| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <ctype.h> |
| #include <limits.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include <openssl/asn1.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/thread.h> |
| #include <openssl/x509.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| |
| static CRYPTO_EX_DATA_CLASS g_ex_data_class = |
| CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; |
| |
| // CRL score values |
| |
| // No unhandled critical extensions |
| #define CRL_SCORE_NOCRITICAL 0x100 |
| |
| // certificate is within CRL scope |
| #define CRL_SCORE_SCOPE 0x080 |
| |
| // CRL times valid |
| #define CRL_SCORE_TIME 0x040 |
| |
| // Issuer name matches certificate |
| #define CRL_SCORE_ISSUER_NAME 0x020 |
| |
| // If this score or above CRL is probably valid |
| #define CRL_SCORE_VALID \ |
| (CRL_SCORE_NOCRITICAL | CRL_SCORE_TIME | CRL_SCORE_SCOPE) |
| |
| // CRL issuer is certificate issuer |
| #define CRL_SCORE_ISSUER_CERT 0x018 |
| |
| // CRL issuer is on certificate path |
| #define CRL_SCORE_SAME_PATH 0x008 |
| |
| // CRL issuer matches CRL AKID |
| #define CRL_SCORE_AKID 0x004 |
| |
| static int null_callback(int ok, X509_STORE_CTX *e); |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); |
| static int check_chain_extensions(X509_STORE_CTX *ctx); |
| static int check_name_constraints(X509_STORE_CTX *ctx); |
| static int check_id(X509_STORE_CTX *ctx); |
| static int check_trust(X509_STORE_CTX *ctx); |
| static int check_revocation(X509_STORE_CTX *ctx); |
| static int check_cert(X509_STORE_CTX *ctx); |
| static int check_policy(X509_STORE_CTX *ctx); |
| |
| static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x); |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, |
| X509 *x); |
| static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x); |
| static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, |
| int *pcrl_score); |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score); |
| static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl); |
| static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x); |
| |
| static int internal_verify(X509_STORE_CTX *ctx); |
| |
| static int null_callback(int ok, X509_STORE_CTX *e) { return ok; } |
| |
| // cert_self_signed checks if |x| is self-signed. If |x| is valid, it returns |
| // one and sets |*out_is_self_signed| to the result. If |x| is invalid, it |
| // returns zero. |
| static int cert_self_signed(X509 *x, int *out_is_self_signed) { |
| if (!x509v3_cache_extensions(x)) { |
| return 0; |
| } |
| *out_is_self_signed = (x->ex_flags & EXFLAG_SS) != 0; |
| return 1; |
| } |
| |
| static int call_verify_cb(int ok, X509_STORE_CTX *ctx) { |
| ok = ctx->verify_cb(ok, ctx); |
| // Historically, callbacks returning values like -1 would be treated as a mix |
| // of success or failure. Insert that callers check correctly. |
| // |
| // TODO(davidben): Also use this wrapper to constrain which errors may be |
| // suppressed, and ensure all |verify_cb| calls remember to fill in an error. |
| BSSL_CHECK(ok == 0 || ok == 1); |
| return ok; |
| } |
| |
| // Given a certificate try and find an exact match in the store |
| static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) { |
| STACK_OF(X509) *certs; |
| X509 *xtmp = NULL; |
| size_t i; |
| // Lookup all certs with matching subject name |
| certs = X509_STORE_CTX_get1_certs(ctx, X509_get_subject_name(x)); |
| if (certs == NULL) { |
| return NULL; |
| } |
| // Look for exact match |
| for (i = 0; i < sk_X509_num(certs); i++) { |
| xtmp = sk_X509_value(certs, i); |
| if (!X509_cmp(xtmp, x)) { |
| break; |
| } |
| } |
| if (i < sk_X509_num(certs)) { |
| X509_up_ref(xtmp); |
| } else { |
| xtmp = NULL; |
| } |
| sk_X509_pop_free(certs, X509_free); |
| return xtmp; |
| } |
| |
| int X509_verify_cert(X509_STORE_CTX *ctx) { |
| X509 *chain_ss = NULL; |
| int bad_chain = 0; |
| X509_VERIFY_PARAM *param = ctx->param; |
| int i, ok = 0; |
| int j, retry, trust; |
| STACK_OF(X509) *sktmp = NULL; |
| |
| if (ctx->cert == NULL) { |
| OPENSSL_PUT_ERROR(X509, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); |
| ctx->error = X509_V_ERR_INVALID_CALL; |
| return 0; |
| } |
| |
| if (ctx->chain != NULL) { |
| // This X509_STORE_CTX has already been used to verify a cert. We |
| // cannot do another one. |
| OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| ctx->error = X509_V_ERR_INVALID_CALL; |
| return 0; |
| } |
| |
| if (ctx->param->flags & |
| (X509_V_FLAG_EXTENDED_CRL_SUPPORT | X509_V_FLAG_USE_DELTAS)) { |
| // We do not support indirect or delta CRLs. The flags still exist for |
| // compatibility with bindings libraries, but to ensure we do not |
| // inadvertently skip a CRL check that the caller expects, fail closed. |
| OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| ctx->error = X509_V_ERR_INVALID_CALL; |
| return 0; |
| } |
| |
| // first we make sure the chain we are going to build is present and that |
| // the first entry is in place |
| ctx->chain = sk_X509_new_null(); |
| if (ctx->chain == NULL || !sk_X509_push(ctx->chain, ctx->cert)) { |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| goto end; |
| } |
| X509_up_ref(ctx->cert); |
| ctx->last_untrusted = 1; |
| |
| // We use a temporary STACK so we can chop and hack at it. |
| if (ctx->untrusted != NULL && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) { |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| goto end; |
| } |
| |
