Adam Langley | 95c29f3 | 2014-06-20 12:00:00 -0700 | [diff] [blame] | 1 | /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| 2 | * project 1999. |
| 3 | */ |
| 4 | /* ==================================================================== |
| 5 | * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| 6 | * |
| 7 | * Redistribution and use in source and binary forms, with or without |
| 8 | * modification, are permitted provided that the following conditions |
| 9 | * are met: |
| 10 | * |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * |
| 14 | * 2. Redistributions in binary form must reproduce the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer in |
| 16 | * the documentation and/or other materials provided with the |
| 17 | * distribution. |
| 18 | * |
| 19 | * 3. All advertising materials mentioning features or use of this |
| 20 | * software must display the following acknowledgment: |
| 21 | * "This product includes software developed by the OpenSSL Project |
| 22 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| 23 | * |
| 24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 25 | * endorse or promote products derived from this software without |
| 26 | * prior written permission. For written permission, please contact |
| 27 | * licensing@OpenSSL.org. |
| 28 | * |
| 29 | * 5. Products derived from this software may not be called "OpenSSL" |
| 30 | * nor may "OpenSSL" appear in their names without prior written |
| 31 | * permission of the OpenSSL Project. |
| 32 | * |
| 33 | * 6. Redistributions of any form whatsoever must retain the following |
| 34 | * acknowledgment: |
| 35 | * "This product includes software developed by the OpenSSL Project |
| 36 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| 37 | * |
| 38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 49 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 50 | * ==================================================================== |
| 51 | * |
| 52 | * This product includes cryptographic software written by Eric Young |
| 53 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 54 | * Hudson (tjh@cryptsoft.com). */ |
| 55 | |
| 56 | #include <openssl/pkcs8.h> |
| 57 | |
| 58 | #include <openssl/asn1.h> |
| 59 | #include <openssl/bn.h> |
| 60 | #include <openssl/cipher.h> |
| 61 | #include <openssl/digest.h> |
| 62 | #include <openssl/err.h> |
| 63 | #include <openssl/mem.h> |
| 64 | #include <openssl/x509.h> |
| 65 | |
| 66 | #include "../evp/internal.h" |
| 67 | |
| 68 | |
| 69 | #define PKCS12_KEY_ID 1 |
| 70 | #define PKCS12_IV_ID 2 |
| 71 | |
| 72 | static int ascii_to_ucs2(const char *ascii, size_t ascii_len, |
| 73 | uint8_t **out, size_t *out_len) { |
| 74 | uint8_t *unitmp; |
| 75 | size_t ulen, i; |
| 76 | |
| 77 | ulen = ascii_len * 2 + 2; |
| 78 | if (ulen < ascii_len) { |
| 79 | return 0; |
| 80 | } |
| 81 | unitmp = OPENSSL_malloc(ulen); |
| 82 | if (unitmp == NULL) { |
| 83 | return 0; |
| 84 | } |
| 85 | for (i = 0; i < ulen - 2; i += 2) { |
| 86 | unitmp[i] = 0; |
| 87 | unitmp[i + 1] = ascii[i >> 1]; |
| 88 | } |
| 89 | |
| 90 | /* Make result double null terminated */ |
| 91 | unitmp[ulen - 2] = 0; |
| 92 | unitmp[ulen - 1] = 0; |
| 93 | *out_len = ulen; |
