blob: 9d1406f9fc3c156672907f3e7a730c0ac3208c1c [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <ctype.h>
#include <limits.h>
#include <string.h>
#include <time.h>
#include <openssl/asn1.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/thread.h>
#include <openssl/x509.h>
#include "../internal.h"
#include "internal.h"
static CRYPTO_EX_DATA_CLASS g_ex_data_class =
CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA;
// CRL score values
// No unhandled critical extensions
#define CRL_SCORE_NOCRITICAL 0x100
// certificate is within CRL scope
#define CRL_SCORE_SCOPE 0x080
// CRL times valid
#define CRL_SCORE_TIME 0x040
// Issuer name matches certificate
#define CRL_SCORE_ISSUER_NAME 0x020
// If this score or above CRL is probably valid
#define CRL_SCORE_VALID \
(CRL_SCORE_NOCRITICAL | CRL_SCORE_TIME | CRL_SCORE_SCOPE)
// CRL issuer is certificate issuer
#define CRL_SCORE_ISSUER_CERT 0x018
// CRL issuer is on certificate path
#define CRL_SCORE_SAME_PATH 0x008
// CRL issuer matches CRL AKID
#define CRL_SCORE_AKID 0x004
static int null_callback(int ok, X509_STORE_CTX *e);
static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
static int check_chain_extensions(X509_STORE_CTX *ctx);
static int check_name_constraints(X509_STORE_CTX *ctx);
static int check_id(X509_STORE_CTX *ctx);
static int check_trust(X509_STORE_CTX *ctx);
static int check_revocation(X509_STORE_CTX *ctx);
static int check_cert(X509_STORE_CTX *ctx);
static int check_policy(X509_STORE_CTX *ctx);
static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x);
static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl,
X509 *x);
static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x);
static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
int *pcrl_score);
static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score);
static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl);
static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x);
static int internal_verify(X509_STORE_CTX *ctx);
static int null_callback(int ok, X509_STORE_CTX *e) { return ok; }
// cert_self_signed checks if |x| is self-signed. If |x| is valid, it returns
// one and sets |*out_is_self_signed| to the result. If |x| is invalid, it
// returns zero.
static int cert_self_signed(X509 *x, int *out_is_self_signed) {
if (!x509v3_cache_extensions(x)) {
return 0;
}
*out_is_self_signed = (x->ex_flags & EXFLAG_SS) != 0;
return 1;
}
static int call_verify_cb(int ok, X509_STORE_CTX *ctx) {
ok = ctx->verify_cb(ok, ctx);
// Historically, callbacks returning values like -1 would be treated as a mix
// of success or failure. Insert that callers check correctly.
//
// TODO(davidben): Also use this wrapper to constrain which errors may be
// suppressed, and ensure all |verify_cb| calls remember to fill in an error.
BSSL_CHECK(ok == 0 || ok == 1);
return ok;
}
// Given a certificate try and find an exact match in the store
static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x) {
STACK_OF(X509) *certs;
X509 *xtmp = NULL;
size_t i;
// Lookup all certs with matching subject name
certs = X509_STORE_CTX_get1_certs(ctx, X509_get_subject_name(x));
if (certs == NULL) {
return NULL;
}
// Look for exact match
for (i = 0; i < sk_X509_num(certs); i++) {
xtmp = sk_X509_value(certs, i);
if (!X509_cmp(xtmp, x)) {
break;
}
}
if (i < sk_X509_num(certs)) {
X509_up_ref(xtmp);
} else {
xtmp = NULL;
}
sk_X509_pop_free(certs, X509_free);
return xtmp;
}
int X509_verify_cert(X509_STORE_CTX *ctx) {
X509 *chain_ss = NULL;
int bad_chain = 0;
X509_VERIFY_PARAM *param = ctx->param;
int i, ok = 0;
int j, retry, trust;
STACK_OF(X509) *sktmp = NULL;
if (ctx->cert == NULL) {
OPENSSL_PUT_ERROR(X509, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
ctx->error = X509_V_ERR_INVALID_CALL;
return 0;
}
if (ctx->chain != NULL) {
// This X509_STORE_CTX has already been used to verify a cert. We
// cannot do another one.
OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
ctx->error = X509_V_ERR_INVALID_CALL;
return 0;
}
if (ctx->param->flags &
(X509_V_FLAG_EXTENDED_CRL_SUPPORT | X509_V_FLAG_USE_DELTAS)) {
// We do not support indirect or delta CRLs. The flags still exist for
// compatibility with bindings libraries, but to ensure we do not
// inadvertently skip a CRL check that the caller expects, fail closed.
OPENSSL_PUT_ERROR(X509, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
ctx->error = X509_V_ERR_INVALID_CALL;
return 0;
}
// first we make sure the chain we are going to build is present and that
// the first entry is in place
ctx->chain = sk_X509_new_null();
if (ctx->chain == NULL || !sk_X509_push(ctx->chain, ctx->cert)) {
ctx->error = X509_V_ERR_OUT_OF_MEM;
goto end;
}
X509_up_ref(ctx->cert);
ctx->last_untrusted = 1;
// We use a temporary STACK so we can chop and hack at it.
if (ctx->untrusted != NULL && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
ctx->error = X509_V_ERR_OUT_OF_MEM;
goto end;
}
int num = (int)sk_X509_num(ctx->chain);
X509 *x = sk_X509_value(ctx->chain, num - 1);
// |param->depth| does not include the leaf certificate or the trust anchor,
// so the maximum size is 2 more.
int max_chain = param->depth >= INT_MAX - 2 ? INT_MAX : param->depth + 2;
for (;;) {
if (num >= max_chain) {
// FIXME: If this happens, we should take note of it and, if appropriate,
// use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later.
break;
}
int is_self_signed;
if (!cert_self_signed(x, &is_self_signed)) {
ctx->error = X509_V_ERR_INVALID_EXTENSION;
goto end;
}
// If we are self signed, we break
if (is_self_signed) {
break;
}
// If asked see if we can find issuer in trusted store first
if (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) {
X509 *issuer = get_trusted_issuer(ctx, x);
if (issuer != NULL) {
// Free the certificate. It will be picked up again later.