| int num = (int)sk_X509_num(ctx->chain); |
| X509 *x = sk_X509_value(ctx->chain, num - 1); |
| // |param->depth| does not include the leaf certificate or the trust anchor, |
| // so the maximum size is 2 more. |
| int max_chain = param->depth >= INT_MAX - 2 ? INT_MAX : param->depth + 2; |
| |
| for (;;) { |
| if (num >= max_chain) { |
| // FIXME: If this happens, we should take note of it and, if appropriate, |
| // use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later. |
| break; |
| } |
| |
| int is_self_signed; |
| if (!cert_self_signed(x, &is_self_signed)) { |
| ctx->error = X509_V_ERR_INVALID_EXTENSION; |
| goto end; |
| } |
| |
| // If we are self signed, we break |
| if (is_self_signed) { |
| break; |
| } |
| // If asked see if we can find issuer in trusted store first |
| if (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) { |
| X509 *issuer = get_trusted_issuer(ctx, x); |
| if (issuer != NULL) { |
| // Free the certificate. It will be picked up again later. |
| X509_free(issuer); |
| break; |
| } |
| } |
| |
| // If we were passed a cert chain, use it first |
| if (sktmp != NULL) { |
| X509 *issuer = find_issuer(ctx, sktmp, x); |
| if (issuer != NULL) { |
| if (!sk_X509_push(ctx->chain, issuer)) { |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| goto end; |
| } |
| X509_up_ref(issuer); |
| (void)sk_X509_delete_ptr(sktmp, issuer); |
| ctx->last_untrusted++; |
| x = issuer; |
| num++; |
| // reparse the full chain for the next one |
| continue; |
| } |
| } |
| break; |
| } |
| |
| // Remember how many untrusted certs we have |
| j = num; |
| // at this point, chain should contain a list of untrusted certificates. |
| // We now need to add at least one trusted one, if possible, otherwise we |
| // complain. |
| |
| do { |
| // Examine last certificate in chain and see if it is self signed. |
| i = (int)sk_X509_num(ctx->chain); |
| x = sk_X509_value(ctx->chain, i - 1); |
| |
| int is_self_signed; |
| if (!cert_self_signed(x, &is_self_signed)) { |
| ctx->error = X509_V_ERR_INVALID_EXTENSION; |
| goto end; |
| } |
| |
| if (is_self_signed) { |
| // we have a self signed certificate |
| if (sk_X509_num(ctx->chain) == 1) { |
| // We have a single self signed certificate: see if we can |
| // find it in the store. We must have an exact match to avoid |
| // possible impersonation. |
| X509 *issuer = get_trusted_issuer(ctx, x); |
| if (issuer == NULL || X509_cmp(x, issuer) != 0) { |
| X509_free(issuer); |
| ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT; |
| ctx->current_cert = x; |
| ctx->error_depth = i - 1; |
| bad_chain = 1; |
| if (!call_verify_cb(0, ctx)) { |
| goto end; |
| } |
| } else { |
| // We have a match: replace certificate with store |
| // version so we get any trust settings. |
| X509_free(x); |
| x = issuer; |
| (void)sk_X509_set(ctx->chain, i - 1, x); |
| ctx->last_untrusted = 0; |
| } |
| } else { |
| // extract and save self signed certificate for later use |
| chain_ss = sk_X509_pop(ctx->chain); |
| ctx->last_untrusted--; |
| num--; |
| j--; |
| x = sk_X509_value(ctx->chain, num - 1); |
| } |
| } |
| // We now lookup certs from the certificate store |
| for (;;) { |
| if (num >= max_chain) { |
| // FIXME: If this happens, we should take note of it and, if |
| // appropriate, use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later. |
| break; |
| } |
| if (!cert_self_signed(x, &is_self_signed)) { |
| ctx->error = X509_V_ERR_INVALID_EXTENSION; |
| goto end; |
| } |
| // If we are self signed, we break |
| if (is_self_signed) { |
| break; |
| } |
| X509 *issuer = get_trusted_issuer(ctx, x); |
| if (issuer == NULL) { |
| break; |
| } |
| x = issuer; |
| if (!sk_X509_push(ctx->chain, x)) { |
| X509_free(issuer); |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| goto end; |
| } |
| num++; |
| } |
| |
| // we now have our chain, lets check it... |
| trust = check_trust(ctx); |
| |
| // If explicitly rejected error |
| if (trust == X509_TRUST_REJECTED) { |
| goto end; |
| } |
| // If it's not explicitly trusted then check if there is an alternative |
| // chain that could be used. We only do this if we haven't already |
| // checked via TRUSTED_FIRST and the user hasn't switched off alternate |
| // chain checking |
| retry = 0; |
| if (trust != X509_TRUST_TRUSTED && |
| !(ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) && |
| !(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) { |
| while (j-- > 1) { |
| X509 *issuer = |
| get_trusted_issuer(ctx, sk_X509_value(ctx->chain, j - 1)); |
| // Check if we found an alternate chain |
| if (issuer != NULL) { |
| // Free up the found cert we'll add it again later |
| X509_free(issuer); |
| |
| // Dump all the certs above this point - we've found an |
| // alternate chain |
| while (num > j) { |
| X509_free(sk_X509_pop(ctx->chain)); |
| num--; |
| } |
| ctx->last_untrusted = (int)sk_X509_num(ctx->chain); |
| retry = 1; |
| break; |
| } |
| } |
| } |
| } while (retry); |
| |
| // If not explicitly trusted then indicate error unless it's a single |
| // self signed certificate in which case we've indicated an error already |
| // and set bad_chain == 1 |
| if (trust != X509_TRUST_TRUSTED && !bad_chain) { |
| if (chain_ss == NULL || |
| !x509_check_issued_with_callback(ctx, x, chain_ss)) { |
| if (ctx->last_untrusted >= num) { |
| ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY; |
| } else { |
| ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT; |
| } |
| ctx->current_cert = x; |
