blob: 5eb6e6e0db32f4799e6a197b205fd5d8a85a8d57 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <limits.h>
#include <string.h>
#include "../bytestring/internal.h"
#include "../internal.h"
#include "internal.h"
// Constructed types with a recursive definition (such as can be found in PKCS7)
// could eventually exceed the stack given malicious input with excessive
// recursion. Therefore we limit the stack depth. This is the maximum number of
// recursive invocations of asn1_item_embed_d2i().
#define ASN1_MAX_CONSTRUCTED_NEST 30
static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass,
char *cst, const unsigned char **in, long len,
int exptag, int expclass, char opt);
static int asn1_template_ex_d2i(ASN1_VALUE **pval, const unsigned char **in,
long len, const ASN1_TEMPLATE *tt, char opt,
int depth);
static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in,
long len, const ASN1_TEMPLATE *tt, char opt,
int depth);
static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
int utype, const ASN1_ITEM *it);
static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in,
long len, const ASN1_ITEM *it, int tag,
int aclass, char opt);
static int asn1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in,
long len, const ASN1_ITEM *it, int tag, int aclass,
char opt, int depth);
// Table to convert tags to bit values, used for MSTRING type
static const unsigned long tag2bit[31] = {
0, // (reserved)
0, // BOOLEAN
0, // INTEGER
B_ASN1_BIT_STRING,
B_ASN1_OCTET_STRING,
0, // NULL
0, // OBJECT IDENTIFIER
B_ASN1_UNKNOWN, // ObjectDescriptor
B_ASN1_UNKNOWN, // EXTERNAL
B_ASN1_UNKNOWN, // REAL
B_ASN1_UNKNOWN, // ENUMERATED
B_ASN1_UNKNOWN, // EMBEDDED PDV
B_ASN1_UTF8STRING,
B_ASN1_UNKNOWN, // RELATIVE-OID
B_ASN1_UNKNOWN, // TIME
B_ASN1_UNKNOWN, // (reserved)
B_ASN1_SEQUENCE,
0, // SET
B_ASN1_NUMERICSTRING,
B_ASN1_PRINTABLESTRING,
B_ASN1_T61STRING,
B_ASN1_VIDEOTEXSTRING,
B_ASN1_IA5STRING,
B_ASN1_UTCTIME,
B_ASN1_GENERALIZEDTIME,
B_ASN1_GRAPHICSTRING,
B_ASN1_ISO64STRING,
B_ASN1_GENERALSTRING,
B_ASN1_UNIVERSALSTRING,
B_ASN1_UNKNOWN, // CHARACTER STRING
B_ASN1_BMPSTRING,
};
unsigned long ASN1_tag2bit(int tag) {
if (tag < 0 || tag > 30) {
return 0;
}
return tag2bit[tag];
}
// Macro to initialize and invalidate the cache
// Decode an ASN1 item, this currently behaves just like a standard 'd2i'
// function. 'in' points to a buffer to read the data from, in future we
// will have more advanced versions that can input data a piece at a time and
// this will simply be a special case.
ASN1_VALUE *ASN1_item_d2i(ASN1_VALUE **pval, const unsigned char **in, long len,
const ASN1_ITEM *it) {
ASN1_VALUE *ptmpval = NULL;
if (!pval) {
pval = &ptmpval;
}
if (asn1_item_ex_d2i(pval, in, len, it, -1, 0, 0, 0) > 0) {
return *pval;
}
return NULL;
}
// Decode an item, taking care of IMPLICIT tagging, if any. If 'opt' set and
// tag mismatch return -1 to handle OPTIONAL
static int asn1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in,
long len, const ASN1_ITEM *it, int tag, int aclass,
char opt, int depth) {
const ASN1_TEMPLATE *tt, *errtt = NULL;
const ASN1_EXTERN_FUNCS *ef;
const unsigned char *p = NULL, *q;
unsigned char oclass;
char cst, isopt;
int i;
int otag;
int ret = 0;
ASN1_VALUE **pchptr;
int combine = aclass & ASN1_TFLG_COMBINE;
aclass &= ~ASN1_TFLG_COMBINE;
if (!pval) {
return 0;
}
// Bound |len| to comfortably fit in an int. Lengths in this module often
// switch between int and long without overflow checks.