X509_free(issuer);
break;
}
}
// If we were passed a cert chain, use it first
if (sktmp != NULL) {
X509 *issuer = find_issuer(ctx, sktmp, x);
if (issuer != NULL) {
if (!sk_X509_push(ctx->chain, issuer)) {
ctx->error = X509_V_ERR_OUT_OF_MEM;
goto end;
}
X509_up_ref(issuer);
(void)sk_X509_delete_ptr(sktmp, issuer);
ctx->last_untrusted++;
x = issuer;
num++;
// reparse the full chain for the next one
continue;
}
}
break;
}
// Remember how many untrusted certs we have
j = num;
// at this point, chain should contain a list of untrusted certificates.
// We now need to add at least one trusted one, if possible, otherwise we
// complain.
do {
// Examine last certificate in chain and see if it is self signed.
i = (int)sk_X509_num(ctx->chain);
x = sk_X509_value(ctx->chain, i - 1);
int is_self_signed;
if (!cert_self_signed(x, &is_self_signed)) {
ctx->error = X509_V_ERR_INVALID_EXTENSION;
goto end;
}
if (is_self_signed) {
// we have a self signed certificate
if (sk_X509_num(ctx->chain) == 1) {
// We have a single self signed certificate: see if we can
// find it in the store. We must have an exact match to avoid
// possible impersonation.
X509 *issuer = get_trusted_issuer(ctx, x);
if (issuer == NULL || X509_cmp(x, issuer) != 0) {
X509_free(issuer);
ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT;
ctx->current_cert = x;
ctx->error_depth = i - 1;
bad_chain = 1;
if (!call_verify_cb(0, ctx)) {
goto end;
}
} else {
// We have a match: replace certificate with store
// version so we get any trust settings.
X509_free(x);
x = issuer;
(void)sk_X509_set(ctx->chain, i - 1, x);
ctx->last_untrusted = 0;
}
} else {
// extract and save self signed certificate for later use
chain_ss = sk_X509_pop(ctx->chain);
ctx->last_untrusted--;
num--;
j--;
x = sk_X509_value(ctx->chain, num - 1);
}
}
// We now lookup certs from the certificate store
for (;;) {
if (num >= max_chain) {
// FIXME: If this happens, we should take note of it and, if
// appropriate, use the X509_V_ERR_CERT_CHAIN_TOO_LONG error code later.
break;
}
if (!cert_self_signed(x, &is_self_signed)) {
ctx->error = X509_V_ERR_INVALID_EXTENSION;
goto end;
}
// If we are self signed, we break
if (is_self_signed) {
break;
}
X509 *issuer = get_trusted_issuer(ctx, x);
if (issuer == NULL) {
break;
}
x = issuer;
if (!sk_X509_push(ctx->chain, x)) {
X509_free(issuer);
ctx->error = X509_V_ERR_OUT_OF_MEM;
goto end;
}
num++;
}
// we now have our chain, lets check it...
trust = check_trust(ctx);
// If explicitly rejected error
if (trust == X509_TRUST_REJECTED) {
goto end;
}
// If it's not explicitly trusted then check if there is an alternative
// chain that could be used. We only do this if we haven't already
// checked via TRUSTED_FIRST and the user hasn't switched off alternate
// chain checking
retry = 0;
if (trust != X509_TRUST_TRUSTED &&
!(ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) &&
!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) {
while (j-- > 1) {
X509 *issuer =
get_trusted_issuer(ctx, sk_X509_value(ctx->chain, j - 1));
// Check if we found an alternate chain
if (issuer != NULL) {
// Free up the found cert we'll add it again later
X509_free(issuer);
// Dump all the certs above this point - we've found an
// alternate chain
while (num > j) {
X509_free(sk_X509_pop(ctx->chain));
num--;
}
ctx->last_untrusted = (int)sk_X509_num(ctx->chain);
retry = 1;
break;
}
}
}
} while (retry);
// If not explicitly trusted then indicate error unless it's a single
// self signed certificate in which case we've indicated an error already
// and set bad_chain == 1
if (trust != X509_TRUST_TRUSTED && !bad_chain) {
if (chain_ss == NULL ||
!x509_check_issued_with_callback(ctx, x, chain_ss)) {
if (ctx->last_untrusted >= num) {
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY;
} else {
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT;
}
ctx->current_cert = x;
} else {
if (!sk_X509_push(ctx->chain, chain_ss)) {
ctx->error = X509_V_ERR_OUT_OF_MEM;
goto end;
}
num++;
ctx->last_untrusted = num;
ctx->current_cert = chain_ss;
ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN;
chain_ss = NULL;
}
ctx->error_depth = num - 1;
bad_chain = 1;
if (!call_verify_cb(0, ctx)) {
goto end;
}
}
// We have the chain complete: now we need to check its purpose
if (!check_chain_extensions(ctx) || //
!check_id(ctx) ||
// We check revocation status after copying parameters because they may be
// needed for CRL signature verification.
!check_revocation(ctx) || //
!internal_verify(ctx) || //
!check_name_constraints(ctx) ||
// TODO(davidben): Does |check_policy| still need to be conditioned on
// |!bad_chain|? DoS concerns have been resolved.