| } else { |
| if (!sk_X509_push(ctx->chain, chain_ss)) { |
| ctx->error = X509_V_ERR_OUT_OF_MEM; |
| goto end; |
| } |
| num++; |
| ctx->last_untrusted = num; |
| ctx->current_cert = chain_ss; |
| ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN; |
| chain_ss = NULL; |
| } |
| |
| ctx->error_depth = num - 1; |
| bad_chain = 1; |
| if (!call_verify_cb(0, ctx)) { |
| goto end; |
| } |
| } |
| |
| // We have the chain complete: now we need to check its purpose |
| if (!check_chain_extensions(ctx) || // |
| !check_id(ctx) || |
| // We check revocation status after copying parameters because they may be |
| // needed for CRL signature verification. |
| !check_revocation(ctx) || // |
| !internal_verify(ctx) || // |
| !check_name_constraints(ctx) || |
| // TODO(davidben): Does |check_policy| still need to be conditioned on |
| // |!bad_chain|? DoS concerns have been resolved. |
| (!bad_chain && !check_policy(ctx))) { |
| goto end; |
| } |
| |
| ok = 1; |
| |
| end: |
| sk_X509_free(sktmp); |
| X509_free(chain_ss); |
| |
| // Safety net, error returns must set ctx->error |
| if (!ok && ctx->error == X509_V_OK) { |
| ctx->error = X509_V_ERR_UNSPECIFIED; |
| } |
| return ok; |
| } |
| |
| // Given a STACK_OF(X509) find the issuer of cert (if any) |
| |
| static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) { |
| size_t i; |
| X509 *issuer; |
| for (i = 0; i < sk_X509_num(sk); i++) { |
| issuer = sk_X509_value(sk, i); |
| if (x509_check_issued_with_callback(ctx, x, issuer)) { |
| return issuer; |
| } |
| } |
| return NULL; |
| } |
| |
| // Given a possible certificate and issuer check them |
| |
| int x509_check_issued_with_callback(X509_STORE_CTX *ctx, X509 *x, |
| X509 *issuer) { |
| int ret; |
| ret = X509_check_issued(issuer, x); |
| if (ret == X509_V_OK) { |
| return 1; |
| } |
| // If we haven't asked for issuer errors don't set ctx |
| if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK)) { |
| return 0; |
| } |
| |
| ctx->error = ret; |
| ctx->current_cert = x; |
| return call_verify_cb(0, ctx); |
| } |
| |
| static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x) { |
| X509 *issuer; |
| if (ctx->trusted_stack != NULL) { |
| // Ignore the store and use the configured stack instead. |
| issuer = find_issuer(ctx, ctx->trusted_stack, x); |
| if (issuer != NULL) { |
| X509_up_ref(issuer); |
| } |
| return issuer; |
| } |
| |
| if (!X509_STORE_CTX_get1_issuer(&issuer, ctx, x)) { |
| return NULL; |
| } |
| return issuer; |
| } |
| |
| // Check a certificate chains extensions for consistency with the supplied |
| // purpose |
| |
| static int check_chain_extensions(X509_STORE_CTX *ctx) { |
| int plen = 0; |
| int purpose = ctx->param->purpose; |
| |
| // Check all untrusted certificates |
| for (int i = 0; i < ctx->last_untrusted; i++) { |
| X509 *x = sk_X509_value(ctx->chain, i); |
| if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && |
| (x->ex_flags & EXFLAG_CRITICAL)) { |
| ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION; |
| ctx->error_depth = i; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| int must_be_ca = i > 0; |
| if (must_be_ca && !X509_check_ca(x)) { |
| ctx->error = X509_V_ERR_INVALID_CA; |
| ctx->error_depth = i; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| if (ctx->param->purpose > 0 && |
| X509_check_purpose(x, purpose, must_be_ca) != 1) { |
| ctx->error = X509_V_ERR_INVALID_PURPOSE; |
| ctx->error_depth = i; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| // Check pathlen if not self issued |
| if (i > 1 && !(x->ex_flags & EXFLAG_SI) && x->ex_pathlen != -1 && |
| plen > x->ex_pathlen + 1) { |
| ctx->error = X509_V_ERR_PATH_LENGTH_EXCEEDED; |
| ctx->error_depth = i; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| // Increment path length if not self issued |
| if (!(x->ex_flags & EXFLAG_SI)) { |
| plen++; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int reject_dns_name_in_common_name(X509 *x509) { |
| const X509_NAME *name = X509_get_subject_name(x509); |
| int i = -1; |
| for (;;) { |
| i = X509_NAME_get_index_by_NID(name, NID_commonName, i); |
| if (i == -1) { |
| return X509_V_OK; |
| } |
| |
| const X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, i); |
| const ASN1_STRING *common_name = X509_NAME_ENTRY_get_data(entry); |
| unsigned char *idval; |
| int idlen = ASN1_STRING_to_UTF8(&idval, common_name); |
| if (idlen < 0) { |
| return X509_V_ERR_OUT_OF_MEM; |
| } |
| // Only process attributes that look like host names. Note it is |
| // important that this check be mirrored in |X509_check_host|. |
| int looks_like_dns = x509v3_looks_like_dns_name(idval, (size_t)idlen); |
| OPENSSL_free(idval); |
| if (looks_like_dns) { |
| return X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS; |
| } |
| } |
| } |
| |
| static int check_name_constraints(X509_STORE_CTX *ctx) { |
| int i, j, rv; |
| int has_name_constraints = 0; |
| // Check name constraints for all certificates |
| for (i = (int)sk_X509_num(ctx->chain) - 1; i >= 0; i--) { |
| X509 *x = sk_X509_value(ctx->chain, i); |
| // Ignore self issued certs unless last in chain |
| if (i && (x->ex_flags & EXFLAG_SI)) { |
| continue; |
| } |
| // Check against constraints for all certificates higher in chain |
| // including trust anchor. Trust anchor not strictly speaking needed |
| // but if it includes constraints it is to be assumed it expects them |
| // to be obeyed. |
| for (j = (int)sk_X509_num(ctx->chain) - 1; j > i; j--) { |
| NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc; |
| if (nc) { |
| has_name_constraints = 1; |
| rv = NAME_CONSTRAINTS_check(x, nc); |
| switch (rv) { |
| case X509_V_OK: |
| continue; |
| case X509_V_ERR_OUT_OF_MEM: |
| ctx->error = rv; |
| return 0; |
| default: |
| ctx->error = rv; |
| ctx->error_depth = i; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| // Name constraints do not match against the common name, but |
| // |X509_check_host| still implements the legacy behavior where, on |
| // certificates lacking a SAN list, DNS-like names in the common name are |
| // checked instead. |
| // |
| // While we could apply the name constraints to the common name, name |
| // constraints are rare enough that can hold such certificates to a higher |
| // standard. Note this does not make "DNS-like" heuristic failures any |
| // worse. A decorative common-name misidentified as a DNS name would fail |
| // the name constraint anyway. |
| X509 *leaf = sk_X509_value(ctx->chain, 0); |
| if (has_name_constraints && leaf->altname == NULL) { |
| rv = reject_dns_name_in_common_name(leaf); |
| switch (rv) { |
| case X509_V_OK: |
| break; |
| case X509_V_ERR_OUT_OF_MEM: |
| ctx->error = rv; |
| return 0; |
| default: |
| ctx->error = rv; |
| ctx->error_depth = i; |
| ctx->current_cert = leaf; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int check_id_error(X509_STORE_CTX *ctx, int errcode) { |
| ctx->error = errcode; |
| ctx->current_cert = ctx->cert; |
| ctx->error_depth = 0; |
| return call_verify_cb(0, ctx); |
| } |
| |
| static int check_hosts(X509 *x, X509_VERIFY_PARAM *param) { |
| size_t i; |
| size_t n = sk_OPENSSL_STRING_num(param->hosts); |
| char *name; |
| |
| for (i = 0; i < n; ++i) { |
| name = sk_OPENSSL_STRING_value(param->hosts, i); |
| if (X509_check_host(x, name, strlen(name), param->hostflags, NULL) > 0) { |
| return 1; |
| } |
| } |
| return n == 0; |
| } |
| |
| static int check_id(X509_STORE_CTX *ctx) { |
| X509_VERIFY_PARAM *vpm = ctx->param; |
| X509 *x = ctx->cert; |
| if (vpm->poison) { |
| if (!check_id_error(ctx, X509_V_ERR_INVALID_CALL)) { |
| return 0; |
| } |
| } |
| if (vpm->hosts && check_hosts(x, vpm) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) { |
| return 0; |
| } |
| } |
| if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) { |
| return 0; |
| } |
| } |
| if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) { |
| if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int check_trust(X509_STORE_CTX *ctx) { |
| X509 *x = NULL; |
| // Check all trusted certificates in chain |
| for (size_t i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++) { |
| x = sk_X509_value(ctx->chain, i); |
| int trust = X509_check_trust(x, ctx->param->trust, 0); |
| // If explicitly trusted return trusted |
| if (trust == X509_TRUST_TRUSTED) { |
| return X509_TRUST_TRUSTED; |
| } |
| // If explicitly rejected notify callback and reject if not |
| // overridden. |
| if (trust == X509_TRUST_REJECTED) { |
| ctx->error_depth = (int)i; |
| ctx->current_cert = x; |
| ctx->error = X509_V_ERR_CERT_REJECTED; |
| if (!call_verify_cb(0, ctx)) { |
| return X509_TRUST_REJECTED; |
| } |
| } |
| } |
| // If we accept partial chains and have at least one trusted certificate |
| // return success. |
| if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| X509 *mx; |
| if (ctx->last_untrusted < (int)sk_X509_num(ctx->chain)) { |
| return X509_TRUST_TRUSTED; |
| } |
| x = sk_X509_value(ctx->chain, 0); |
| mx = lookup_cert_match(ctx, x); |
| if (mx) { |
| (void)sk_X509_set(ctx->chain, 0, mx); |
| X509_free(x); |
| ctx->last_untrusted = 0; |
| return X509_TRUST_TRUSTED; |
| } |
| } |
| |
| // If no trusted certs in chain at all return untrusted and allow |
| // standard (no issuer cert) etc errors to be indicated. |
| return X509_TRUST_UNTRUSTED; |
| } |
| |
| static int check_revocation(X509_STORE_CTX *ctx) { |
| if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) { |
| return 1; |
| } |
| int last; |
| if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) { |
| last = (int)sk_X509_num(ctx->chain) - 1; |
| } else { |
| last = 0; |
| } |
| for (int i = 0; i <= last; i++) { |
| ctx->error_depth = i; |
| if (!check_cert(ctx)) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int check_cert(X509_STORE_CTX *ctx) { |
| X509_CRL *crl = NULL; |
| int ok = 0, cnum = ctx->error_depth; |
| X509 *x = sk_X509_value(ctx->chain, cnum); |
| ctx->current_cert = x; |
| ctx->current_crl_issuer = NULL; |
| ctx->current_crl_score = 0; |
| |
| // Try to retrieve the relevant CRL. Note that |get_crl| sets |
| // |current_crl_issuer| and |current_crl_score|, which |check_crl| then reads. |
| // |
| // TODO(davidben): The awkward internal calling convention is a historical |
| // artifact of when these functions were user-overridable callbacks, even |
| // though there was no way to set them correctly. These callbacks have since |
| // been removed, so we can pass input and output parameters more directly. |
| if (!get_crl(ctx, &crl, x)) { |
| ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL; |
| ok = call_verify_cb(0, ctx); |
| goto err; |
| } |
| |
| ctx->current_crl = crl; |
| if (!check_crl(ctx, crl) || // |
| !cert_crl(ctx, crl, x)) { |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| X509_CRL_free(crl); |
| ctx->current_crl = NULL; |
| return ok; |
| } |
| |
| // Check CRL times against values in X509_STORE_CTX |
| static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) { |
