blob: b7c616b34809bc1bbf98ff65e84e6986bc392b6e [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/sha.h>
#include <string.h>
#include <openssl/mem.h>
#include "../../internal.h"
#include "../digest/md32_common.h"
#include "../service_indicator/internal.h"
#include "internal.h"
int SHA224_Init(SHA256_CTX *sha) {
OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
sha->h[0] = 0xc1059ed8UL;
sha->h[1] = 0x367cd507UL;
sha->h[2] = 0x3070dd17UL;
sha->h[3] = 0xf70e5939UL;
sha->h[4] = 0xffc00b31UL;
sha->h[5] = 0x68581511UL;
sha->h[6] = 0x64f98fa7UL;
sha->h[7] = 0xbefa4fa4UL;
sha->md_len = SHA224_DIGEST_LENGTH;
return 1;
}
int SHA256_Init(SHA256_CTX *sha) {
OPENSSL_memset(sha, 0, sizeof(SHA256_CTX));
sha->h[0] = 0x6a09e667UL;
sha->h[1] = 0xbb67ae85UL;
sha->h[2] = 0x3c6ef372UL;
sha->h[3] = 0xa54ff53aUL;
sha->h[4] = 0x510e527fUL;
sha->h[5] = 0x9b05688cUL;
sha->h[6] = 0x1f83d9abUL;
sha->h[7] = 0x5be0cd19UL;
sha->md_len = SHA256_DIGEST_LENGTH;
return 1;
}
uint8_t *SHA224(const uint8_t *data, size_t len,
uint8_t out[SHA224_DIGEST_LENGTH]) {
SHA256_CTX ctx;
SHA224_Init(&ctx);
SHA224_Update(&ctx, data, len);
SHA224_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
uint8_t *SHA256(const uint8_t *data, size_t len,
uint8_t out[SHA256_DIGEST_LENGTH]) {
SHA256_CTX ctx;
SHA256_Init(&ctx);
SHA256_Update(&ctx, data, len);
SHA256_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
#if !defined(SHA256_ASM)
static void sha256_block_data_order(uint32_t state[8], const uint8_t *in,
size_t num);
#endif
void SHA256_Transform(SHA256_CTX *c, const uint8_t data[SHA256_CBLOCK]) {
sha256_block_data_order(c->h, data, 1);
}
int SHA256_Update(SHA256_CTX *c, const void *data, size_t len) {
crypto_md32_update(&sha256_block_data_order, c->h, c->data, SHA256_CBLOCK,
&c->num, &c->Nh, &c->Nl, data, len);
return 1;
}
int SHA224_Update(SHA256_CTX *ctx, const void *data, size_t len) {
return SHA256_Update(ctx, data, len);
}
static int sha256_final_impl(uint8_t *out, size_t md_len, SHA256_CTX *c) {
crypto_md32_final(&sha256_block_data_order, c->h, c->data, SHA256_CBLOCK,
&c->num, c->Nh, c->Nl, /*is_big_endian=*/1);
// TODO(davidben): This overflow check one of the few places a low-level hash
// 'final' function can fail. SHA-512 does not have a corresponding check.
// These functions already misbehave if the caller arbitrarily mutates |c|, so
// can we assume one of |SHA256_Init| or |SHA224_Init| was used?
if (md_len > SHA256_DIGEST_LENGTH) {
return 0;
}
assert(md_len % 4 == 0);
const size_t out_words = md_len / 4;
for (size_t i = 0; i < out_words; i++) {
CRYPTO_store_u32_be(out, c->h[i]);
out += 4;
}
FIPS_service_indicator_update_state();
return 1;
}
int SHA256_Final(uint8_t out[SHA256_DIGEST_LENGTH], SHA256_CTX *c) {
// Ideally we would assert |sha->md_len| is |SHA256_DIGEST_LENGTH| to match
// the size hint, but calling code often pairs |SHA224_Init| with
// |SHA256_Final| and expects |sha->md_len| to carry the size over.