(!bad_chain && !check_policy(ctx))) {
goto end;
}
ok = 1;
end:
sk_X509_free(sktmp);
X509_free(chain_ss);
// Safety net, error returns must set ctx->error
if (!ok && ctx->error == X509_V_OK) {
ctx->error = X509_V_ERR_UNSPECIFIED;
}
return ok;
}
// Given a STACK_OF(X509) find the issuer of cert (if any)
static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x) {
size_t i;
X509 *issuer;
for (i = 0; i < sk_X509_num(sk); i++) {
issuer = sk_X509_value(sk, i);
if (x509_check_issued_with_callback(ctx, x, issuer)) {
return issuer;
}
}
return NULL;
}
// Given a possible certificate and issuer check them
int x509_check_issued_with_callback(X509_STORE_CTX *ctx, X509 *x,
X509 *issuer) {
int ret;
ret = X509_check_issued(issuer, x);
if (ret == X509_V_OK) {
return 1;
}
// If we haven't asked for issuer errors don't set ctx
if (!(ctx->param->flags & X509_V_FLAG_CB_ISSUER_CHECK)) {
return 0;
}
ctx->error = ret;
ctx->current_cert = x;
return call_verify_cb(0, ctx);
}
static X509 *get_trusted_issuer(X509_STORE_CTX *ctx, X509 *x) {
X509 *issuer;
if (ctx->trusted_stack != NULL) {
// Ignore the store and use the configured stack instead.
issuer = find_issuer(ctx, ctx->trusted_stack, x);
if (issuer != NULL) {
X509_up_ref(issuer);
}
return issuer;
}
if (!X509_STORE_CTX_get1_issuer(&issuer, ctx, x)) {
return NULL;
}
return issuer;
}
// Check a certificate chains extensions for consistency with the supplied
// purpose
static int check_chain_extensions(X509_STORE_CTX *ctx) {
int plen = 0;
int purpose = ctx->param->purpose;
// Check all untrusted certificates
for (int i = 0; i < ctx->last_untrusted; i++) {
X509 *x = sk_X509_value(ctx->chain, i);
if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) &&
(x->ex_flags & EXFLAG_CRITICAL)) {
ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION;
ctx->error_depth = i;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
int must_be_ca = i > 0;
if (must_be_ca && !X509_check_ca(x)) {
ctx->error = X509_V_ERR_INVALID_CA;
ctx->error_depth = i;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (ctx->param->purpose > 0 &&
X509_check_purpose(x, purpose, must_be_ca) != 1) {
ctx->error = X509_V_ERR_INVALID_PURPOSE;
ctx->error_depth = i;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
// Check pathlen if not self issued
if (i > 1 && !(x->ex_flags & EXFLAG_SI) && x->ex_pathlen != -1 &&
plen > x->ex_pathlen + 1) {
ctx->error = X509_V_ERR_PATH_LENGTH_EXCEEDED;
ctx->error_depth = i;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
// Increment path length if not self issued
if (!(x->ex_flags & EXFLAG_SI)) {
plen++;
}
}
return 1;
}
static int reject_dns_name_in_common_name(X509 *x509) {
const X509_NAME *name = X509_get_subject_name(x509);
int i = -1;
for (;;) {
i = X509_NAME_get_index_by_NID(name, NID_commonName, i);
if (i == -1) {
return X509_V_OK;
}
const X509_NAME_ENTRY *entry = X509_NAME_get_entry(name, i);
const ASN1_STRING *common_name = X509_NAME_ENTRY_get_data(entry);
unsigned char *idval;
int idlen = ASN1_STRING_to_UTF8(&idval, common_name);
if (idlen < 0) {
return X509_V_ERR_OUT_OF_MEM;
}
// Only process attributes that look like host names. Note it is
// important that this check be mirrored in |X509_check_host|.
int looks_like_dns = x509v3_looks_like_dns_name(idval, (size_t)idlen);
OPENSSL_free(idval);
if (looks_like_dns) {
return X509_V_ERR_NAME_CONSTRAINTS_WITHOUT_SANS;
}
}
}
static int check_name_constraints(X509_STORE_CTX *ctx) {
int i, j, rv;
int has_name_constraints = 0;
// Check name constraints for all certificates
for (i = (int)sk_X509_num(ctx->chain) - 1; i >= 0; i--) {
X509 *x = sk_X509_value(ctx->chain, i);
// Ignore self issued certs unless last in chain
if (i && (x->ex_flags & EXFLAG_SI)) {
continue;
}
// Check against constraints for all certificates higher in chain
// including trust anchor. Trust anchor not strictly speaking needed
// but if it includes constraints it is to be assumed it expects them
// to be obeyed.
for (j = (int)sk_X509_num(ctx->chain) - 1; j > i; j--) {
NAME_CONSTRAINTS *nc = sk_X509_value(ctx->chain, j)->nc;
if (nc) {
has_name_constraints = 1;
rv = NAME_CONSTRAINTS_check(x, nc);
switch (rv) {
case X509_V_OK:
continue;
case X509_V_ERR_OUT_OF_MEM:
ctx->error = rv;
return 0;
default:
ctx->error = rv;
ctx->error_depth = i;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
break;
}
}
}
}
// Name constraints do not match against the common name, but
// |X509_check_host| still implements the legacy behavior where, on
// certificates lacking a SAN list, DNS-like names in the common name are
// checked instead.
//
// While we could apply the name constraints to the common name, name
// constraints are rare enough that can hold such certificates to a higher
// standard. Note this does not make "DNS-like" heuristic failures any
// worse. A decorative common-name misidentified as a DNS name would fail
// the name constraint anyway.