if (len > INT_MAX / 2) {
len = INT_MAX / 2;
}
if (++depth > ASN1_MAX_CONSTRUCTED_NEST) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_TOO_DEEP);
goto err;
}
switch (it->itype) {
case ASN1_ITYPE_PRIMITIVE:
if (it->templates) {
// tagging or OPTIONAL is currently illegal on an item template
// because the flags can't get passed down. In practice this
// isn't a problem: we include the relevant flags from the item
// template in the template itself.
if ((tag != -1) || opt) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE);
goto err;
}
return asn1_template_ex_d2i(pval, in, len, it->templates, opt, depth);
}
return asn1_d2i_ex_primitive(pval, in, len, it, tag, aclass, opt);
break;
case ASN1_ITYPE_MSTRING:
// It never makes sense for multi-strings to have implicit tagging, so
// if tag != -1, then this looks like an error in the template.
if (tag != -1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
goto err;
}
p = *in;
// Just read in tag and class
ret = asn1_check_tlen(NULL, &otag, &oclass, NULL, &p, len, -1, 0, 1);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
}
// Must be UNIVERSAL class
if (oclass != V_ASN1_UNIVERSAL) {
// If OPTIONAL, assume this is OK
if (opt) {
return -1;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_NOT_UNIVERSAL);
goto err;
}
// Check tag matches bit map
if (!(ASN1_tag2bit(otag) & it->utype)) {
// If OPTIONAL, assume this is OK
if (opt) {
return -1;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_MSTRING_WRONG_TAG);
goto err;
}
return asn1_d2i_ex_primitive(pval, in, len, it, otag, 0, 0);
case ASN1_ITYPE_EXTERN:
// Use new style d2i
ef = it->funcs;
return ef->asn1_ex_d2i(pval, in, len, it, tag, aclass, opt, NULL);
case ASN1_ITYPE_CHOICE: {
// It never makes sense for CHOICE types to have implicit tagging, so if
// tag != -1, then this looks like an error in the template.
if (tag != -1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_TEMPLATE);
goto err;
}
const ASN1_AUX *aux = it->funcs;
ASN1_aux_cb *asn1_cb = aux != NULL ? aux->asn1_cb : NULL;
if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) {
goto auxerr;
}
if (*pval) {
// Free up and zero CHOICE value if initialised
i = asn1_get_choice_selector(pval, it);
if ((i >= 0) && (i < it->tcount)) {
tt = it->templates + i;
pchptr = asn1_get_field_ptr(pval, tt);
ASN1_template_free(pchptr, tt);
asn1_set_choice_selector(pval, -1, it);
}
} else if (!ASN1_item_ex_new(pval, it)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
}
// CHOICE type, try each possibility in turn
p = *in;
for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) {
pchptr = asn1_get_field_ptr(pval, tt);
// We mark field as OPTIONAL so its absence can be recognised.
ret = asn1_template_ex_d2i(pchptr, &p, len, tt, 1, depth);
// If field not present, try the next one
if (ret == -1) {
continue;
}
// If positive return, read OK, break loop
if (ret > 0) {
break;
}
// Otherwise must be an ASN1 parsing error
errtt = tt;
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
}
// Did we fall off the end without reading anything?
