|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/dh.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/dh.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../fipsmodule/dh/internal.h" | 
|  | #include "../test/test_util.h" | 
|  |  | 
|  |  | 
|  | TEST(DHTest, Basic) { | 
|  | bssl::UniquePtr<DH> a(DH_new()); | 
|  | ASSERT_TRUE(a); | 
|  | ASSERT_TRUE(DH_generate_parameters_ex(a.get(), 64, DH_GENERATOR_5, nullptr)); | 
|  |  | 
|  | int check_result; | 
|  | ASSERT_TRUE(DH_check(a.get(), &check_result)); | 
|  | EXPECT_FALSE(check_result & DH_CHECK_P_NOT_PRIME); | 
|  | EXPECT_FALSE(check_result & DH_CHECK_P_NOT_SAFE_PRIME); | 
|  | EXPECT_FALSE(check_result & DH_CHECK_UNABLE_TO_CHECK_GENERATOR); | 
|  | EXPECT_FALSE(check_result & DH_CHECK_NOT_SUITABLE_GENERATOR); | 
|  |  | 
|  | bssl::UniquePtr<DH> b(DHparams_dup(a.get())); | 
|  | ASSERT_TRUE(b); | 
|  |  | 
|  | ASSERT_TRUE(DH_generate_key(a.get())); | 
|  | ASSERT_TRUE(DH_generate_key(b.get())); | 
|  |  | 
|  | std::vector<uint8_t> key1(DH_size(a.get())); | 
|  | int ret = DH_compute_key(key1.data(), DH_get0_pub_key(b.get()), a.get()); | 
|  | ASSERT_GE(ret, 0); | 
|  | key1.resize(ret); | 
|  |  | 
|  | std::vector<uint8_t> key2(DH_size(b.get())); | 
|  | ret = DH_compute_key(key2.data(), DH_get0_pub_key(a.get()), b.get()); | 
|  | ASSERT_GE(ret, 0); | 
|  | key2.resize(ret); | 
|  |  | 
|  | EXPECT_EQ(Bytes(key1), Bytes(key2)); | 
|  |  | 
|  | // |DH_compute_key|, unlike |DH_compute_key_padded|, removes leading zeros | 
|  | // from the output, so the key will not have a fixed length. This test uses a | 
|  | // small, 64-bit prime, so check for at least 32 bits of output after removing | 
|  | // leading zeros. | 
|  | EXPECT_GE(key1.size(), 4u); | 
|  | } | 
|  |  | 
|  | // The following parameters are taken from RFC 5114, section 2.2. This is not a | 
|  | // safe prime. Do not use these parameters. | 
|  | static const uint8_t kRFC5114_2048_224P[] = { | 
|  | 0xad, 0x10, 0x7e, 0x1e, 0x91, 0x23, 0xa9, 0xd0, 0xd6, 0x60, 0xfa, 0xa7, | 
|  | 0x95, 0x59, 0xc5, 0x1f, 0xa2, 0x0d, 0x64, 0xe5, 0x68, 0x3b, 0x9f, 0xd1, | 
|  | 0xb5, 0x4b, 0x15, 0x97, 0xb6, 0x1d, 0x0a, 0x75, 0xe6, 0xfa, 0x14, 0x1d, | 
|  | 0xf9, 0x5a, 0x56, 0xdb, 0xaf, 0x9a, 0x3c, 0x40, 0x7b, 0xa1, 0xdf, 0x15, | 
|  | 0xeb, 0x3d, 0x68, 0x8a, 0x30, 0x9c, 0x18, 0x0e, 0x1d, 0xe6, 0xb8, 0x5a, | 
|  | 0x12, 0x74, 0xa0, 0xa6, 0x6d, 0x3f, 0x81, 0x52, 0xad, 0x6a, 0xc2, 0x12, | 
|  | 0x90, 0x37, 0xc9, 0xed, 0xef, 0xda, 0x4d, 0xf8, 0xd9, 0x1e, 0x8f, 0xef, | 
|  | 0x55, 0xb7, 0x39, 0x4b, 0x7a, 0xd5, 0xb7, 0xd0, 0xb6, 0xc1, 0x22, 0x07, | 
|  | 0xc9, 0xf9, 0x8d, 0x11, 0xed, 0x34, 0xdb, 0xf6, 0xc6, 0xba, 0x0b, 0x2c, | 
|  | 0x8b, 0xbc, 0x27, 0xbe, 0x6a, 0x00, 0xe0, 0xa0, 0xb9, 0xc4, 0x97, 0x08, | 
|  | 0xb3, 0xbf, 0x8a, 0x31, 0x70, 0x91, 0x88, 0x36, 0x81, 0x28, 0x61, 0x30, | 
|  | 0xbc, 0x89, 0x85, 0xdb, 0x16, 0x02, 0xe7, 0x14, 0x41, 0x5d, 0x93, 0x30, | 
|  | 0x27, 0x82, 0x73, 0xc7, 0xde, 0x31, 0xef, 0xdc, 0x73, 0x10, 0xf7, 0x12, | 
|  | 0x1f, 0xd5, 0xa0, 0x74, 0x15, 0x98, 0x7d, 0x9a, 0xdc, 0x0a, 0x48, 0x6d, | 
|  | 0xcd, 0xf9, 0x3a, 0xcc, 0x44, 0x32, 0x83, 0x87, 0x31, 0x5d, 0x75, 0xe1, | 
|  | 0x98, 0xc6, 0x41, 0xa4, 0x80, 0xcd, 0x86, 0xa1, 0xb9, 0xe5, 0x87, 0xe8, | 