| 94 | *out = unitmp; |
| 95 | return 1; |
| 96 | } |
| 97 | |
| 98 | static int pkcs12_key_gen_uni(uint8_t *pass, size_t pass_len, uint8_t *salt, |
| 99 | size_t salt_len, int id, int iterations, |
| 100 | size_t out_len, uint8_t *out, |
| 101 | const EVP_MD *md_type) { |
| 102 | uint8_t *B, *D, *I, *p, *Ai; |
| 103 | int Slen, Plen, Ilen, Ijlen; |
| 104 | int i, j, v; |
| 105 | size_t u; |
| 106 | int ret = 0; |
| 107 | BIGNUM *Ij, *Bpl1; /* These hold Ij and B + 1 */ |
| 108 | EVP_MD_CTX ctx; |
| 109 | |
| 110 | EVP_MD_CTX_init(&ctx); |
| 111 | v = EVP_MD_block_size(md_type); |
| 112 | u = EVP_MD_size(md_type); |
| 113 | D = OPENSSL_malloc(v); |
| 114 | Ai = OPENSSL_malloc(u); |
| 115 | B = OPENSSL_malloc(v + 1); |
| 116 | Slen = v * ((salt_len + v - 1) / v); |
| 117 | if (pass_len) |
| 118 | Plen = v * ((pass_len + v - 1) / v); |
| 119 | else |
| 120 | Plen = 0; |
| 121 | Ilen = Slen + Plen; |
| 122 | I = OPENSSL_malloc(Ilen); |
| 123 | Ij = BN_new(); |
| 124 | Bpl1 = BN_new(); |
| 125 | if (!D || !Ai || !B || !I || !Ij || !Bpl1) |
| 126 | goto err; |
| 127 | for (i = 0; i < v; i++) |
| 128 | D[i] = id; |
| 129 | p = I; |
| 130 | for (i = 0; i < Slen; i++) |
| 131 | *p++ = salt[i % salt_len]; |
| 132 | for (i = 0; i < Plen; i++) |
| 133 | *p++ = pass[i % pass_len]; |
| 134 | for (;;) { |
| 135 | if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| 136 | !EVP_DigestUpdate(&ctx, D, v) || |
| 137 | !EVP_DigestUpdate(&ctx, I, Ilen) || |
| 138 | !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| 139 | goto err; |
| 140 | } |
| 141 | for (j = 1; j < iterations; j++) { |
| 142 | if (!EVP_DigestInit_ex(&ctx, md_type, NULL) || |
| 143 | !EVP_DigestUpdate(&ctx, Ai, u) || |
| 144 | !EVP_DigestFinal_ex(&ctx, Ai, NULL)) { |
| 145 | goto err; |
| 146 | } |
| 147 | } |
| 148 | memcpy(out, Ai, out_len < u ? out_len : u); |
| 149 | if (u >= out_len) { |
| 150 | ret = 1; |
| 151 | goto end; |
| 152 | } |
| 153 | out_len -= u; |
| 154 | out += u; |
| 155 | for (j = 0; j < v; j++) |
| 156 | B[j] = Ai[j % u]; |
| 157 | /* Work out B + 1 first then can use B as tmp space */ |
| 158 | if (!BN_bin2bn(B, v, Bpl1)) |
| 159 | goto err; |
| 160 | if (!BN_add_word(Bpl1, 1)) |
| 161 | goto err; |
| 162 | for (j = 0; j < Ilen; j += v) { |
| 163 | if (!BN_bin2bn(I + j, v, Ij)) |
| 164 | goto err; |
| 165 | if (!BN_add(Ij, Ij, Bpl1)) |
| 166 | goto err; |
| 167 | if (!BN_bn2bin(Ij, B)) |
| 168 | goto err; |
| 169 | Ijlen = BN_num_bytes(Ij); |
| 170 | /* If more than 2^(v*8) - 1 cut off MSB */ |
| 171 | if (Ijlen > v) { |
| 172 | if (!BN_bn2bin(Ij, B)) |
| 173 | goto err; |
| 174 | memcpy(I + j, B + 1, v); |
| 175 | /* If less than v bytes pad with zeroes */ |
| 176 | } else if (Ijlen < v) { |
| 177 | memset(I + j, 0, v - Ijlen); |
| 178 | if (!BN_bn2bin(Ij, I + j + v - Ijlen)) |
| 179 | goto err; |
| 180 | } else if (!BN_bn2bin(Ij, I + j)) { |
| 181 | goto err; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | err: |
| 187 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_uni, ERR_R_MALLOC_FAILURE); |
| 188 | |
| 189 | end: |
| 190 | OPENSSL_free(Ai); |
| 191 | OPENSSL_free(B); |
| 192 | OPENSSL_free(D); |
| 193 | OPENSSL_free(I); |
| 194 | BN_free(Ij); |
| 195 | BN_free(Bpl1); |