if (i == it->tcount) {
// If OPTIONAL, this is OK
if (opt) {
// Free and zero it
ASN1_item_ex_free(pval, it);
return -1;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NO_MATCHING_CHOICE_TYPE);
goto err;
}
asn1_set_choice_selector(pval, i, it);
if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) {
goto auxerr;
}
*in = p;
return 1;
}
case ASN1_ITYPE_SEQUENCE: {
p = *in;
// If no IMPLICIT tagging set to SEQUENCE, UNIVERSAL
if (tag == -1) {
tag = V_ASN1_SEQUENCE;
aclass = V_ASN1_UNIVERSAL;
}
// Get SEQUENCE length and update len, p
ret = asn1_check_tlen(&len, NULL, NULL, &cst, &p, len, tag, aclass, opt);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
} else if (ret == -1) {
return -1;
}
if (!cst) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_NOT_CONSTRUCTED);
goto err;
}
if (!*pval && !ASN1_item_ex_new(pval, it)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
}
const ASN1_AUX *aux = it->funcs;
ASN1_aux_cb *asn1_cb = aux != NULL ? aux->asn1_cb : NULL;
if (asn1_cb && !asn1_cb(ASN1_OP_D2I_PRE, pval, it, NULL)) {
goto auxerr;
}
// Free up and zero any ADB found
for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) {
if (tt->flags & ASN1_TFLG_ADB_MASK) {
const ASN1_TEMPLATE *seqtt;
ASN1_VALUE **pseqval;
seqtt = asn1_do_adb(pval, tt, 0);
if (seqtt == NULL) {
continue;
}
pseqval = asn1_get_field_ptr(pval, seqtt);
ASN1_template_free(pseqval, seqtt);
}
}
// Get each field entry
for (i = 0, tt = it->templates; i < it->tcount; i++, tt++) {
const ASN1_TEMPLATE *seqtt;
ASN1_VALUE **pseqval;
seqtt = asn1_do_adb(pval, tt, 1);
if (seqtt == NULL) {
goto err;
}
pseqval = asn1_get_field_ptr(pval, seqtt);
// Have we ran out of data?
if (!len) {
break;
}
q = p;
// This determines the OPTIONAL flag value. The field cannot be
// omitted if it is the last of a SEQUENCE and there is still
// data to be read. This isn't strictly necessary but it
// increases efficiency in some cases.
if (i == (it->tcount - 1)) {
isopt = 0;
} else {
isopt = (seqtt->flags & ASN1_TFLG_OPTIONAL) != 0;
}
// attempt to read in field, allowing each to be OPTIONAL
ret = asn1_template_ex_d2i(pseqval, &p, len, seqtt, isopt, depth);
if (!ret) {
errtt = seqtt;
goto err;
} else if (ret == -1) {
// OPTIONAL component absent. Free and zero the field.
ASN1_template_free(pseqval, seqtt);
continue;
}
// Update length
len -= p - q;
}
// Check all data read
if (len) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_SEQUENCE_LENGTH_MISMATCH);
goto err;
}
// If we get here we've got no more data in the SEQUENCE, however we
// may not have read all fields so check all remaining are OPTIONAL
// and clear any that are.
for (; i < it->tcount; tt++, i++) {
const ASN1_TEMPLATE *seqtt;
seqtt = asn1_do_adb(pval, tt, 1);
if (seqtt == NULL) {
goto err;
}
if (seqtt->flags & ASN1_TFLG_OPTIONAL) {
ASN1_VALUE **pseqval;
pseqval = asn1_get_field_ptr(pval, seqtt);
ASN1_template_free(pseqval, seqtt);
} else {
errtt = seqtt;
OPENSSL_PUT_ERROR(ASN1, ASN1_R_FIELD_MISSING);
goto err;
}
}
// Save encoding
if (!asn1_enc_save(pval, *in, p - *in, it)) {
goto auxerr;
}
if (asn1_cb && !asn1_cb(ASN1_OP_D2I_POST, pval, it, NULL)) {
goto auxerr;
}
*in = p;
return 1;
}
default:
return 0;
}
auxerr:
OPENSSL_PUT_ERROR(ASN1, ASN1_R_AUX_ERROR);
err:
if (combine == 0) {
ASN1_item_ex_free(pval, it);
}
if (errtt) {
ERR_add_error_data(4, "Field=", errtt->field_name, ", Type=", it->sname);
} else {
ERR_add_error_data(2, "Type=", it->sname);
}
return 0;
}
int ASN1_item_ex_d2i(ASN1_VALUE **pval, const unsigned char **in, long len,
const ASN1_ITEM *it, int tag, int aclass, char opt,
ASN1_TLC *ctx) {
return asn1_item_ex_d2i(pval, in, len, it, tag, aclass, opt, 0);
}
// Templates are handled with two separate functions. One handles any
// EXPLICIT tag and the other handles the rest.