|  | 0xbe, 0x60, 0xe6, 0x9c, 0xc9, 0x28, 0xb2, 0xb9, 0xc5, 0x21, 0x72, 0xe4, | 
|  | 0x13, 0x04, 0x2e, 0x9b, 0x23, 0xf1, 0x0b, 0x0e, 0x16, 0xe7, 0x97, 0x63, | 
|  | 0xc9, 0xb5, 0x3d, 0xcf, 0x4b, 0xa8, 0x0a, 0x29, 0xe3, 0xfb, 0x73, 0xc1, | 
|  | 0x6b, 0x8e, 0x75, 0xb9, 0x7e, 0xf3, 0x63, 0xe2, 0xff, 0xa3, 0x1f, 0x71, | 
|  | 0xcf, 0x9d, 0xe5, 0x38, 0x4e, 0x71, 0xb8, 0x1c, 0x0a, 0xc4, 0xdf, 0xfe, | 
|  | 0x0c, 0x10, 0xe6, 0x4f, | 
|  | }; | 
|  | static const uint8_t kRFC5114_2048_224G[] = { | 
|  | 0xac, 0x40, 0x32, 0xef, 0x4f, 0x2d, 0x9a, 0xe3, 0x9d, 0xf3, 0x0b, 0x5c, | 
|  | 0x8f, 0xfd, 0xac, 0x50, 0x6c, 0xde, 0xbe, 0x7b, 0x89, 0x99, 0x8c, 0xaf, | 
|  | 0x74, 0x86, 0x6a, 0x08, 0xcf, 0xe4, 0xff, 0xe3, 0xa6, 0x82, 0x4a, 0x4e, | 
|  | 0x10, 0xb9, 0xa6, 0xf0, 0xdd, 0x92, 0x1f, 0x01, 0xa7, 0x0c, 0x4a, 0xfa, | 
|  | 0xab, 0x73, 0x9d, 0x77, 0x00, 0xc2, 0x9f, 0x52, 0xc5, 0x7d, 0xb1, 0x7c, | 
|  | 0x62, 0x0a, 0x86, 0x52, 0xbe, 0x5e, 0x90, 0x01, 0xa8, 0xd6, 0x6a, 0xd7, | 
|  | 0xc1, 0x76, 0x69, 0x10, 0x19, 0x99, 0x02, 0x4a, 0xf4, 0xd0, 0x27, 0x27, | 
|  | 0x5a, 0xc1, 0x34, 0x8b, 0xb8, 0xa7, 0x62, 0xd0, 0x52, 0x1b, 0xc9, 0x8a, | 
|  | 0xe2, 0x47, 0x15, 0x04, 0x22, 0xea, 0x1e, 0xd4, 0x09, 0x93, 0x9d, 0x54, | 
|  | 0xda, 0x74, 0x60, 0xcd, 0xb5, 0xf6, 0xc6, 0xb2, 0x50, 0x71, 0x7c, 0xbe, | 
|  | 0xf1, 0x80, 0xeb, 0x34, 0x11, 0x8e, 0x98, 0xd1, 0x19, 0x52, 0x9a, 0x45, | 
|  | 0xd6, 0xf8, 0x34, 0x56, 0x6e, 0x30, 0x25, 0xe3, 0x16, 0xa3, 0x30, 0xef, | 
|  | 0xbb, 0x77, 0xa8, 0x6f, 0x0c, 0x1a, 0xb1, 0x5b, 0x05, 0x1a, 0xe3, 0xd4, | 
|  | 0x28, 0xc8, 0xf8, 0xac, 0xb7, 0x0a, 0x81, 0x37, 0x15, 0x0b, 0x8e, 0xeb, | 
|  | 0x10, 0xe1, 0x83, 0xed, 0xd1, 0x99, 0x63, 0xdd, 0xd9, 0xe2, 0x63, 0xe4, | 
|  | 0x77, 0x05, 0x89, 0xef, 0x6a, 0xa2, 0x1e, 0x7f, 0x5f, 0x2f, 0xf3, 0x81, | 
|  | 0xb5, 0x39, 0xcc, 0xe3, 0x40, 0x9d, 0x13, 0xcd, 0x56, 0x6a, 0xfb, 0xb4, | 
|  | 0x8d, 0x6c, 0x01, 0x91, 0x81, 0xe1, 0xbc, 0xfe, 0x94, 0xb3, 0x02, 0x69, | 
|  | 0xed, 0xfe, 0x72, 0xfe, 0x9b, 0x6a, 0xa4, 0xbd, 0x7b, 0x5a, 0x0f, 0x1c, | 
|  | 0x71, 0xcf, 0xff, 0x4c, 0x19, 0xc4, 0x18, 0xe1, 0xf6, 0xec, 0x01, 0x79, | 
|  | 0x81, 0xbc, 0x08, 0x7f, 0x2a, 0x70, 0x65, 0xb3, 0x84, 0xb8, 0x90, 0xd3, | 
|  | 0x19, 0x1f, 0x2b, 0xfa, | 
|  | }; | 
|  | static const uint8_t kRFC5114_2048_224Q[] = { | 
|  | 0x80, 0x1c, 0x0d, 0x34, 0xc5, 0x8d, 0x93, 0xfe, 0x99, 0x71, | 
|  | 0x77, 0x10, 0x1f, 0x80, 0x53, 0x5a, 0x47, 0x38, 0xce, 0xbc, | 
|  | 0xbf, 0x38, 0x9a, 0x99, 0xb3, 0x63, 0x71, 0xeb, | 
|  | }; | 
|  |  | 
|  | // kRFC5114_2048_224BadY is a bad y-coordinate for RFC 5114's 2048-bit MODP | 
|  | // Group with 224-bit Prime Order Subgroup (section 2.2). | 
|  | static const uint8_t kRFC5114_2048_224BadY[] = { | 
|  | 0x45, 0x32, 0x5f, 0x51, 0x07, 0xe5, 0xdf, 0x1c, 0xd6, 0x02, 0x82, 0xb3, | 
|  | 0x32, 0x8f, 0xa4, 0x0f, 0x87, 0xb8, 0x41, 0xfe, 0xb9, 0x35, 0xde, 0xad, | 
|  | 0xc6, 0x26, 0x85, 0xb4, 0xff, 0x94, 0x8c, 0x12, 0x4c, 0xbf, 0x5b, 0x20, | 
|  | 0xc4, 0x46, 0xa3, 0x26, 0xeb, 0xa4, 0x25, 0xb7, 0x68, 0x8e, 0xcc, 0x67, | 
|  | 0xba, 0xea, 0x58, 0xd0, 0xf2, 0xe9, 0xd2, 0x24, 0x72, 0x60, 0xda, 0x88, | 
|  | 0x18, 0x9c, 0xe0, 0x31, 0x6a, 0xad, 0x50, 0x6d, 0x94, 0x35, 0x8b, 0x83, | 
|  | 0x4a, 0x6e, 0xfa, 0x48, 0x73, 0x0f, 0x83, 0x87, 0xff, 0x6b, 0x66, 0x1f, | 