X509 *leaf = sk_X509_value(ctx->chain, 0);
if (has_name_constraints && leaf->altname == NULL) {
rv = reject_dns_name_in_common_name(leaf);
switch (rv) {
case X509_V_OK:
break;
case X509_V_ERR_OUT_OF_MEM:
ctx->error = rv;
return 0;
default:
ctx->error = rv;
ctx->error_depth = i;
ctx->current_cert = leaf;
if (!call_verify_cb(0, ctx)) {
return 0;
}
break;
}
}
return 1;
}
static int check_id_error(X509_STORE_CTX *ctx, int errcode) {
ctx->error = errcode;
ctx->current_cert = ctx->cert;
ctx->error_depth = 0;
return call_verify_cb(0, ctx);
}
static int check_hosts(X509 *x, X509_VERIFY_PARAM *param) {
size_t i;
size_t n = sk_OPENSSL_STRING_num(param->hosts);
char *name;
for (i = 0; i < n; ++i) {
name = sk_OPENSSL_STRING_value(param->hosts, i);
if (X509_check_host(x, name, strlen(name), param->hostflags, NULL) > 0) {
return 1;
}
}
return n == 0;
}
static int check_id(X509_STORE_CTX *ctx) {
X509_VERIFY_PARAM *vpm = ctx->param;
X509 *x = ctx->cert;
if (vpm->poison) {
if (!check_id_error(ctx, X509_V_ERR_INVALID_CALL)) {
return 0;
}
}
if (vpm->hosts && check_hosts(x, vpm) <= 0) {
if (!check_id_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH)) {
return 0;
}
}
if (vpm->email && X509_check_email(x, vpm->email, vpm->emaillen, 0) <= 0) {
if (!check_id_error(ctx, X509_V_ERR_EMAIL_MISMATCH)) {
return 0;
}
}
if (vpm->ip && X509_check_ip(x, vpm->ip, vpm->iplen, 0) <= 0) {
if (!check_id_error(ctx, X509_V_ERR_IP_ADDRESS_MISMATCH)) {
return 0;
}
}
return 1;
}
static int check_trust(X509_STORE_CTX *ctx) {
X509 *x = NULL;
// Check all trusted certificates in chain
for (size_t i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++) {
x = sk_X509_value(ctx->chain, i);
int trust = X509_check_trust(x, ctx->param->trust, 0);
// If explicitly trusted return trusted
if (trust == X509_TRUST_TRUSTED) {
return X509_TRUST_TRUSTED;
}
// If explicitly rejected notify callback and reject if not
// overridden.
if (trust == X509_TRUST_REJECTED) {
ctx->error_depth = (int)i;
ctx->current_cert = x;
ctx->error = X509_V_ERR_CERT_REJECTED;
if (!call_verify_cb(0, ctx)) {
return X509_TRUST_REJECTED;
}
}
}
// If we accept partial chains and have at least one trusted certificate
// return success.
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
X509 *mx;
if (ctx->last_untrusted < (int)sk_X509_num(ctx->chain)) {
return X509_TRUST_TRUSTED;
}
x = sk_X509_value(ctx->chain, 0);
mx = lookup_cert_match(ctx, x);
if (mx) {
(void)sk_X509_set(ctx->chain, 0, mx);
X509_free(x);
ctx->last_untrusted = 0;
return X509_TRUST_TRUSTED;
}
}
// If no trusted certs in chain at all return untrusted and allow
// standard (no issuer cert) etc errors to be indicated.
return X509_TRUST_UNTRUSTED;
}
static int check_revocation(X509_STORE_CTX *ctx) {
if (!(ctx->param->flags & X509_V_FLAG_CRL_CHECK)) {
return 1;
}
int last;
if (ctx->param->flags & X509_V_FLAG_CRL_CHECK_ALL) {
last = (int)sk_X509_num(ctx->chain) - 1;
} else {
last = 0;
}
for (int i = 0; i <= last; i++) {
ctx->error_depth = i;
if (!check_cert(ctx)) {
return 0;
}
}
return 1;
}
static int check_cert(X509_STORE_CTX *ctx) {
X509_CRL *crl = NULL;
int ok = 0, cnum = ctx->error_depth;
X509 *x = sk_X509_value(ctx->chain, cnum);
ctx->current_cert = x;
ctx->current_crl_issuer = NULL;
ctx->current_crl_score = 0;
// Try to retrieve the relevant CRL. Note that |get_crl| sets
// |current_crl_issuer| and |current_crl_score|, which |check_crl| then reads.
//
// TODO(davidben): The awkward internal calling convention is a historical
// artifact of when these functions were user-overridable callbacks, even
// though there was no way to set them correctly. These callbacks have since
// been removed, so we can pass input and output parameters more directly.
if (!get_crl(ctx, &crl, x)) {
ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL;
ok = call_verify_cb(0, ctx);
goto err;
}
ctx->current_crl = crl;
if (!check_crl(ctx, crl) || //
!cert_crl(ctx, crl, x)) {
goto err;
}
ok = 1;
err:
X509_CRL_free(crl);
ctx->current_crl = NULL;
return ok;
}
// Check CRL times against values in X509_STORE_CTX
static int check_crl_time(X509_STORE_CTX *ctx, X509_CRL *crl, int notify) {
if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) {
return 1;
}
if (notify) {
ctx->current_crl = crl;
}
int64_t ptime;
if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) {
ptime = ctx->param->check_time;
} else {
ptime = time(NULL);
}
int i = X509_cmp_time_posix(X509_CRL_get0_lastUpdate(crl), ptime);
if (i == 0) {
if (!notify) {
return 0;
}
ctx->error = X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (i > 0) {
if (!notify) {
return 0;
}
ctx->error = X509_V_ERR_CRL_NOT_YET_VALID;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (X509_CRL_get0_nextUpdate(crl)) {
i = X509_cmp_time_posix(X509_CRL_get0_nextUpdate(crl), ptime);
if (i == 0) {
if (!notify) {
return 0;
}
ctx->error = X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (i < 0) {
if (!notify) {
return 0;
}
ctx->error = X509_V_ERR_CRL_HAS_EXPIRED;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
}
if (notify) {
ctx->current_crl = NULL;
}
return 1;
}
static int get_crl_sk(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 **pissuer,
int *pscore, STACK_OF(X509_CRL) *crls) {
int crl_score, best_score = *pscore;
X509 *x = ctx->current_cert;
X509_CRL *best_crl = NULL;
X509 *crl_issuer = NULL, *best_crl_issuer = NULL;
for (size_t i = 0; i < sk_X509_CRL_num(crls); i++) {
X509_CRL *crl = sk_X509_CRL_value(crls, i);
crl_score = get_crl_score(ctx, &crl_issuer, crl, x);
if (crl_score < best_score || crl_score == 0) {
continue;
}
// If current CRL is equivalent use it if it is newer
if (crl_score == best_score && best_crl != NULL) {
int day, sec;
if (ASN1_TIME_diff(&day, &sec, X509_CRL_get0_lastUpdate(best_crl),
X509_CRL_get0_lastUpdate(crl)) == 0) {
continue;
}
// ASN1_TIME_diff never returns inconsistent signs for |day|
// and |sec|.
