1_BOOLEAN)) {
if (!*pval) {
*out_omit = 1;
return 0;
}
}
if (it->itype == ASN1_ITYPE_MSTRING) {
// If MSTRING type set the underlying type
strtmp = (ASN1_STRING *)*pval;
utype = strtmp->type;
if (utype < 0 && utype != V_ASN1_OTHER) {
// MSTRINGs can have type -1 when default-constructed.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TYPE);
return -1;
}
// Negative INTEGER and ENUMERATED values use |ASN1_STRING| type values
// that do not match their corresponding utype values. INTEGERs cannot
// participate in MSTRING types, but ENUMERATEDs can.
//
// TODO(davidben): Is this a bug? Although arguably one of the MSTRING
// types should contain more values, rather than less. See
// https://crbug.com/boringssl/412. But it is not possible to fit all
// possible ANY values into an |ASN1_STRING|, so matching the spec here
// is somewhat hopeless.
if (utype == V_ASN1_NEG_INTEGER) {
utype = V_ASN1_INTEGER;
} else if (utype == V_ASN1_NEG_ENUMERATED) {
utype = V_ASN1_ENUMERATED;
}
*putype = utype;
} else if (it->utype == V_ASN1_ANY) {
// If ANY set type and pointer to value
ASN1_TYPE *typ;
typ = (ASN1_TYPE *)*pval;
utype = typ->type;
if (utype < 0 && utype != V_ASN1_OTHER) {
// |ASN1_TYPE|s can have type -1 when default-constructed.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TYPE);
return -1;
}
*putype = utype;
pval = &typ->value.asn1_value;
} else {
utype = *putype;
}
switch (utype) {
case V_ASN1_OBJECT:
otmp = (ASN1_OBJECT *)*pval;
cont = otmp->data;
len = otmp->length;
if (len == 0) {
// Some |ASN1_OBJECT|s do not have OIDs and cannot be serialized.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OBJECT);
return -1;
}
break;
case V_ASN1_NULL:
cont = NULL;
len = 0;
break;
case V_ASN1_BOOLEAN:
tbool = (ASN1_BOOLEAN *)pval;
if (*tbool == -1) {
*out_omit = 1;
return 0;
}
if (it->utype != V_ASN1_ANY) {
// Default handling if value == size field then omit
if ((*tbool && (it->size > 0)) || (!*tbool && !it->size)) {
*out_omit = 1;
return 0;
}
}
c = *tbool ? 0xff : 0x00;
cont = &c;
len = 1;
break;
case V_ASN1_BIT_STRING: {
int ret =
i2c_ASN1_BIT_STRING((ASN1_BIT_STRING *)*pval, cout ? &cout : NULL);
// |i2c_ASN1_BIT_STRING| returns zero on error instead of -1.
return ret <= 0 ? -1 : ret;
}
case V_ASN1_INTEGER:
case V_ASN1_ENUMERATED: {
// |i2c_ASN1_INTEGER| also handles ENUMERATED.
int ret = i2c_ASN1_INTEGER((ASN1_INTEGER *)*pval, cout ? &cout : NULL);
// |i2c_ASN1_INTEGER| returns zero on error instead of -1.
return ret <= 0 ? -1 : ret;
}
case V_ASN1_OCTET_STRING:
case V_ASN1_NUMERICSTRING:
case V_ASN1_PRINTABLESTRING:
case V_ASN1_T61STRING:
case V_ASN1_VIDEOTEXSTRING:
case V_ASN1_IA5STRING:
case V_ASN1_UTCTIME:
case V_ASN1_GENERALIZEDTIME:
case V_ASN1_GRAPHICSTRING:
case V_ASN1_VISIBLESTRING:
case V_ASN1_GENERALSTRING:
case V_ASN1_UNIVERSALSTRING:
case V_ASN1_BMPSTRING:
case V_ASN1_UTF8STRING:
case V_ASN1_SEQUENCE:
case V_ASN1_SET:
default:
// All based on ASN1_STRING and handled the same
strtmp = (ASN1_STRING *)*pval;
cont = strtmp->data;
len = strtmp->length;
break;
}
if (cout && len) {
OPENSSL_memcpy(cout, cont, len);
}
return len;
}