|  | 0xa8, 0x82, 0xc6, 0x01, 0xe5, 0x80, 0xb5, 0xb0, 0x52, 0xd0, 0xe9, 0xd8, | 
|  | 0x72, 0xf9, 0x7d, 0x5b, 0x8b, 0xa5, 0x4c, 0xa5, 0x25, 0x95, 0x74, 0xe2, | 
|  | 0x7a, 0x61, 0x4e, 0xa7, 0x8f, 0x12, 0xe2, 0xd2, 0x9d, 0x8c, 0x02, 0x70, | 
|  | 0x34, 0x44, 0x32, 0xc7, 0xb2, 0xf3, 0xb9, 0xfe, 0x17, 0x2b, 0xd6, 0x1f, | 
|  | 0x8b, 0x7e, 0x4a, 0xfa, 0xa3, 0xb5, 0x3e, 0x7a, 0x81, 0x9a, 0x33, 0x66, | 
|  | 0x62, 0xa4, 0x50, 0x18, 0x3e, 0xa2, 0x5f, 0x00, 0x07, 0xd8, 0x9b, 0x22, | 
|  | 0xe4, 0xec, 0x84, 0xd5, 0xeb, 0x5a, 0xf3, 0x2a, 0x31, 0x23, 0xd8, 0x44, | 
|  | 0x22, 0x2a, 0x8b, 0x37, 0x44, 0xcc, 0xc6, 0x87, 0x4b, 0xbe, 0x50, 0x9d, | 
|  | 0x4a, 0xc4, 0x8e, 0x45, 0xcf, 0x72, 0x4d, 0xc0, 0x89, 0xb3, 0x72, 0xed, | 
|  | 0x33, 0x2c, 0xbc, 0x7f, 0x16, 0x39, 0x3b, 0xeb, 0xd2, 0xdd, 0xa8, 0x01, | 
|  | 0x73, 0x84, 0x62, 0xb9, 0x29, 0xd2, 0xc9, 0x51, 0x32, 0x9e, 0x7a, 0x6a, | 
|  | 0xcf, 0xc1, 0x0a, 0xdb, 0x0e, 0xe0, 0x62, 0x77, 0x6f, 0x59, 0x62, 0x72, | 
|  | 0x5a, 0x69, 0xa6, 0x5b, 0x70, 0xca, 0x65, 0xc4, 0x95, 0x6f, 0x9a, 0xc2, | 
|  | 0xdf, 0x72, 0x6d, 0xb1, 0x1e, 0x54, 0x7b, 0x51, 0xb4, 0xef, 0x7f, 0x89, | 
|  | 0x93, 0x74, 0x89, 0x59, | 
|  | }; | 
|  |  | 
|  | static bssl::UniquePtr<DH> NewDHGroup(const BIGNUM *p, const BIGNUM *q, | 
|  | const BIGNUM *g) { | 
|  | bssl::UniquePtr<BIGNUM> p_copy(BN_dup(p)); | 
|  | bssl::UniquePtr<BIGNUM> q_copy(q != nullptr ? BN_dup(q) : nullptr); | 
|  | bssl::UniquePtr<BIGNUM> g_copy(BN_dup(g)); | 
|  | bssl::UniquePtr<DH> dh(DH_new()); | 
|  | if (p_copy == nullptr || (q != nullptr && q_copy == nullptr) || | 
|  | g_copy == nullptr || dh == nullptr || | 
|  | !DH_set0_pqg(dh.get(), p_copy.get(), q_copy.get(), g_copy.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | p_copy.release(); | 
|  | q_copy.release(); | 
|  | g_copy.release(); | 
|  | return dh; | 
|  | } | 
|  |  | 
|  | TEST(DHTest, BadY) { | 
|  | bssl::UniquePtr<BIGNUM> p( | 
|  | BN_bin2bn(kRFC5114_2048_224P, sizeof(kRFC5114_2048_224P), nullptr)); | 
|  | bssl::UniquePtr<BIGNUM> q( | 
|  | BN_bin2bn(kRFC5114_2048_224Q, sizeof(kRFC5114_2048_224Q), nullptr)); | 
|  | bssl::UniquePtr<BIGNUM> g( | 
|  | BN_bin2bn(kRFC5114_2048_224G, sizeof(kRFC5114_2048_224G), nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | ASSERT_TRUE(q); | 
|  | ASSERT_TRUE(g); | 
|  | bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), q.get(), g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> pub_key( | 
|  | BN_bin2bn(kRFC5114_2048_224BadY, sizeof(kRFC5114_2048_224BadY), nullptr)); | 
|  | ASSERT_TRUE(pub_key); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  |  | 
|  | int flags; | 
|  | ASSERT_TRUE(DH_check_pub_key(dh.get(), pub_key.get(), &flags)); | 
|  | EXPECT_TRUE(flags & DH_CHECK_PUBKEY_INVALID) | 
|  | << "DH_check_pub_key did not reject the key"; | 
|  |  | 
|  | std::vector<uint8_t> result(DH_size(dh.get())); | 
|  | EXPECT_LT(DH_compute_key(result.data(), pub_key.get(), dh.get()), 0) | 
|  | << "DH_compute_key unexpectedly succeeded"; | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | static bool BIGNUMEqualsHex(const BIGNUM *bn, const char *hex) { | 
|  | BIGNUM *hex_bn = NULL; | 
|  | if (!BN_hex2bn(&hex_bn, hex)) { | 
|  | return false; | 
|  | } | 
|  | bssl::UniquePtr<BIGNUM> free_hex_bn(hex_bn); | 
|  | return BN_cmp(bn, hex_bn) == 0; | 