if (day <= 0 && sec <= 0) {
continue;
}
}
best_crl = crl;
best_crl_issuer = crl_issuer;
best_score = crl_score;
}
if (best_crl) {
if (*pcrl) {
X509_CRL_free(*pcrl);
}
*pcrl = best_crl;
*pissuer = best_crl_issuer;
*pscore = best_score;
X509_CRL_up_ref(best_crl);
}
if (best_score >= CRL_SCORE_VALID) {
return 1;
}
return 0;
}
// For a given CRL return how suitable it is for the supplied certificate
// 'x'. The return value is a mask of several criteria. If the issuer is not
// the certificate issuer this is returned in *pissuer.
static int get_crl_score(X509_STORE_CTX *ctx, X509 **pissuer, X509_CRL *crl,
X509 *x) {
int crl_score = 0;
// First see if we can reject CRL straight away
// Invalid IDP cannot be processed
if (crl->idp_flags & IDP_INVALID) {
return 0;
}
// Reason codes and indirect CRLs are not supported.
if (crl->idp_flags & (IDP_INDIRECT | IDP_REASONS)) {
return 0;
}
// We do not support indirect CRLs, so the issuer names must match.
if (X509_NAME_cmp(X509_get_issuer_name(x), X509_CRL_get_issuer(crl))) {
return 0;
}
crl_score |= CRL_SCORE_ISSUER_NAME;
if (!(crl->flags & EXFLAG_CRITICAL)) {
crl_score |= CRL_SCORE_NOCRITICAL;
}
// Check expiry
if (check_crl_time(ctx, crl, 0)) {
crl_score |= CRL_SCORE_TIME;
}
// Check authority key ID and locate certificate issuer
if (!crl_akid_check(ctx, crl, pissuer, &crl_score)) {
// If we can't locate certificate issuer at this point forget it
return 0;
}
// Check cert for matching CRL distribution points
if (crl_crldp_check(x, crl, crl_score)) {
crl_score |= CRL_SCORE_SCOPE;
}
return crl_score;
}
static int crl_akid_check(X509_STORE_CTX *ctx, X509_CRL *crl, X509 **pissuer,
int *pcrl_score) {
X509 *crl_issuer = NULL;
X509_NAME *cnm = X509_CRL_get_issuer(crl);
int cidx = ctx->error_depth;
if ((size_t)cidx != sk_X509_num(ctx->chain) - 1) {
cidx++;
}
crl_issuer = sk_X509_value(ctx->chain, cidx);
if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
*pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_ISSUER_CERT;
*pissuer = crl_issuer;
return 1;
}
for (cidx++; cidx < (int)sk_X509_num(ctx->chain); cidx++) {
crl_issuer = sk_X509_value(ctx->chain, cidx);
if (X509_NAME_cmp(X509_get_subject_name(crl_issuer), cnm)) {
continue;
}
if (X509_check_akid(crl_issuer, crl->akid) == X509_V_OK) {
*pcrl_score |= CRL_SCORE_AKID | CRL_SCORE_SAME_PATH;
*pissuer = crl_issuer;
return 1;
}
}
return 0;
}
// Check for match between two dist point names: three separate cases. 1.
// Both are relative names and compare X509_NAME types. 2. One full, one
// relative. Compare X509_NAME to GENERAL_NAMES. 3. Both are full names and
// compare two GENERAL_NAMES. 4. One is NULL: automatic match.