| 196 | EVP_MD_CTX_cleanup(&ctx); |
| 197 | |
| 198 | return ret; |
| 199 | } |
| 200 | |
| 201 | static int pkcs12_key_gen_asc(const char *pass, size_t pass_len, uint8_t *salt, |
| 202 | size_t salt_len, int id, int iterations, |
| 203 | int out_len, uint8_t *out, |
| 204 | const EVP_MD *md_type) { |
| 205 | int ret; |
| 206 | uint8_t *ucs2_pass = NULL; |
| 207 | size_t ucs2_pass_len = 0; |
| 208 | |
| 209 | if (pass && !ascii_to_ucs2(pass, pass_len, &ucs2_pass, &ucs2_pass_len)) { |
| 210 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_key_gen_asc, PKCS8_R_DECODE_ERROR); |
| 211 | return 0; |
| 212 | } |
| 213 | ret = pkcs12_key_gen_uni(ucs2_pass, ucs2_pass_len, salt, salt_len, id, |
| 214 | iterations, out_len, out, md_type); |
| 215 | |
| 216 | if (ucs2_pass) { |
| 217 | OPENSSL_cleanse(ucs2_pass, ucs2_pass_len); |
| 218 | OPENSSL_free(ucs2_pass); |
| 219 | } |
| 220 | |
| 221 | return ret; |
| 222 | } |
| 223 | |
| 224 | static int pkcs12_pbe_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, |
| 225 | size_t pass_len, ASN1_TYPE *param, |
| 226 | const EVP_CIPHER *cipher, const EVP_MD *md, |
| 227 | int is_encrypt) { |
| 228 | PBEPARAM *pbe; |
| 229 | int salt_len, iterations, ret; |
| 230 | uint8_t *salt; |
| 231 | const uint8_t *pbuf; |
| 232 | uint8_t key[EVP_MAX_KEY_LENGTH], iv[EVP_MAX_IV_LENGTH]; |
| 233 | |
| 234 | /* Extract useful info from parameter */ |
| 235 | if (param == NULL || param->type != V_ASN1_SEQUENCE || |
| 236 | param->value.sequence == NULL) { |
| 237 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | pbuf = param->value.sequence->data; |
| 242 | pbe = d2i_PBEPARAM(NULL, &pbuf, param->value.sequence->length); |
| 243 | if (pbe == NULL) { |
| 244 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_DECODE_ERROR); |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | if (!pbe->iter) { |
| 249 | iterations = 1; |
| 250 | } else { |
| 251 | iterations = ASN1_INTEGER_get(pbe->iter); |
| 252 | } |
| 253 | salt = pbe->salt->data; |
| 254 | salt_len = pbe->salt->length; |
| 255 | if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, |
| 256 | iterations, EVP_CIPHER_key_length(cipher), key, md)) { |
| 257 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| 258 | PBEPARAM_free(pbe); |
| 259 | return 0; |
| 260 | } |
| 261 | if (!pkcs12_key_gen_asc(pass, pass_len, salt, salt_len, PKCS12_IV_ID, |
| 262 | iterations, EVP_CIPHER_iv_length(cipher), iv, md)) { |
| 263 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_pbe_keyivgen, PKCS8_R_KEY_GEN_ERROR); |
| 264 | PBEPARAM_free(pbe); |
| 265 | return 0; |
| 266 | } |
| 267 | PBEPARAM_free(pbe); |
| 268 | ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
| 269 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| 270 | OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
| 271 | return ret; |
| 272 | } |
| 273 | |
| 274 | typedef int (*keygen_func)(EVP_CIPHER_CTX *ctx, const char *pass, |
| 275 | size_t pass_len, ASN1_TYPE *param, |
| 276 | const EVP_CIPHER *cipher, const EVP_MD *md, |
| 277 | int is_encrypt); |
| 278 | |
| 279 | struct pbe_suite { |
| 280 | int pbe_nid; |
| 281 | int cipher_nid; |
| 282 | int md_nid; |
| 283 | keygen_func keygen; |
| 284 | }; |