|  | } | 
|  |  | 
|  | TEST(DHTest, ASN1) { | 
|  | // kParams are a set of Diffie-Hellman parameters generated with | 
|  | // openssl dhparam 256 | 
|  | static const uint8_t kParams[] = { | 
|  | 0x30, 0x26, 0x02, 0x21, 0x00, 0xd7, 0x20, 0x34, 0xa3, 0x27, | 
|  | 0x4f, 0xdf, 0xbf, 0x04, 0xfd, 0x24, 0x68, 0x25, 0xb6, 0x56, | 
|  | 0xd8, 0xab, 0x2a, 0x41, 0x2d, 0x74, 0x0a, 0x52, 0x08, 0x7c, | 
|  | 0x40, 0x71, 0x4e, 0xd2, 0x57, 0x93, 0x13, 0x02, 0x01, 0x02, | 
|  | }; | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, kParams, sizeof(kParams)); | 
|  | bssl::UniquePtr<DH> dh(DH_parse_parameters(&cbs)); | 
|  | ASSERT_TRUE(dh); | 
|  | EXPECT_EQ(CBS_len(&cbs), 0u); | 
|  | EXPECT_TRUE(BIGNUMEqualsHex( | 
|  | DH_get0_p(dh.get()), | 
|  | "d72034a3274fdfbf04fd246825b656d8ab2a412d740a52087c40714ed2579313")); | 
|  | EXPECT_TRUE(BIGNUMEqualsHex(DH_get0_g(dh.get()), "2")); | 
|  | EXPECT_EQ(dh->priv_length, 0u); | 
|  |  | 
|  | bssl::ScopedCBB cbb; | 
|  | uint8_t *der; | 
|  | size_t der_len; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get())); | 
|  | ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); | 
|  | bssl::UniquePtr<uint8_t> free_der(der); | 
|  | EXPECT_EQ(Bytes(kParams), Bytes(der, der_len)); | 
|  |  | 
|  | // kParamsDSA are a set of Diffie-Hellman parameters generated with | 
|  | // openssl dhparam 256 -dsaparam | 
|  | static const uint8_t kParamsDSA[] = { | 
|  | 0x30, 0x81, 0x89, 0x02, 0x41, 0x00, 0x93, 0xf3, 0xc1, 0x18, 0x01, 0xe6, | 
|  | 0x62, 0xb6, 0xd1, 0x46, 0x9a, 0x2c, 0x72, 0xea, 0x31, 0xd9, 0x18, 0x10, | 
|  | 0x30, 0x28, 0x63, 0xe2, 0x34, 0x7d, 0x80, 0xca, 0xee, 0x82, 0x2b, 0x19, | 
|  | 0x3c, 0x19, 0xbb, 0x42, 0x83, 0x02, 0x70, 0xdd, 0xdb, 0x8c, 0x03, 0xab, | 
|  | 0xe9, 0x9c, 0xc4, 0x00, 0x4d, 0x70, 0x5f, 0x52, 0x03, 0x31, 0x2c, 0xa4, | 
|  | 0x67, 0x34, 0x51, 0x95, 0x2a, 0xac, 0x11, 0xe2, 0x6a, 0x55, 0x02, 0x40, | 
|  | 0x44, 0xc8, 0x10, 0x53, 0x44, 0x32, 0x31, 0x63, 0xd8, 0xd1, 0x8c, 0x75, | 
|  | 0xc8, 0x98, 0x53, 0x3b, 0x5b, 0x4a, 0x2a, 0x0a, 0x09, 0xe7, 0xd0, 0x3c, | 
|  | 0x53, 0x72, 0xa8, 0x6b, 0x70, 0x41, 0x9c, 0x26, 0x71, 0x44, 0xfc, 0x7f, | 
|  | 0x08, 0x75, 0xe1, 0x02, 0xab, 0x74, 0x41, 0xe8, 0x2a, 0x3d, 0x3c, 0x26, | 
|  | 0x33, 0x09, 0xe4, 0x8b, 0xb4, 0x41, 0xec, 0xa6, 0xa8, 0xba, 0x1a, 0x07, | 
|  | 0x8a, 0x77, 0xf5, 0x5f, 0x02, 0x02, 0x00, 0xa0, | 
|  | }; | 
|  |  | 
|  | CBS_init(&cbs, kParamsDSA, sizeof(kParamsDSA)); | 
|  | dh.reset(DH_parse_parameters(&cbs)); | 
|  | ASSERT_TRUE(dh); | 
|  | EXPECT_EQ(CBS_len(&cbs), 0u); | 
|  | EXPECT_TRUE( | 
|  | BIGNUMEqualsHex(DH_get0_p(dh.get()), | 
|  | "93f3c11801e662b6d1469a2c72ea31d91810302863e2347d80caee8" | 
|  | "22b193c19bb42830270dddb8c03abe99cc4004d705f5203312ca467" | 
|  | "3451952aac11e26a55")); | 
|  | EXPECT_TRUE( | 
|  | BIGNUMEqualsHex(DH_get0_g(dh.get()), | 
|  | "44c8105344323163d8d18c75c898533b5b4a2a0a09e7d03c5372a86" | 
|  | "b70419c267144fc7f0875e102ab7441e82a3d3c263309e48bb441ec" | 
|  | "a6a8ba1a078a77f55f")); | 
|  | EXPECT_EQ(dh->priv_length, 160u); | 
|  |  | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get())); | 
|  | ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); | 
|  | bssl::UniquePtr<uint8_t> free_der2(der); | 
|  | EXPECT_EQ(Bytes(kParamsDSA), Bytes(der, der_len)); | 