static int idp_check_dp(DIST_POINT_NAME *a, DIST_POINT_NAME *b) {
X509_NAME *nm = NULL;
GENERAL_NAMES *gens = NULL;
GENERAL_NAME *gena, *genb;
size_t i, j;
if (!a || !b) {
return 1;
}
if (a->type == 1) {
if (!a->dpname) {
return 0;
}
// Case 1: two X509_NAME
if (b->type == 1) {
if (!b->dpname) {
return 0;
}
if (!X509_NAME_cmp(a->dpname, b->dpname)) {
return 1;
} else {
return 0;
}
}
// Case 2: set name and GENERAL_NAMES appropriately
nm = a->dpname;
gens = b->name.fullname;
} else if (b->type == 1) {
if (!b->dpname) {
return 0;
}
// Case 2: set name and GENERAL_NAMES appropriately
gens = a->name.fullname;
nm = b->dpname;
}
// Handle case 2 with one GENERAL_NAMES and one X509_NAME
if (nm) {
for (i = 0; i < sk_GENERAL_NAME_num(gens); i++) {
gena = sk_GENERAL_NAME_value(gens, i);
if (gena->type != GEN_DIRNAME) {
continue;
}
if (!X509_NAME_cmp(nm, gena->d.directoryName)) {
return 1;
}
}
return 0;
}
// Else case 3: two GENERAL_NAMES
for (i = 0; i < sk_GENERAL_NAME_num(a->name.fullname); i++) {
gena = sk_GENERAL_NAME_value(a->name.fullname, i);
for (j = 0; j < sk_GENERAL_NAME_num(b->name.fullname); j++) {
genb = sk_GENERAL_NAME_value(b->name.fullname, j);
if (!GENERAL_NAME_cmp(gena, genb)) {
return 1;
}
}
}
return 0;
}
// Check CRLDP and IDP
static int crl_crldp_check(X509 *x, X509_CRL *crl, int crl_score) {
if (crl->idp_flags & IDP_ONLYATTR) {
return 0;
}
if (x->ex_flags & EXFLAG_CA) {
if (crl->idp_flags & IDP_ONLYUSER) {
return 0;
}
} else {
if (crl->idp_flags & IDP_ONLYCA) {
return 0;
}
}
for (size_t i = 0; i < sk_DIST_POINT_num(x->crldp); i++) {
DIST_POINT *dp = sk_DIST_POINT_value(x->crldp, i);
// Skip distribution points with a reasons field or a CRL issuer:
//
// We do not support CRLs partitioned by reason code. RFC 5280 requires CAs
// include at least one DistributionPoint that covers all reasons.
//
// We also do not support indirect CRLs, and a CRL issuer can only match
// indirect CRLs (RFC 5280, section 6.3.3, step b.1).
// support.
if (dp->reasons != NULL && dp->CRLissuer != NULL &&
(!crl->idp || idp_check_dp(dp->distpoint, crl->idp->distpoint))) {
return 1;
}
}
// If the CRL does not specify an issuing distribution point, allow it to
// match anything.
//
// TODO(davidben): Does this match RFC 5280? It's hard to follow because RFC
// 5280 starts from distribution points, while this starts from CRLs.
return !crl->idp || !crl->idp->distpoint;
}
// Retrieve CRL corresponding to current certificate.
static int get_crl(X509_STORE_CTX *ctx, X509_CRL **pcrl, X509 *x) {
X509 *issuer = NULL;
int crl_score = 0;
X509_CRL *crl = NULL;
if (get_crl_sk(ctx, &crl, &issuer, &crl_score, ctx->crls)) {
goto done;
}
// Lookup CRLs from store
STACK_OF(X509_CRL) *skcrl =
X509_STORE_CTX_get1_crls(ctx, X509_get_issuer_name(x));
// If no CRLs found and a near match from get_crl_sk use that
if (!skcrl && crl) {
goto done;
}
get_crl_sk(ctx, &crl, &issuer, &crl_score, skcrl);
sk_X509_CRL_pop_free(skcrl, X509_CRL_free);
done:
// If we got any kind of CRL use it and return success
if (crl) {
ctx->current_crl_issuer = issuer;
ctx->current_crl_score = crl_score;
*pcrl = crl;
return 1;
}
return 0;
}
// Check CRL validity
static int check_crl(X509_STORE_CTX *ctx, X509_CRL *crl) {
X509 *issuer = NULL;
int cnum = ctx->error_depth;
int chnum = (int)sk_X509_num(ctx->chain) - 1;
// If we have an alternative CRL issuer cert use that. Otherwise, it is the
// issuer of the current certificate.
if (ctx->current_crl_issuer) {
issuer = ctx->current_crl_issuer;
} else if (cnum < chnum) {
issuer = sk_X509_value(ctx->chain, cnum + 1);
} else {
issuer = sk_X509_value(ctx->chain, chnum);
// If not self signed, can't check signature
if (!x509_check_issued_with_callback(ctx, issuer, issuer)) {
ctx->error = X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
}
if (issuer) {
// Check for cRLSign bit if keyUsage present
if ((issuer->ex_flags & EXFLAG_KUSAGE) &&
!(issuer->ex_kusage & X509v3_KU_CRL_SIGN)) {
ctx->error = X509_V_ERR_KEYUSAGE_NO_CRL_SIGN;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (!(ctx->current_crl_score & CRL_SCORE_SCOPE)) {
ctx->error = X509_V_ERR_DIFFERENT_CRL_SCOPE;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (crl->idp_flags & IDP_INVALID) {
ctx->error = X509_V_ERR_INVALID_EXTENSION;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (!(ctx->current_crl_score & CRL_SCORE_TIME)) {
if (!check_crl_time(ctx, crl, 1)) {
return 0;
}
}
// Attempt to get issuer certificate public key
EVP_PKEY *ikey = X509_get0_pubkey(issuer);
if (!ikey) {
ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY;
if (!call_verify_cb(0, ctx)) {
return 0;
}
} else {
// Verify CRL signature
if (X509_CRL_verify(crl, ikey) <= 0) {
ctx->error = X509_V_ERR_CRL_SIGNATURE_FAILURE;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
}
}
return 1;
}
// Check certificate against CRL
static int cert_crl(X509_STORE_CTX *ctx, X509_CRL *crl, X509 *x) {
// The rules changed for this... previously if a CRL contained unhandled
// critical extensions it could still be used to indicate a certificate
// was revoked. This has since been changed since critical extension can
// change the meaning of CRL entries.
if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) &&
(crl->flags & EXFLAG_CRITICAL)) {
ctx->error = X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
// Look for serial number of certificate in CRL.