static int asn1_template_ex_d2i(ASN1_VALUE **val, const unsigned char **in,
long inlen, const ASN1_TEMPLATE *tt, char opt,
int depth) {
int aclass;
int ret;
long len;
const unsigned char *p, *q;
if (!val) {
return 0;
}
uint32_t flags = tt->flags;
aclass = flags & ASN1_TFLG_TAG_CLASS;
p = *in;
// Check if EXPLICIT tag expected
if (flags & ASN1_TFLG_EXPTAG) {
char cst;
// Need to work out amount of data available to the inner content and
// where it starts: so read in EXPLICIT header to get the info.
ret = asn1_check_tlen(&len, NULL, NULL, &cst, &p, inlen, tt->tag, aclass,
opt);
q = p;
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
return 0;
} else if (ret == -1) {
return -1;
}
if (!cst) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_TAG_NOT_CONSTRUCTED);
return 0;
}
// We've found the field so it can't be OPTIONAL now
ret = asn1_template_noexp_d2i(val, &p, len, tt, 0, depth);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
return 0;
}
// We read the field in OK so update length
len -= p - q;
// Check for trailing data.
if (len) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_EXPLICIT_LENGTH_MISMATCH);
goto err;
}
} else {
return asn1_template_noexp_d2i(val, in, inlen, tt, opt, depth);
}
*in = p;
return 1;
err:
ASN1_template_free(val, tt);
return 0;
}
static int asn1_template_noexp_d2i(ASN1_VALUE **val, const unsigned char **in,
long len, const ASN1_TEMPLATE *tt, char opt,
int depth) {
int aclass;
int ret;
const unsigned char *p;
if (!val) {
return 0;
}
uint32_t flags = tt->flags;
aclass = flags & ASN1_TFLG_TAG_CLASS;
p = *in;
if (flags & ASN1_TFLG_SK_MASK) {
// SET OF, SEQUENCE OF
int sktag, skaclass;
// First work out expected inner tag value
if (flags & ASN1_TFLG_IMPTAG) {
sktag = tt->tag;
skaclass = aclass;
} else {
skaclass = V_ASN1_UNIVERSAL;
if (flags & ASN1_TFLG_SET_OF) {
sktag = V_ASN1_SET;
} else {
sktag = V_ASN1_SEQUENCE;
}
}
// Get the tag
ret =
asn1_check_tlen(&len, NULL, NULL, NULL, &p, len, sktag, skaclass, opt);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
return 0;
} else if (ret == -1) {
return -1;
}
if (!*val) {
*val = (ASN1_VALUE *)sk_ASN1_VALUE_new_null();
} else {
// We've got a valid STACK: free up any items present
STACK_OF(ASN1_VALUE) *sktmp = (STACK_OF(ASN1_VALUE) *)*val;
ASN1_VALUE *vtmp;
while (sk_ASN1_VALUE_num(sktmp) > 0) {
vtmp = sk_ASN1_VALUE_pop(sktmp);
ASN1_item_ex_free(&vtmp, ASN1_ITEM_ptr(tt->item));
}
}
if (!*val) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
goto err;
}
// Read as many items as we can
while (len > 0) {
ASN1_VALUE *skfield;
const unsigned char *q = p;
skfield = NULL;
if (!asn1_item_ex_d2i(&skfield, &p, len, ASN1_ITEM_ptr(tt->item), -1, 0,
0, depth)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
}
len -= p - q;
if (!sk_ASN1_VALUE_push((STACK_OF(ASN1_VALUE) *)*val, skfield)) {
ASN1_item_ex_free(&skfield, ASN1_ITEM_ptr(tt->item));
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
goto err;
}
}
} else if (flags & ASN1_TFLG_IMPTAG) {
// IMPLICIT tagging
ret = asn1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), tt->tag,
aclass, opt, depth);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
} else if (ret == -1) {
return -1;
}
} else {
// Nothing special
ret = asn1_item_ex_d2i(val, &p, len, ASN1_ITEM_ptr(tt->item), -1,
tt->flags & ASN1_TFLG_COMBINE, opt, depth);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