|  | } | 
|  |  | 
|  | TEST(DHTest, RFC3526) { | 
|  | bssl::UniquePtr<BIGNUM> bn(BN_get_rfc3526_prime_1536(nullptr)); | 
|  | ASSERT_TRUE(bn); | 
|  |  | 
|  | static const uint8_t kPrime1536[] = { | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2, | 
|  | 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, | 
|  | 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, | 
|  | 0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, | 
|  | 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, | 
|  | 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45, | 
|  | 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9, | 
|  | 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, | 
|  | 0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, | 
|  | 0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe4, 0x5b, 0x3d, | 
|  | 0xc2, 0x00, 0x7c, 0xb8, 0xa1, 0x63, 0xbf, 0x05, 0x98, 0xda, 0x48, 0x36, | 
|  | 0x1c, 0x55, 0xd3, 0x9a, 0x69, 0x16, 0x3f, 0xa8, 0xfd, 0x24, 0xcf, 0x5f, | 
|  | 0x83, 0x65, 0x5d, 0x23, 0xdc, 0xa3, 0xad, 0x96, 0x1c, 0x62, 0xf3, 0x56, | 
|  | 0x20, 0x85, 0x52, 0xbb, 0x9e, 0xd5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6d, | 
|  | 0x67, 0x0c, 0x35, 0x4e, 0x4a, 0xbc, 0x98, 0x04, 0xf1, 0x74, 0x6c, 0x08, | 
|  | 0xca, 0x23, 0x73, 0x27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | }; | 
|  |  | 
|  | uint8_t buffer[sizeof(kPrime1536)]; | 
|  | ASSERT_EQ(BN_num_bytes(bn.get()), sizeof(kPrime1536)); | 
|  | ASSERT_EQ(BN_bn2bin(bn.get(), buffer), sizeof(kPrime1536)); | 
|  | EXPECT_EQ(Bytes(buffer), Bytes(kPrime1536)); | 
|  | } | 
|  |  | 
|  | TEST(DHTest, LeadingZeros) { | 
|  | bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_word(g.get(), 2)); | 
|  |  | 
|  | bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  |  | 
|  | // These values are far too small to be reasonable Diffie-Hellman keys, but | 
|  | // they are an easy way to get a shared secret with leading zeros. | 
|  | bssl::UniquePtr<BIGNUM> priv_key(BN_new()), peer_key(BN_new()); | 
|  | ASSERT_TRUE(priv_key); | 
|  | ASSERT_TRUE(BN_set_word(priv_key.get(), 2)); | 
|  | ASSERT_TRUE(peer_key); | 
|  | ASSERT_TRUE(BN_set_word(peer_key.get(), 3)); | 
|  | ASSERT_TRUE(DH_set0_key(dh.get(), /*pub_key=*/nullptr, priv_key.get())); | 
|  | priv_key.release(); | 
|  |  | 
|  | uint8_t padded[192] = {0}; | 
|  | padded[191] = 9; | 
|  | static const uint8_t kTruncated[] = {9}; | 
|  | EXPECT_EQ(int(sizeof(padded)), DH_size(dh.get())); | 
|  |  | 
|  | std::vector<uint8_t> buf(DH_size(dh.get())); | 
|  | int len = DH_compute_key(buf.data(), peer_key.get(), dh.get()); | 
|  | ASSERT_GT(len, 0); | 
|  | EXPECT_EQ(Bytes(buf.data(), len), Bytes(kTruncated)); | 
|  |  | 
|  | len = DH_compute_key_padded(buf.data(), peer_key.get(), dh.get()); | 
|  | ASSERT_GT(len, 0); | 
|  | EXPECT_EQ(Bytes(buf.data(), len), Bytes(padded)); | 
|  | } | 
|  |  | 
|  | TEST(DHTest, Overwrite) { | 
|  | // Generate a DH key with the 1536-bit MODP group. | 
|  | bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_word(g.get(), 2)); | 
|  |  | 
|  | bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(key1); | 
|  | ASSERT_TRUE(DH_generate_key(key1.get())); | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> peer_key(BN_new()); | 