X509_REVOKED *rev;
if (X509_CRL_get0_by_cert(crl, &rev, x)) {
ctx->error = X509_V_ERR_CERT_REVOKED;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
return 1;
}
static int check_policy(X509_STORE_CTX *ctx) {
X509 *current_cert = NULL;
int ret = X509_policy_check(ctx->chain, ctx->param->policies,
ctx->param->flags, &current_cert);
if (ret != X509_V_OK) {
ctx->current_cert = current_cert;
ctx->error = ret;
if (ret == X509_V_ERR_OUT_OF_MEM) {
return 0;
}
return call_verify_cb(0, ctx);
}
return 1;
}
static int check_cert_time(X509_STORE_CTX *ctx, X509 *x) {
if (ctx->param->flags & X509_V_FLAG_NO_CHECK_TIME) {
return 1;
}
int64_t ptime;
if (ctx->param->flags & X509_V_FLAG_USE_CHECK_TIME) {
ptime = ctx->param->check_time;
} else {
ptime = time(NULL);
}
int i = X509_cmp_time_posix(X509_get_notBefore(x), ptime);
if (i == 0) {
ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (i > 0) {
ctx->error = X509_V_ERR_CERT_NOT_YET_VALID;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
i = X509_cmp_time_posix(X509_get_notAfter(x), ptime);
if (i == 0) {
ctx->error = X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
if (i < 0) {
ctx->error = X509_V_ERR_CERT_HAS_EXPIRED;
ctx->current_cert = x;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
return 1;
}
static int internal_verify(X509_STORE_CTX *ctx) {
// TODO(davidben): This logic is incredibly confusing. Rewrite this:
//
// First, don't allow the verify callback to suppress
// X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, which will simplify the
// signature check. Then replace jumping into the middle of the loop. It's
// trying to ensure that all certificates see |check_cert_time|, then checking
// the root's self signature when requested, but not breaking partial chains
// in the process.
int n = (int)sk_X509_num(ctx->chain);
ctx->error_depth = n - 1;
n--;
X509 *xi = sk_X509_value(ctx->chain, n);
X509 *xs;
if (x509_check_issued_with_callback(ctx, xi, xi)) {
xs = xi;
} else {
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
xs = xi;
goto check_cert;
}
if (n <= 0) {
ctx->error = X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE;
ctx->current_cert = xi;
return call_verify_cb(0, ctx);
}
n--;
ctx->error_depth = n;
xs = sk_X509_value(ctx->chain, n);
}
// ctx->error=0; not needed
while (n >= 0) {
ctx->error_depth = n;
// Skip signature check for self signed certificates unless
// explicitly asked for. It doesn't add any security and just wastes
// time.
if (xs != xi || (ctx->param->flags & X509_V_FLAG_CHECK_SS_SIGNATURE)) {
EVP_PKEY *pkey = X509_get0_pubkey(xi);
if (pkey == NULL) {
ctx->error = X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY;
ctx->current_cert = xi;
if (!call_verify_cb(0, ctx)) {
return 0;
}
} else if (X509_verify(xs, pkey) <= 0) {
ctx->error = X509_V_ERR_CERT_SIGNATURE_FAILURE;
ctx->current_cert = xs;
if (!call_verify_cb(0, ctx)) {
return 0;
}
}
}
check_cert:
if (!check_cert_time(ctx, xs)) {
return 0;
}
// The last error (if any) is still in the error value
ctx->current_cert = xs;
if (!call_verify_cb(1, ctx)) {
return 0;
}
n--;
if (n >= 0) {
xi = xs;
xs = sk_X509_value(ctx->chain, n);
}
}
return 1;
}
int X509_cmp_current_time(const ASN1_TIME *ctm) {
return X509_cmp_time_posix(ctm, time(NULL));
}
int X509_cmp_time(const ASN1_TIME *ctm, const time_t *cmp_time) {
int64_t compare_time = (cmp_time == NULL) ? time(NULL) : *cmp_time;
return X509_cmp_time_posix(ctm, compare_time);
}
int X509_cmp_time_posix(const ASN1_TIME *ctm, int64_t cmp_time) {
int64_t ctm_time;
if (!ASN1_TIME_to_posix(ctm, &ctm_time)) {
return 0;
}
// The return value 0 is reserved for errors.
return (ctm_time - cmp_time <= 0) ? -1 : 1;
}
ASN1_TIME *X509_gmtime_adj(ASN1_TIME *s, long offset_sec) {
return X509_time_adj(s, offset_sec, NULL);
}
ASN1_TIME *X509_time_adj(ASN1_TIME *s, long offset_sec, const time_t *in_tm) {
return X509_time_adj_ex(s, 0, offset_sec, in_tm);
}
ASN1_TIME *X509_time_adj_ex(ASN1_TIME *s, int offset_day, long offset_sec,
const time_t *in_tm) {
int64_t t = 0;
if (in_tm) {
t = *in_tm;
} else {
t = time(NULL);
}
return ASN1_TIME_adj(s, t, offset_day, offset_sec);
}
int X509_STORE_CTX_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
CRYPTO_EX_dup *dup_unused,
CRYPTO_EX_free *free_func) {
return CRYPTO_get_ex_new_index_ex(&g_ex_data_class, argl, argp, free_func);
}
int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *ctx, int idx, void *data) {
return CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
}
void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *ctx, int idx) {
return CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
int X509_STORE_CTX_get_error(const X509_STORE_CTX *ctx) { return ctx->error; }
void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx, int err) {
ctx->error = err;
}
int X509_STORE_CTX_get_error_depth(const X509_STORE_CTX *ctx) {
return ctx->error_depth;
}
X509 *X509_STORE_CTX_get_current_cert(const X509_STORE_CTX *ctx) {
return ctx->current_cert;
}
STACK_OF(X509) *X509_STORE_CTX_get_chain(const X509_STORE_CTX *ctx) {
return ctx->chain;
}
STACK_OF(X509) *X509_STORE_CTX_get0_chain(const X509_STORE_CTX *ctx) {
return ctx->chain;
}
STACK_OF(X509) *X509_STORE_CTX_get1_chain(const X509_STORE_CTX *ctx) {
if (!ctx->chain) {
return NULL;
}
return X509_chain_up_ref(ctx->chain);
}
X509_CRL *X509_STORE_CTX_get0_current_crl(const X509_STORE_CTX *ctx) {
return ctx->current_crl;
}
X509_STORE_CTX *X509_STORE_CTX_get0_parent_ctx(const X509_STORE_CTX *ctx) {
// In OpenSSL, an |X509_STORE_CTX| sometimes has a parent context during CRL
// path validation for indirect CRLs. We require the CRL to be issued
// somewhere along the certificate path, so this is always NULL.