| if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { |
| return 1; |
| } |
| |
| if (notify) { |
| ctx->current_crl = crl; |
| } |
| int64_t ptime; |
| if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { |
| ptime = ctx->param->check_time; |
| } else { |
| ptime = time(NULL); |
| } |
| |
| int i = X509_cmp_time_posix(X509_CRL_get0_lastUpdate(crl), ptime); |
| if (i == 0) { |
| if (!notify) { |
| return 0; |
| } |
| ctx->error = X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (i > 0) { |
| if (!notify) { |
| return 0; |
| } |
| ctx->error = X509_V_ERR_CRL_NOT_YET_VALID; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (X509_CRL_get0_nextUpdate(crl)) { |
| i = X509_cmp_time_posix(X509_CRL_get0_nextUpdate(crl), ptime); |
| |
| if (i == 0) { |
| if (!notify) { |
| return 0; |
| } |
| ctx->error = X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| if (i < 0) { |
| if (!notify) { |
| return 0; |
| } |
| ctx->error = X509_V_ERR_CRL_HAS_EXPIRED; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| } |
| |
| if (notify) { |
| ctx->current_crl = NULL; |
| } |
| |
| return 1; |
| } |
| |
| static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 **pissuer, |
| int *pscore, STACK_OF(X509_CRL) *crls) { |
| int crl_score, best_score = *pscore; |
| X509 *x = ctx->current_cert; |
| X509_CRL *best_crl = NULL; |
| X509 *crl_issuer = NULL, *best_crl_issuer = NULL; |
| |
| for (size_t i = 0; i < sk_X509_CRL_num(crls); i++) { |
| X509_CRL *crl = sk_X509_CRL_value(crls, i); |
| crl_score = get_crl_score(ctx, &crl_issuer, crl, x); |
| if (crl_score < best_score || crl_score == 0) { |
| continue; |
| } |
| // If current CRL is equivalent use it if it is newer |
| if (crl_score == best_score && best_crl != NULL) { |
| int day, sec; |
| if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl), |
| X509_CRL_get0_lastUpdate(crl)) == 0) { |
| continue; |
| } |
| // ASN1_TIME_diff never returns inconsistent signs for |day| |
| // and |sec|. |
| if (day <= 0 && sec <= 0) { |
| continue; |
| } |
| } |
| best_crl = crl; |
| best_crl_issuer = crl_issuer; |
| best_score = crl_score; |
| } |
| |
| if (best_crl) { |
| if (*pcrl) { |
| X509_CRL_free(*pcrl); |
| } |
| *pcrl = best_crl; |
| *pissuer = best_crl_issuer; |
| *pscore = best_score; |
| X509_CRL_up_ref(best_crl); |
| } |
| |
| if (best_score >= CRL_SCORE_VALID) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| // For a given CRL return how suitable it is for the supplied certificate |
| // 'x'. The return value is a mask of several criteria. If the issuer is not |
| // the certificate issuer this is returned in *pissuer. |
| static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl, |
| X509 *x) { |
| int crl_score = 0; |
| |
| // First see if we can reject CRL straight away |
| |
| // Invalid IDP cannot be processed |
| if (crl->idp_flags & IDP_INVALID) { |
| return 0; |
| } |
| // Reason codes and indirect CRLs are not supported. |
| if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) { |
| return 0; |
| } |
| // We do not support indirect CRLs, so the issuer names must match. |
| if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) { |
| return 0; |
| } |
| crl_score |= CRL_SCORE_ISSUER_NAME; |
| |
| if (!(crl->flags & EXFLAG_CRITICAL)) { |
| crl_score |= CRL_SCORE_NOCRITICAL; |
| } |
| |
| // Check expiry |
| if (check_crl_time(ctx, crl, 0)) { |
| crl_score |= CRL_SCORE_TIME; |
| } |
| |
| // Check authority key ID and locate certificate issuer |
| if (!crl_akid_check(ctx, crl, pissuer, &crl_score)) { |
| // If we can't locate certificate issuer at this point forget it |
| return 0; |
| } |
| |
| // Check cert for matching CRL distribution points |
| if (crl_crldp_check(x, crl, crl_score)) { |
| crl_score |= CRL_SCORE_SCOPE; |
| } |
| |
| return crl_score; |
| } |
| |
| static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer, |
| int *pcrl_score) { |
| X509 *crl_issuer = NULL; |
| X509_NAME *cnm = X509_CRL_get_issuer(crl); |
| int cidx = ctx->error_depth; |
| |
| if ((size_t)cidx != sk_X509_num(ctx->chain) - 1) { |
| cidx++; |
| } |
| |
| crl_issuer = sk_X509_value(ctx->chain, cidx); |
| |
| if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT; |
| *pissuer = crl_issuer; |
| return 1; |
| } |
| |
| for (cidx++; cidx < (int)sk_X509_num(ctx->chain); cidx++) { |
| crl_issuer = sk_X509_value(ctx->chain, cidx); |
| if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) { |
| continue; |
| } |
| if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) { |
| *pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH; |
| *pissuer = crl_issuer; |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Check for match between two dist point names: three separate cases. 1. |
| // Both are relative names and compare X509_NAME types. 2. One full, one |
| // relative. Compare X509_NAME to GENERAL_NAMES. 3. Both are full names and |
| // compare two GENERAL_NAMES. 4. One is NULL: automatic match. |
| static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) { |
| X509_NAME *nm = NULL; |
| GENERAL_NAMES *gens = NULL; |
| GENERAL_NAME *gena, *genb; |
| size_t i, j; |
| if (!a || !b) { |
| return 1; |
| } |
| if (a->type == 1) { |
| if (!a->dpname) { |
| return 0; |
| } |
| // Case 1: two X509_NAME |
| if (b->type == 1) { |
| if (!b->dpname) { |
| return 0; |
| } |
| if (!X509_NAME_cmp(a->dpname, b->dpname)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| // Case 2: set name and GENERAL_NAMES appropriately |