|  | ASSERT_TRUE(peer_key); | 
|  | ASSERT_TRUE(BN_set_word(peer_key.get(), 42)); | 
|  |  | 
|  | // Use the key to fill in cached values. | 
|  | std::vector<uint8_t> buf1(DH_size(key1.get())); | 
|  | ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0); | 
|  |  | 
|  | // Generate a different key with a different group. | 
|  | p.reset(BN_get_rfc3526_prime_2048(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<DH> key2 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(key2); | 
|  | ASSERT_TRUE(DH_generate_key(key2.get())); | 
|  |  | 
|  | // Overwrite |key1|'s contents with |key2|. | 
|  | p.reset(BN_dup(DH_get0_p(key2.get()))); | 
|  | ASSERT_TRUE(p); | 
|  | g.reset(BN_dup(DH_get0_g(key2.get()))); | 
|  | ASSERT_TRUE(g); | 
|  | bssl::UniquePtr<BIGNUM> pub(BN_dup(DH_get0_pub_key(key2.get()))); | 
|  | ASSERT_TRUE(pub); | 
|  | bssl::UniquePtr<BIGNUM> priv(BN_dup(DH_get0_priv_key(key2.get()))); | 
|  | ASSERT_TRUE(priv); | 
|  | ASSERT_TRUE(DH_set0_pqg(key1.get(), p.get(), /*q=*/nullptr, g.get())); | 
|  | p.release(); | 
|  | g.release(); | 
|  | ASSERT_TRUE(DH_set0_key(key1.get(), pub.get(), priv.get())); | 
|  | pub.release(); | 
|  | priv.release(); | 
|  |  | 
|  | // Verify that |key1| and |key2| behave equivalently. | 
|  | buf1.resize(DH_size(key1.get())); | 
|  | ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0); | 
|  | std::vector<uint8_t> buf2(DH_size(key2.get())); | 
|  | ASSERT_GT(DH_compute_key_padded(buf2.data(), peer_key.get(), key2.get()), 0); | 
|  | EXPECT_EQ(Bytes(buf1), Bytes(buf2)); | 
|  | } | 
|  |  | 
|  | TEST(DHTest, GenerateKeyTwice) { | 
|  | bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_word(g.get(), 2)); | 
|  | bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(key1); | 
|  | ASSERT_TRUE(DH_generate_key(key1.get())); | 
|  |  | 
|  | // Copy the parameters and private key to a new DH object. | 
|  | bssl::UniquePtr<DH> key2(DHparams_dup(key1.get())); | 
|  | ASSERT_TRUE(key2); | 
|  | bssl::UniquePtr<BIGNUM> priv_key(BN_dup(DH_get0_priv_key(key1.get()))); | 
|  | ASSERT_TRUE(DH_set0_key(key2.get(), /*pub_key=*/NULL, priv_key.get())); | 
|  | priv_key.release(); | 
|  |  | 
|  | // This time, calling |DH_generate_key| preserves the old key and recomputes | 
|  | // the public key. | 
|  | ASSERT_TRUE(DH_generate_key(key2.get())); | 
|  | EXPECT_EQ(BN_cmp(DH_get0_priv_key(key1.get()), DH_get0_priv_key(key2.get())), | 
|  | 0); | 
|  | EXPECT_EQ(BN_cmp(DH_get0_pub_key(key1.get()), DH_get0_pub_key(key2.get())), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | // Bad parameters should be rejected, rather than cause a DoS risk in the | 
|  | // event that an application uses Diffie-Hellman incorrectly, with untrusted | 
|  | // domain parameters. | 
|  | TEST(DHTest, InvalidParameters) { | 
|  | auto check_invalid_group = [](DH *dh) { | 
|  | // All operations on egregiously invalid groups should fail. | 
|  | EXPECT_FALSE(DH_generate_key(dh)); | 
|  | int check_result; | 
|  | EXPECT_FALSE(DH_check(dh, &check_result)); | 
|  | bssl::UniquePtr<BIGNUM> pub_key(BN_new()); | 
|  | ASSERT_TRUE(pub_key); | 
|  | ASSERT_TRUE(BN_set_u64(pub_key.get(), 42)); | 
|  | EXPECT_FALSE(DH_check_pub_key(dh, pub_key.get(), &check_result)); | 