goto err;
} else if (ret == -1) {
return -1;
}
}
*in = p;
return 1;
err:
ASN1_template_free(val, tt);
return 0;
}
static int asn1_d2i_ex_primitive(ASN1_VALUE **pval, const unsigned char **in,
long inlen, const ASN1_ITEM *it, int tag,
int aclass, char opt) {
int ret = 0, utype;
long plen;
char cst;
const unsigned char *p;
const unsigned char *cont = NULL;
long len;
if (!pval) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_NULL);
return 0; // Should never happen
}
if (it->itype == ASN1_ITYPE_MSTRING) {
utype = tag;
tag = -1;
} else {
utype = it->utype;
}
if (utype == V_ASN1_ANY) {
// If type is ANY need to figure out type from tag
unsigned char oclass;
if (tag >= 0) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_TAGGED_ANY);
return 0;
}
if (opt) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_ILLEGAL_OPTIONAL_ANY);
return 0;
}
p = *in;
ret = asn1_check_tlen(NULL, &utype, &oclass, NULL, &p, inlen, -1, 0, 0);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
return 0;
}
if (oclass != V_ASN1_UNIVERSAL) {
utype = V_ASN1_OTHER;
}
}
if (tag == -1) {
tag = utype;
aclass = V_ASN1_UNIVERSAL;
}
p = *in;
// Check header
ret = asn1_check_tlen(&plen, NULL, NULL, &cst, &p, inlen, tag, aclass, opt);
if (!ret) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NESTED_ASN1_ERROR);
return 0;
} else if (ret == -1) {
return -1;
}
ret = 0;
// SEQUENCE, SET and "OTHER" are left in encoded form
if ((utype == V_ASN1_SEQUENCE) || (utype == V_ASN1_SET) ||
(utype == V_ASN1_OTHER)) {
// SEQUENCE and SET must be constructed
if (utype != V_ASN1_OTHER && !cst) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_CONSTRUCTED);
return 0;
}
cont = *in;
len = p - cont + plen;
p += plen;
} else if (cst) {
// This parser historically supported BER constructed strings. We no
// longer do and will gradually tighten this parser into a DER
// parser. BER types should use |CBS_asn1_ber_to_der|.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_TYPE_NOT_PRIMITIVE);
return 0;
} else {
cont = p;
len = plen;
p += plen;
}
// We now have content length and type: translate into a structure
if (!asn1_ex_c2i(pval, cont, len, utype, it)) {
goto err;
}
*in = p;
ret = 1;
err:
return ret;
}
// Translate ASN1 content octets into a structure
static int asn1_ex_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
int utype, const ASN1_ITEM *it) {
ASN1_VALUE **opval = NULL;
ASN1_STRING *stmp;
ASN1_TYPE *typ = NULL;
int ret = 0;
ASN1_INTEGER **tint;
// Historically, |it->funcs| for primitive types contained an
// |ASN1_PRIMITIVE_FUNCS| table of callbacks.
assert(it->funcs == NULL);
// If ANY type clear type and set pointer to internal value
if (it->utype == V_ASN1_ANY) {
if (!*pval) {
typ = ASN1_TYPE_new();
if (typ == NULL) {
goto err;
}
*pval = (ASN1_VALUE *)typ;
} else {
typ = (ASN1_TYPE *)*pval;
}
if (utype != typ->type) {
ASN1_TYPE_set(typ, utype, NULL);
}
opval = pval;
pval = &typ->value.asn1_value;
}
switch (utype) {
case V_ASN1_OBJECT:
if (!c2i_ASN1_OBJECT((ASN1_OBJECT **)pval, &cont, len)) {
goto err;
}
break;
case V_ASN1_NULL:
if (len) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NULL_IS_WRONG_LENGTH);
goto err;
}
*pval = (ASN1_VALUE *)1;
break;
case V_ASN1_BOOLEAN:
if (len != 1) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BOOLEAN_IS_WRONG_LENGTH);
goto err;
} else {