| nm = a->dpname; |
| gens = b->name.fullname; |
| } else if (b->type == 1) { |
| if (!b->dpname) { |
| return 0; |
| } |
| // Case 2: set name and GENERAL_NAMES appropriately |
| gens = a->name.fullname; |
| nm = b->dpname; |
| } |
| |
| // Handle case 2 with one GENERAL_NAMES and one X509_NAME |
| if (nm) { |
| for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) { |
| gena = sk_GENERAL_NAME_value(gens, i); |
| if (gena->type != GEN_DIRNAME) { |
| continue; |
| } |
| if (!X509_NAME_cmp(nm, gena->d.directoryName)) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| // Else case 3: two GENERAL_NAMES |
| |
| for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) { |
| gena = sk_GENERAL_NAME_value(a->name.fullname, i); |
| for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) { |
| genb = sk_GENERAL_NAME_value(b->name.fullname, j); |
| if (!GENERAL_NAME_cmp(gena, genb)) { |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Check CRLDP and IDP |
| static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score) { |
| if (crl->idp_flags & IDP_ONLYATTR) { |
| return 0; |
| } |
| if (x->ex_flags & EXFLAG_CA) { |
| if (crl->idp_flags & IDP_ONLYUSER) { |
| return 0; |
| } |
| } else { |
| if (crl->idp_flags & IDP_ONLYCA) { |
| return 0; |
| } |
| } |
| for (size_t i = 0; i < sk_DIST_POINT_num(x->crldp); i++) { |
| DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i); |
| // Skip distribution points with a reasons field or a CRL issuer: |
| // |
| // We do not support CRLs partitioned by reason code. RFC 5280 requires CAs |
| // include at least one DistributionPoint that covers all reasons. |
| // |
| // We also do not support indirect CRLs, and a CRL issuer can only match |
| // indirect CRLs (RFC 5280, section 6.3.3, step b.1). |
| // support. |
| if (dp->reasons != NULL && dp->CRLissuer != NULL && |
| (!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint))) { |
| return 1; |
| } |
| } |
| |
| // If the CRL does not specify an issuing distribution point, allow it to |
| // match anything. |
| // |
| // TODO(davidben): Does this match RFC 5280? It's hard to follow because RFC |
| // 5280 starts from distribution points, while this starts from CRLs. |
| return !crl->idp || !crl->idp->distpoint; |
| } |
| |
| // Retrieve CRL corresponding to current certificate. |
| static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x) { |
| X509 *issuer = NULL; |
| int crl_score = 0; |
| X509_CRL *crl = NULL; |
| if (get_crl_sk(ctx, &crl, &issuer, &crl_score, ctx->crls)) { |
| goto done; |
| } |
| |
| // Lookup CRLs from store |
| STACK_OF(X509_CRL) *skcrl = |
| X509_STORE_CTX_get1_crls(ctx, X509_get_issuer_name(x)); |
| |
| // If no CRLs found and a near match from get_crl_sk use that |
| if (!skcrl && crl) { |
| goto done; |
| } |
| |
| get_crl_sk(ctx, &crl, &issuer, &crl_score, skcrl); |
| |
| sk_X509_CRL_pop_free(skcrl, X509_CRL_free); |
| |
| done: |
| |
| // If we got any kind of CRL use it and return success |
| if (crl) { |
| ctx->current_crl_issuer = issuer; |
| ctx->current_crl_score = crl_score; |
| *pcrl = crl; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| // Check CRL validity |
| static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) { |
| X509 *issuer = NULL; |
| int cnum = ctx->error_depth; |
| int chnum = (int)sk_X509_num(ctx->chain) - 1; |
| // If we have an alternative CRL issuer cert use that. Otherwise, it is the |
| // issuer of the current certificate. |
| if (ctx->current_crl_issuer) { |
| issuer = ctx->current_crl_issuer; |
| } else if (cnum < chnum) { |
| issuer = sk_X509_value(ctx->chain, cnum + 1); |
| } else { |
| issuer = sk_X509_value(ctx->chain, chnum); |
| // If not self signed, can't check signature |
| if (!x509_check_issued_with_callback(ctx, issuer, issuer)) { |
| ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| } |
| |
| if (issuer) { |
| // Check for cRLSign bit if keyUsage present |
| if ((issuer->ex_flags & EXFLAG_KUSAGE) && |
| !(issuer->ex_kusage & X509v3_KU_CRL_SIGN)) { |
| ctx->error = X509_V_ERR_KEYUSAGE_NO_CRL_SIGN; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (!(ctx->current_crl_score & CRL_SCORE_SCOPE)) { |
| ctx->error = X509_V_ERR_DIFFERENT_CRL_SCOPE; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (crl->idp_flags & IDP_INVALID) { |
| ctx->error = X509_V_ERR_INVALID_EXTENSION; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (!(ctx->current_crl_score & CRL_SCORE_TIME)) { |
| if (!check_crl_time(ctx, crl, 1)) { |
| return 0; |
| } |
| } |
| |
| // Attempt to get issuer certificate public key |
| EVP_PKEY *ikey = X509_get0_pubkey(issuer); |
| if (!ikey) { |
| ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } else { |
| // Verify CRL signature |
| if (X509_CRL_verify(crl, ikey) <= 0) { |
| ctx->error = X509_V_ERR_CRL_SIGNATURE_FAILURE; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| // Check certificate against CRL |
| static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) { |
| // The rules changed for this... previously if a CRL contained unhandled |
| // critical extensions it could still be used to indicate a certificate |
| // was revoked. This has since been changed since critical extension can |
| // change the meaning of CRL entries. |
| if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) && |
| (crl->flags & EXFLAG_CRITICAL)) { |
| ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| // Look for serial number of certificate in CRL. |