|  | uint8_t buf[1024]; | 
|  | EXPECT_EQ(DH_compute_key(buf, pub_key.get(), dh), -1); | 
|  | EXPECT_EQ(DH_compute_key_padded(buf, pub_key.get(), dh), -1); | 
|  | }; | 
|  |  | 
|  | bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_word(g.get(), 2)); | 
|  |  | 
|  | // p is negative. | 
|  | BN_set_negative(p.get(), 1); | 
|  | bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | BN_set_negative(p.get(), 0); | 
|  | check_invalid_group(dh.get()); | 
|  |  | 
|  | // g is negative. | 
|  | BN_set_negative(g.get(), 1); | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | BN_set_negative(g.get(), 0); | 
|  | check_invalid_group(dh.get()); | 
|  |  | 
|  | // g is not reduced mod p. | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, p.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | BN_set_negative(g.get(), 0); | 
|  | check_invalid_group(dh.get()); | 
|  |  | 
|  | // p is too large. | 
|  | bssl::UniquePtr<BIGNUM> large(BN_new()); | 
|  | ASSERT_TRUE(BN_set_bit(large.get(), 0)); | 
|  | ASSERT_TRUE(BN_set_bit(large.get(), 10000000)); | 
|  | dh = NewDHGroup(large.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | check_invalid_group(dh.get()); | 
|  |  | 
|  | // q is too large. | 
|  | dh = NewDHGroup(p.get(), large.get(), g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | check_invalid_group(dh.get()); | 
|  |  | 
|  | // Attempting to generate too large of a Diffie-Hellman group should fail. | 
|  | EXPECT_FALSE( | 
|  | DH_generate_parameters_ex(dh.get(), 20000, DH_GENERATOR_5, nullptr)); | 
|  | } | 
|  |  | 
|  | TEST(DHTest, PrivateKeyLength) { | 
|  | // Use a custom P, rather than one of the MODP primes, to pick one which does | 
|  | // not begin with all ones. Otherwise some of the tests for boundary | 
|  | // conditions below will not notice mistakes. | 
|  | static const uint8_t kP[] = { | 
|  | 0xb6, 0xfa, 0x00, 0x07, 0x0a, 0x1f, 0xfb, 0x28, 0x7e, 0x6e, 0x6a, 0x97, | 
|  | 0xca, 0xa4, 0x6d, 0xf5, 0x25, 0x84, 0x76, 0xc6, 0xc4, 0xa5, 0x47, 0xb6, | 
|  | 0xb2, 0x7d, 0x76, 0x46, 0xf2, 0xb5, 0x7c, 0xc6, 0xc6, 0xb4, 0xb4, 0x82, | 
|  | 0xc5, 0xed, 0x7b, 0xd9, 0x30, 0x6e, 0x41, 0xdb, 0x7f, 0x93, 0x2f, 0xb5, | 
|  | 0x85, 0xa7, 0x38, 0x9e, 0x08, 0xc4, 0x25, 0x92, 0x7d, 0x5d, 0x2b, 0x77, | 
|  | 0x09, 0xe0, 0x2f, 0x4e, 0x14, 0x36, 0x8a, 0x08, 0x0b, 0xfd, 0x89, 0x22, | 
|  | 0x47, 0xb4, 0xbd, 0xff, 0x79, 0x4e, 0x78, 0x66, 0x2a, 0x77, 0x74, 0xbd, | 
|  | 0x85, 0xb6, 0xce, 0x5a, 0x89, 0xb7, 0x60, 0xc3, 0x8d, 0x2a, 0x1f, 0xb7, | 
|  | 0x30, 0x33, 0x1a, 0xc4, 0x51, 0xa8, 0x18, 0x62, 0x40, 0xb6, 0x5a, 0xb5, | 
|  | 0x6c, 0xf5, 0xf9, 0xbc, 0x94, 0x50, 0xba, 0xeb, 0xa2, 0xe9, 0xb3, 0x99, | 
|  | 0xde, 0xf8, 0x55, 0xfd, 0xed, 0x46, 0x1b, 0x69, 0xa5, 0x6a, 0x04, 0xe3, | 
|  | 0xa9, 0x2c, 0x0c, 0x89, 0x41, 0xfe, 0xe4, 0xa0, 0x85, 0x85, 0x2c, 0x45, | 
|  | 0xf1, 0xcb, 0x96, 0x04, 0x23, 0x4a, 0x7d, 0x56, 0x38, 0xd8, 0x86, 0x9d, | 
|  | 0xfc, 0xe0, 0x33, 0x65, 0x1a, 0xff, 0x07, 0xf0, 0xfb, 0xc6, 0x5d, 0x26, | 
|  | 0xa2, 0x96, 0xd4, 0xb5, 0xe8, 0xcd, 0x48, 0xd7, 0x8e, 0x53, 0xfe, 0xcb, | 
|  | 0x4b, 0xf2, 0x3a, 0x8b, 0x35, 0x87, 0x0a, 0x79, 0xbe, 0x8d, 0x36, 0x45, | 
|  | 0x12, 0x6e, 0x1b, 0xd4, 0xa5, 0x57, 0xe0, 0x98, 0xb7, 0x59, 0xba, 0xc2, | 