return NULL;
}
void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) {
ctx->untrusted = sk;
}
STACK_OF(X509) *X509_STORE_CTX_get0_untrusted(const X509_STORE_CTX *ctx) {
return ctx->untrusted;
}
void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk) {
ctx->crls = sk;
}
int X509_STORE_CTX_set_purpose(X509_STORE_CTX *ctx, int purpose) {
// If |purpose| is zero, this function historically silently did nothing.
if (purpose == 0) {
return 1;
}
const X509_PURPOSE *pobj = X509_PURPOSE_get0(purpose);
if (pobj == NULL) {
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_PURPOSE_ID);
return 0;
}
int trust = X509_PURPOSE_get_trust(pobj);
if (!X509_STORE_CTX_set_trust(ctx, trust)) {
return 0;
}
if (ctx->param->purpose == 0) {
ctx->param->purpose = purpose;
}
return 1;
}
int X509_STORE_CTX_set_trust(X509_STORE_CTX *ctx, int trust) {
// If |trust| is zero, this function historically silently did nothing.
if (trust == 0) {
return 1;
}
if (!X509_is_valid_trust_id(trust)) {
OPENSSL_PUT_ERROR(X509, X509_R_UNKNOWN_TRUST_ID);
return 0;
}
if (ctx->param->trust == 0) {
ctx->param->trust = trust;
}
return 1;
}
X509_STORE_CTX *X509_STORE_CTX_new(void) {
return OPENSSL_zalloc(sizeof(X509_STORE_CTX));
}
void X509_STORE_CTX_free(X509_STORE_CTX *ctx) {
if (ctx == NULL) {
return;
}
X509_STORE_CTX_cleanup(ctx);
OPENSSL_free(ctx);
}
int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
STACK_OF(X509) *chain) {
X509_STORE_CTX_cleanup(ctx);
ctx->ctx = store;
ctx->cert = x509;
ctx->untrusted = chain;
CRYPTO_new_ex_data(&ctx->ex_data);
if (store == NULL) {
OPENSSL_PUT_ERROR(X509, ERR_R_PASSED_NULL_PARAMETER);
goto err;
}
ctx->param = X509_VERIFY_PARAM_new();
if (!ctx->param) {
goto err;
}
// Inherit callbacks and flags from X509_STORE.
ctx->verify_cb = store->verify_cb;
if (!X509_VERIFY_PARAM_inherit(ctx->param, store->param) ||
!X509_VERIFY_PARAM_inherit(ctx->param,
X509_VERIFY_PARAM_lookup("default"))) {
goto err;
}
if (store->verify_cb) {
ctx->verify_cb = store->verify_cb;
} else {
ctx->verify_cb = null_callback;
}
return 1;
err:
CRYPTO_free_ex_data(&g_ex_data_class, ctx, &ctx->ex_data);
if (ctx->param != NULL) {
X509_VERIFY_PARAM_free(ctx->param);
}
OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX));
return 0;
}
// Set alternative lookup method: just a STACK of trusted certificates. This
// avoids X509_STORE nastiness where it isn't needed.
void X509_STORE_CTX_set0_trusted_stack(X509_STORE_CTX *ctx,
STACK_OF(X509) *sk) {
ctx->trusted_stack = sk;
}
void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk) {
X509_STORE_CTX_set0_trusted_stack(ctx, sk);
}
void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx) {
CRYPTO_free_ex_data(&g_ex_data_class, ctx, &(ctx->ex_data));
X509_VERIFY_PARAM_free(ctx->param);
sk_X509_pop_free(ctx->chain, X509_free);
OPENSSL_memset(ctx, 0, sizeof(X509_STORE_CTX));
}
void X509_STORE_CTX_set_depth(X509_STORE_CTX *ctx, int depth) {
X509_VERIFY_PARAM_set_depth(ctx->param, depth);
}
void X509_STORE_CTX_set_flags(X509_STORE_CTX *ctx, unsigned long flags) {
X509_VERIFY_PARAM_set_flags(ctx->param, flags);
}
void X509_STORE_CTX_set_time_posix(X509_STORE_CTX *ctx, unsigned long flags,
int64_t t) {
X509_VERIFY_PARAM_set_time_posix(ctx->param, t);
}
void X509_STORE_CTX_set_time(X509_STORE_CTX *ctx, unsigned long flags,
time_t t) {
X509_STORE_CTX_set_time_posix(ctx, flags, t);
}
X509 *X509_STORE_CTX_get0_cert(const X509_STORE_CTX *ctx) { return ctx->cert; }
void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
int (*verify_cb)(int, X509_STORE_CTX *)) {
ctx->verify_cb = verify_cb;
}
int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) {
const X509_VERIFY_PARAM *param = X509_VERIFY_PARAM_lookup(name);
if (!param) {
return 0;
}
return X509_VERIFY_PARAM_inherit(ctx->param, param);
}
X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx) {
return ctx->param;
}
void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param) {
if (ctx->param) {
X509_VERIFY_PARAM_free(ctx->param);
}
ctx->param = param;
}