| X509_REVOKED *rev; |
| if (X509_CRL_get0_by_cert(crl, &rev, x)) { |
| ctx->error = X509_V_ERR_CERT_REVOKED; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int check_policy(X509_STORE_CTX *ctx) { |
| X509 *current_cert = NULL; |
| int ret = X509_policy_check(ctx->chain, ctx->param->policies, |
| ctx->param->flags, ¤t_cert); |
| if (ret != X509_V_OK) { |
| ctx->current_cert = current_cert; |
| ctx->error = ret; |
| if (ret == X509_V_ERR_OUT_OF_MEM) { |
| return 0; |
| } |
| return call_verify_cb(0, ctx); |
| } |
| |
| return 1; |
| } |
| |
| static int check_cert_time(X509_STORE_CTX *ctx, X509 *x) { |
| if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) { |
| return 1; |
| } |
| |
| int64_t ptime; |
| if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) { |
| ptime = ctx->param->check_time; |
| } else { |
| ptime = time(NULL); |
| } |
| |
| int i = X509_cmp_time_posix(X509_get_notBefore(x), ptime); |
| if (i == 0) { |
| ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (i > 0) { |
| ctx->error = X509_V_ERR_CERT_NOT_YET_VALID; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| i = X509_cmp_time_posix(X509_get_notAfter(x), ptime); |
| if (i == 0) { |
| ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| if (i < 0) { |
| ctx->error = X509_V_ERR_CERT_HAS_EXPIRED; |
| ctx->current_cert = x; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int internal_verify(X509_STORE_CTX *ctx) { |
| // TODO(davidben): This logic is incredibly confusing. Rewrite this: |
| // |
| // First, don't allow the verify callback to suppress |
| // X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, which will simplify the |
| // signature check. Then replace jumping into the middle of the loop. It's |
| // trying to ensure that all certificates see |check_cert_time|, then checking |
| // the root's self signature when requested, but not breaking partial chains |
| // in the process. |
| int n = (int)sk_X509_num(ctx->chain); |
| ctx->error_depth = n - 1; |
| n--; |
| X509 *xi = sk_X509_value(ctx->chain, n); |
| X509 *xs; |
| if (x509_check_issued_with_callback(ctx, xi, xi)) { |
| xs = xi; |
| } else { |
| if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { |
| xs = xi; |
| goto check_cert; |
| } |
| if (n <= 0) { |
| ctx->error = X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE; |
| ctx->current_cert = xi; |
| return call_verify_cb(0, ctx); |
| } |
| n--; |
| ctx->error_depth = n; |
| xs = sk_X509_value(ctx->chain, n); |
| } |
| |
| // ctx->error=0; not needed |
| while (n >= 0) { |
| ctx->error_depth = n; |
| |
| // Skip signature check for self signed certificates unless |
| // explicitly asked for. It doesn't add any security and just wastes |
| // time. |
| if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) { |
| EVP_PKEY *pkey = X509_get0_pubkey(xi); |
| if (pkey == NULL) { |
| ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY; |
| ctx->current_cert = xi; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } else if (X509_verify(xs, pkey) <= 0) { |
| ctx->error = X509_V_ERR_CERT_SIGNATURE_FAILURE; |
| ctx->current_cert = xs; |
| if (!call_verify_cb(0, ctx)) { |
| return 0; |
| } |
| } |
| } |
| |
| check_cert: |
| if (!check_cert_time(ctx, xs)) { |
| return 0; |
| } |
| |
| // The last error (if any) is still in the error value |
| ctx->current_cert = xs; |
| if (!call_verify_cb(1, ctx)) { |
| return 0; |
| } |
| |
| n--; |
| if (n >= 0) { |
| xi = xs; |
| xs = sk_X509_value(ctx->chain, n); |
| } |
| } |
| |
| return 1; |
| } |
| |
| int X509_cmp_current_time(const ASN1_TIME *ctm) { |
| return X509_cmp_time_posix(ctm, time(NULL)); |
| } |
| |
| int X509_cmp_time(const ASN1_TIME *ctm, const time_t *cmp_time) { |
| int64_t compare_time = (cmp_time == NULL) ? time(NULL) : *cmp_time; |
| return X509_cmp_time_posix(ctm, compare_time); |
| } |
| |
| int X509_cmp_time_posix(const ASN1_TIME *ctm, int64_t cmp_time) { |
| int64_t ctm_time; |
| if (!ASN1_TIME_to_posix(ctm, &ctm_time)) { |
| return 0; |
| } |
| // The return value 0 is reserved for errors. |
| return (ctm_time - cmp_time <= 0) ? -1 : 1; |
| } |
| |
| ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long offset_sec) { |
| return X509_time_adj(s, offset_sec, NULL); |
| } |
| |
| ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, const time_t *in_tm) { |
| return X509_time_adj_ex(s, 0, offset_sec, in_tm); |
| } |
| |
| ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, int offset_day, long offset_sec, |
| const time_t *in_tm) { |
| int64_t t = 0; |
| |
| if (in_tm) { |
| t = *in_tm; |
| } else { |
| t = time(NULL); |
| } |
| |
| return ASN1_TIME_adj(s, t, offset_day, offset_sec); |
| } |
| |
| int X509_STORE_CTX_get_ex_new_index(long argl, void *argp, |
| CRYPTO_EX_unused *unused, |
| CRYPTO_EX_dup *dup_unused, |
| CRYPTO_EX_free *free_func) { |
| return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func); |
| } |
| |
| int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) { |
| return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); |
| } |
| |
| void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) { |
| return CRYPTO_get_ex_data(&ctx->ex_data, idx); |
| } |
| |
| int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx) { return ctx->error; } |
| |
| void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) { |
| ctx->error = err; |
| } |
| |
| int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx) { |
| return ctx->error_depth; |
| } |
| |