|  | 0xd8, 0x2e, 0x05, 0x0f, 0xe1, 0x70, 0x39, 0x5b, 0xe6, 0x4e, 0xdb, 0xb0, | 
|  | 0xdd, 0x7e, 0xe6, 0x66, 0x13, 0x85, 0x26, 0x32, 0x27, 0xa1, 0x00, 0x7f, | 
|  | 0x6a, 0xa9, 0xda, 0x2e, 0x50, 0x25, 0x87, 0x73, 0xab, 0x71, 0xfb, 0xa0, | 
|  | 0x92, 0xba, 0x8e, 0x9c, 0x4e, 0xea, 0x18, 0x32, 0xc4, 0x02, 0x8f, 0xe8, | 
|  | 0x95, 0x9e, 0xcb, 0x9f}; | 
|  | bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_word(g.get(), 2)); | 
|  | bssl::UniquePtr<BIGNUM> q(BN_new()); | 
|  | ASSERT_TRUE(q); | 
|  | ASSERT_TRUE(BN_rshift1(q.get(), p.get()));  // (p-1)/2 | 
|  |  | 
|  | EXPECT_EQ(BN_num_bits(p.get()), 2048u); | 
|  | EXPECT_EQ(BN_num_bits(q.get()), 2047u); | 
|  |  | 
|  | // This test will only probabilistically notice some kinds of failures, so we | 
|  | // repeat it for several iterations. | 
|  | constexpr unsigned kIterations = 100; | 
|  |  | 
|  | // If the private key was chosen from the range [1, M), num_bits(priv_key) | 
|  | // should be very close to num_bits(M), but may be a few bits short. Allow 128 | 
|  | // leading zeros, which should fail with negligible probability. | 
|  | constexpr unsigned kMaxLeadingZeros = 128; | 
|  |  | 
|  | for (unsigned i = 0; i < kIterations; i++) { | 
|  | // If unspecified, the private key is bounded by q = (p-1)/2. | 
|  | bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  | EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); | 
|  | EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, | 
|  | BN_num_bits(DH_get0_priv_key(dh.get()))); | 
|  |  | 
|  | // Setting too large of a private key length should not be a DoS vector. The | 
|  | // key is clamped to q = (p-1)/2. | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | DH_set_length(dh.get(), 10000000); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  | EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); | 
|  | EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, | 
|  | BN_num_bits(DH_get0_priv_key(dh.get()))); | 
|  |  | 
|  | // A small private key size should bound the private key. | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | unsigned bits = 1024; | 
|  | DH_set_length(dh.get(), bits); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  | EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits); | 
|  | EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); | 
|  |  | 
|  | // If the private key length is num_bits(q) - 1, the length should be the | 
|  | // limiting factor. | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | bits = BN_num_bits(q.get()) - 1; | 
|  | DH_set_length(dh.get(), bits); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  | EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits); | 
|  | EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get()))); | 
|  |  | 
|  | // If the private key length is num_bits(q), q should be the limiting | 
|  | // factor. | 
|  | dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get()); | 
|  | ASSERT_TRUE(dh); | 
|  | DH_set_length(dh.get(), BN_num_bits(q.get())); | 
|  | ASSERT_TRUE(DH_generate_key(dh.get())); | 
|  | EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0); | 
|  | EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros, | 
|  | BN_num_bits(DH_get0_priv_key(dh.get()))); | 
|  | } | 
|  | } |