//
// TODO(davidben): Add an assert and fix code to match them up.
return sha256_final_impl(out, c->md_len, c);
}
int SHA224_Final(uint8_t out[SHA224_DIGEST_LENGTH], SHA256_CTX *ctx) {
// This function must be paired with |SHA224_Init|, which sets |ctx->md_len|
// to |SHA224_DIGEST_LENGTH|.
assert(ctx->md_len == SHA224_DIGEST_LENGTH);
return sha256_final_impl(out, SHA224_DIGEST_LENGTH, ctx);
}
#if !defined(SHA256_ASM)
#if !defined(SHA256_ASM_NOHW)
static const uint32_t K256[64] = {
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};
// See FIPS 180-4, section 4.1.2.
#define Sigma0(x) \
(CRYPTO_rotr_u32((x), 2) ^ CRYPTO_rotr_u32((x), 13) ^ \
CRYPTO_rotr_u32((x), 22))
#define Sigma1(x) \
(CRYPTO_rotr_u32((x), 6) ^ CRYPTO_rotr_u32((x), 11) ^ \
CRYPTO_rotr_u32((x), 25))
#define sigma0(x) \
(CRYPTO_rotr_u32((x), 7) ^ CRYPTO_rotr_u32((x), 18) ^ ((x) >> 3))
#define sigma1(x) \
(CRYPTO_rotr_u32((x), 17) ^ CRYPTO_rotr_u32((x), 19) ^ ((x) >> 10))
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
do { \
T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; \
h = Sigma0(a) + Maj(a, b, c); \
d += T1; \
h += T1; \
} while (0)
#define ROUND_16_63(i, a, b, c, d, e, f, g, h, X) \
do { \
s0 = X[(i + 1) & 0x0f]; \
s0 = sigma0(s0); \
s1 = X[(i + 14) & 0x0f]; \
s1 = sigma1(s1); \
T1 = X[(i) & 0x0f] += s0 + s1 + X[(i + 9) & 0x0f]; \
ROUND_00_15(i, a, b, c, d, e, f, g, h); \
} while (0)
static void sha256_block_data_order_nohw(uint32_t state[8], const uint8_t *data,
size_t num) {
uint32_t a, b, c, d, e, f, g, h, s0, s1, T1;
uint32_t X[16];
int i;
while (num--) {
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
T1 = X[0] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = CRYPTO_load_u32_be(data);
data += 4;
ROUND_00_15(15, b, c, d, e, f, g, h, a);
for (i = 16; i < 64; i += 8) {
ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
}
#endif // !defined(SHA256_ASM_NOHW)
static void sha256_block_data_order(uint32_t state[8], const uint8_t *data,
size_t num) {
#if defined(SHA256_ASM_HW)
if (sha256_hw_capable()) {
sha256_block_data_order_hw(state, data, num);
return;
}
#endif
#if defined(SHA256_ASM_AVX)
if (sha256_avx_capable()) {
sha256_block_data_order_avx(state, data, num);
return;
}
#endif
#if defined(SHA256_ASM_SSSE3)
if (sha256_ssse3_capable()) {
sha256_block_data_order_ssse3(state, data, num);
return;
}
#endif
#if defined(SHA256_ASM_NEON)
if (CRYPTO_is_NEON_capable()) {
sha256_block_data_order_neon(state, data, num);
return;
}
#endif
sha256_block_data_order_nohw(state, data, num);
}
#endif // !defined(SHA256_ASM)
void SHA256_TransformBlocks(uint32_t state[8], const uint8_t *data,
size_t num_blocks) {
sha256_block_data_order(state, data, num_blocks);
}
#undef Sigma0
#undef Sigma1
#undef sigma0
#undef sigma1
#undef Ch
#undef Maj
#undef ROUND_00_15
#undef ROUND_16_63