| 285 | |
| 286 | static const struct pbe_suite kBuiltinPBE[] = { |
| 287 | { |
| 288 | NID_pbe_WithSHA1And128BitRC4, NID_rc4, NID_sha1, pkcs12_pbe_keyivgen, |
| 289 | }, |
| 290 | { |
| 291 | NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_des_ede3_cbc, NID_sha1, |
| 292 | pkcs12_pbe_keyivgen, |
| 293 | }, |
| 294 | }; |
| 295 | |
| 296 | static int pbe_cipher_init(ASN1_OBJECT *pbe_obj, const char *pass, |
| 297 | size_t pass_len, ASN1_TYPE *param, |
| 298 | EVP_CIPHER_CTX *ctx, int is_encrypt) { |
| 299 | const EVP_CIPHER *cipher; |
| 300 | const EVP_MD *md; |
| 301 | unsigned i; |
| 302 | |
| 303 | const struct pbe_suite *suite = NULL; |
| 304 | const int pbe_nid = OBJ_obj2nid(pbe_obj); |
| 305 | |
| 306 | for (i = 0; i < sizeof(kBuiltinPBE) / sizeof(struct pbe_suite); i++) { |
| 307 | suite = &kBuiltinPBE[i]; |
| 308 | if (suite->pbe_nid == pbe_nid) { |
| 309 | break; |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | if (suite == NULL) { |
| 314 | char obj_str[80]; |
| 315 | OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_ALGORITHM); |
| 316 | if (!pbe_obj) { |
| 317 | strncpy(obj_str, "NULL", sizeof(obj_str)); |
| 318 | } else { |
| 319 | i2t_ASN1_OBJECT(obj_str, sizeof(obj_str), pbe_obj); |
| 320 | } |
| 321 | ERR_add_error_data(2, "TYPE=", obj_str); |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | if (suite->cipher_nid == -1) { |
| 326 | cipher = NULL; |
| 327 | } else { |
| 328 | cipher = EVP_get_cipherbynid(suite->cipher_nid); |
| 329 | if (!cipher) { |
| 330 | OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_CIPHER); |
| 331 | return 0; |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | if (suite->md_nid == -1) { |
| 336 | md = NULL; |
| 337 | } else { |
| 338 | md = EVP_get_digestbynid(suite->md_nid); |
| 339 | if (!md) { |
| 340 | OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_UNKNOWN_DIGEST); |
| 341 | return 0; |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | if (!suite->keygen(ctx, pass, pass_len, param, cipher, md, is_encrypt)) { |
| 346 | OPENSSL_PUT_ERROR(PKCS8, pbe_cipher_init, PKCS8_R_KEYGEN_FAILURE); |
| 347 | return 0; |
| 348 | } |
| 349 | |
| 350 | return 1; |
| 351 | } |
| 352 | |
| 353 | static int pbe_crypt(const X509_ALGOR *algor, const char *pass, size_t pass_len, |
| 354 | uint8_t *in, size_t in_len, uint8_t **out, size_t *out_len, |
| 355 | int is_encrypt) { |
| 356 | uint8_t *buf; |
| 357 | int n, ret = 0; |
| 358 | EVP_CIPHER_CTX ctx; |
| 359 | unsigned block_size; |
| 360 | |
| 361 | EVP_CIPHER_CTX_init(&ctx); |
| 362 | |
| 363 | if (!pbe_cipher_init(algor->algorithm, pass, pass_len, algor->parameter, &ctx, |
| 364 | is_encrypt)) { |
| 365 | OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_UNKNOWN_CIPHER_ALGORITHM); |
| 366 | return 0; |
| 367 | } |
| 368 | block_size = EVP_CIPHER_CTX_block_size(&ctx); |
| 369 | |
| 370 | if (in_len + block_size < in_len) { |
| 371 | OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, PKCS8_R_TOO_LONG); |
| 372 | goto err; |
| 373 | } |
| 374 | |
| 375 | buf = OPENSSL_malloc(in_len + block_size); |
| 376 | if (buf == NULL) { |
| 377 | OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_MALLOC_FAILURE); |
| 378 | goto err; |
| 379 | } |