| X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx) { |
| return ctx->current_cert; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get_chain(const X509_STORE_CTX *ctx) { |
| return ctx->chain; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx) { |
| return ctx->chain; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx) { |
| if (!ctx->chain) { |
| return NULL; |
| } |
| return X509_chain_up_ref(ctx->chain); |
| } |
| |
| X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx) { |
| return ctx->current_crl; |
| } |
| |
| X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx) { |
| // In OpenSSL, an |X509_STORE_CTX| sometimes has a parent context during CRL |
| // path validation for indirect CRLs. We require the CRL to be issued |
| // somewhere along the certificate path, so this is always NULL. |
| return NULL; |
| } |
| |
| void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { |
| ctx->untrusted = sk; |
| } |
| |
| STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx) { |
| return ctx->untrusted; |
| } |
| |
| void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) { |
| ctx->crls = sk; |
| } |
| |
| int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) { |
| // If |purpose| is zero, this function historically silently did nothing. |
| if (purpose == 0) { |
| return 1; |
| } |
| |
| const X509_PURPOSE *pobj = X509_PURPOSE_get0(purpose); |
| if (pobj == NULL) { |
| OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_PURPOSE_ID); |
| return 0; |
| } |
| |
| int trust = X509_PURPOSE_get_trust(pobj); |
| if (!X509_STORE_CTX_set_trust(ctx, trust)) { |
| return 0; |
| } |
| |
| if (ctx->param->purpose == 0) { |
| ctx->param->purpose = purpose; |
| } |
| return 1; |
| } |
| |
| int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) { |
| // If |trust| is zero, this function historically silently did nothing. |
| if (trust == 0) { |
| return 1; |
| } |
| |
| if (!X509_is_valid_trust_id(trust)) { |
| OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_TRUST_ID); |
| return 0; |
| } |
| |
| if (ctx->param->trust == 0) { |
| ctx->param->trust = trust; |
| } |
| return 1; |
| } |
| |
| X509_STORE_CTX *X509_STORE_CTX_new(void) { |
| return OPENSSL_zalloc(sizeof(X509_STORE_CTX)); |
| } |
| |
| void X509_STORE_CTX_free(X509_STORE_CTX *ctx) { |
| if (ctx == NULL) { |
| return; |
| } |
| X509_STORE_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| |
| int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509, |
| STACK_OF(X509) *chain) { |
| X509_STORE_CTX_cleanup(ctx); |
| |
| ctx->ctx = store; |
| ctx->cert = x509; |
| ctx->untrusted = chain; |
| |
| CRYPTO_new_ex_data(&ctx->ex_data); |
| |
| if (store == NULL) { |
| OPENSSL_PUT_ERROR(X509, ERR_R_PASSED_NULL_PARAMETER); |
| goto err; |
| } |
| |
| ctx->param = X509_VERIFY_PARAM_new(); |
| if (!ctx->param) { |
| goto err; |
| } |
| |
| // Inherit callbacks and flags from X509_STORE. |
| |
| ctx->verify_cb = store->verify_cb; |
| |
| if (!X509_VERIFY_PARAM_inherit(ctx->param, store->param) || |
| !X509_VERIFY_PARAM_inherit(ctx->param, |
| X509_VERIFY_PARAM_lookup("default"))) { |
| goto err; |
| } |
| |
| if (store->verify_cb) { |
| ctx->verify_cb = store->verify_cb; |
| } else { |
| ctx->verify_cb = null_callback; |
| } |
| |
| return 1; |
| |
| err: |
| CRYPTO_free_ex_data(&g_ex_data_class, ctx, &ctx->ex_data); |
| if (ctx->param != NULL) { |
| X509_VERIFY_PARAM_free(ctx->param); |
| } |
| |
| OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); |
| return 0; |
| } |
| |
| // Set alternative lookup method: just a STACK of trusted certificates. This |
| // avoids X509_STORE nastiness where it isn't needed. |
| |
| void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx, |
| STACK_OF(X509) *sk) { |
| ctx->trusted_stack = sk; |
| } |
| |
| void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) { |
| X509_STORE_CTX_set0_trusted_stack(ctx, sk); |
| } |
| |
| void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) { |
| CRYPTO_free_ex_data(&g_ex_data_class, ctx, &(ctx->ex_data)); |
| X509_VERIFY_PARAM_free(ctx->param); |
| sk_X509_pop_free(ctx->chain, X509_free); |
| OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX)); |
| } |
| |
| void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) { |
| X509_VERIFY_PARAM_set_depth(ctx->param, depth); |
| } |
| |
| void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) { |
| X509_VERIFY_PARAM_set_flags(ctx->param, flags); |
| } |
| |
| void X509_STORE_CTX_set_time_posix(X509_STORE_CTX *ctx, unsigned long flags, |
| int64_t t) { |
| X509_VERIFY_PARAM_set_time_posix(ctx->param, t); |
| } |
| |
| void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags, |
| time_t t) { |
| X509_STORE_CTX_set_time_posix(ctx, flags, t); |
| } |
| |
| X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx) { return ctx->cert; } |
| |
| void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx, |
| int (*verify_cb)(int, X509_STORE_CTX *)) { |
| ctx->verify_cb = verify_cb; |
| } |
| |
| int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) { |
| const X509_VERIFY_PARAM *param = X509_VERIFY_PARAM_lookup(name); |
| if (!param) { |
| return 0; |
| } |
| return X509_VERIFY_PARAM_inherit(ctx->param, param); |
| } |
| |
| X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) { |
| return ctx->param; |
| } |
| |
| void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) { |
| if (ctx->param) { |
| X509_VERIFY_PARAM_free(ctx->param); |
| } |
| ctx->param = param; |
| } |