ASN1_BOOLEAN *tbool;
tbool = (ASN1_BOOLEAN *)pval;
*tbool = *cont;
}
break;
case V_ASN1_BIT_STRING:
if (!c2i_ASN1_BIT_STRING((ASN1_BIT_STRING **)pval, &cont, len)) {
goto err;
}
break;
case V_ASN1_INTEGER:
case V_ASN1_ENUMERATED:
tint = (ASN1_INTEGER **)pval;
if (!c2i_ASN1_INTEGER(tint, &cont, len)) {
goto err;
}
// Fixup type to match the expected form
(*tint)->type = utype | ((*tint)->type & V_ASN1_NEG);
break;
case V_ASN1_OCTET_STRING:
case V_ASN1_NUMERICSTRING:
case V_ASN1_PRINTABLESTRING:
case V_ASN1_T61STRING:
case V_ASN1_VIDEOTEXSTRING:
case V_ASN1_IA5STRING:
case V_ASN1_UTCTIME:
case V_ASN1_GENERALIZEDTIME:
case V_ASN1_GRAPHICSTRING:
case V_ASN1_VISIBLESTRING:
case V_ASN1_GENERALSTRING:
case V_ASN1_UNIVERSALSTRING:
case V_ASN1_BMPSTRING:
case V_ASN1_UTF8STRING:
case V_ASN1_OTHER:
case V_ASN1_SET:
case V_ASN1_SEQUENCE:
default: {
CBS cbs;
CBS_init(&cbs, cont, (size_t)len);
if (utype == V_ASN1_BMPSTRING) {
while (CBS_len(&cbs) != 0) {
uint32_t c;
if (!cbs_get_ucs2_be(&cbs, &c)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_BMPSTRING);
goto err;
}
}
}
if (utype == V_ASN1_UNIVERSALSTRING) {
while (CBS_len(&cbs) != 0) {
uint32_t c;
if (!cbs_get_utf32_be(&cbs, &c)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_UNIVERSALSTRING);
goto err;
}
}
}
if (utype == V_ASN1_UTF8STRING) {
while (CBS_len(&cbs) != 0) {
uint32_t c;
if (!cbs_get_utf8(&cbs, &c)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_UTF8STRING);
goto err;
}
}
}
if (utype == V_ASN1_UTCTIME) {
if (!CBS_parse_utc_time(&cbs, NULL, /*allow_timezone_offset=*/1)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_TIME_FORMAT);
goto err;
}
}
if (utype == V_ASN1_GENERALIZEDTIME) {
if (!CBS_parse_generalized_time(&cbs, NULL,
/*allow_timezone_offset=*/0)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_INVALID_TIME_FORMAT);
goto err;
}
}
// TODO(https://crbug.com/boringssl/427): Check other string types.
// All based on ASN1_STRING and handled the same
if (!*pval) {
stmp = ASN1_STRING_type_new(utype);
if (!stmp) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
goto err;
}
*pval = (ASN1_VALUE *)stmp;
} else {
stmp = (ASN1_STRING *)*pval;
stmp->type = utype;
}
if (!ASN1_STRING_set(stmp, cont, len)) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
ASN1_STRING_free(stmp);
*pval = NULL;
goto err;
}
break;
}
}
// If ASN1_ANY and NULL type fix up value
if (typ && (utype == V_ASN1_NULL)) {
typ->value.ptr = NULL;
}
ret = 1;
err:
if (!ret) {
ASN1_TYPE_free(typ);
if (opval) {
*opval = NULL;
}
}
return ret;
}
// Check an ASN1 tag and length: a bit like ASN1_get_object but it
// checks the expected tag.
static int asn1_check_tlen(long *olen, int *otag, unsigned char *oclass,
char *cst, const unsigned char **in, long len,
int exptag, int expclass, char opt) {
int i;
int ptag, pclass;
long plen;
const unsigned char *p;
p = *in;
i = ASN1_get_object(&p, &plen, &ptag, &pclass, len);
if (i & 0x80) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_BAD_OBJECT_HEADER);
return 0;
}
if (exptag >= 0) {
if ((exptag != ptag) || (expclass != pclass)) {
// If type is OPTIONAL, not an error: indicate missing type.
if (opt) {
return -1;
}
OPENSSL_PUT_ERROR(ASN1, ASN1_R_WRONG_TAG);
return 0;
}
}
if (cst) {
*cst = i & V_ASN1_CONSTRUCTED;
}
if (olen) {
*olen = plen;
}
if (oclass) {
*oclass = pclass;
}
if (otag) {
*otag = ptag;
}
*in = p;
return 1;
}