| 380 | |
| 381 | if (!EVP_CipherUpdate(&ctx, buf, &n, in, in_len)) { |
| 382 | OPENSSL_free(buf); |
| 383 | OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| 384 | goto err; |
| 385 | } |
| 386 | *out_len = n; |
| 387 | |
| 388 | if (!EVP_CipherFinal_ex(&ctx, buf + n, &n)) { |
| 389 | OPENSSL_free(buf); |
| 390 | OPENSSL_PUT_ERROR(PKCS8, pbe_crypt, ERR_R_EVP_LIB); |
| 391 | goto err; |
| 392 | } |
| 393 | *out_len += n; |
| 394 | *out = buf; |
| 395 | ret = 1; |
| 396 | |
| 397 | err: |
| 398 | EVP_CIPHER_CTX_cleanup(&ctx); |
| 399 | return ret; |
| 400 | } |
| 401 | |
| 402 | static void *pkcs12_item_decrypt_d2i(X509_ALGOR *algor, const ASN1_ITEM *it, |
| 403 | const char *pass, size_t pass_len, |
| 404 | ASN1_OCTET_STRING *oct) { |
| 405 | uint8_t *out; |
| 406 | const uint8_t *p; |
| 407 | void *ret; |
| 408 | size_t out_len; |
| 409 | |
| 410 | if (!pbe_crypt(algor, pass, pass_len, oct->data, oct->length, &out, &out_len, |
| 411 | 0 /* decrypt */)) { |
| 412 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_CRYPT_ERROR); |
| 413 | return NULL; |
| 414 | } |
| 415 | p = out; |
| 416 | ret = ASN1_item_d2i(NULL, &p, out_len, it); |
| 417 | OPENSSL_cleanse(out, out_len); |
| 418 | if (!ret) { |
| 419 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_decrypt_d2i, PKCS8_R_DECODE_ERROR); |
| 420 | } |
| 421 | OPENSSL_free(out); |
| 422 | return ret; |
| 423 | } |
| 424 | |
| 425 | PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| 426 | int pass_len) { |
| 427 | if (pass && pass_len == -1) { |
| 428 | pass_len = strlen(pass); |
| 429 | } |
| 430 | return pkcs12_item_decrypt_d2i(pkcs8->algor, |
| 431 | ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, |
| 432 | pass_len, pkcs8->digest); |
| 433 | } |
| 434 | |
| 435 | static ASN1_OCTET_STRING *pkcs12_item_i2d_encrypt(X509_ALGOR *algor, |
| 436 | const ASN1_ITEM *it, |
| 437 | const char *pass, |
| 438 | size_t passlen, void *obj) { |
| 439 | ASN1_OCTET_STRING *oct; |
| 440 | uint8_t *in = NULL; |
| 441 | int in_len; |
| 442 | size_t crypt_len; |
| 443 | |
| 444 | oct = M_ASN1_OCTET_STRING_new(); |
| 445 | if (oct == NULL) { |
| 446 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, ERR_R_MALLOC_FAILURE); |
| 447 | return NULL; |
| 448 | } |
| 449 | in_len = ASN1_item_i2d(obj, &in, it); |
| 450 | if (!in) { |
| 451 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCODE_ERROR); |
| 452 | return NULL; |
| 453 | } |
| 454 | if (!pbe_crypt(algor, pass, passlen, in, in_len, &oct->data, &crypt_len, |
| 455 | 1 /* encrypt */)) { |
| 456 | OPENSSL_PUT_ERROR(PKCS8, pkcs12_item_i2d_encrypt, PKCS8_R_ENCRYPT_ERROR); |
| 457 | OPENSSL_free(in); |
| 458 | return NULL; |
| 459 | } |
| 460 | oct->length = crypt_len; |
| 461 | OPENSSL_cleanse(in, in_len); |
| 462 | OPENSSL_free(in); |
| 463 | return oct; |
| 464 | } |
| 465 | |
| 466 | X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| 467 | int pass_len, uint8_t *salt, size_t salt_len, |
| 468 | int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| 469 | X509_SIG *pkcs8 = NULL; |
| 470 | X509_ALGOR *pbe; |
| 471 | |
| 472 | if (pass && pass_len == -1) { |
| 473 | pass_len = strlen(pass); |
| 474 | } |
| 475 | |
| 476 | pkcs8 = X509_SIG_new(); |
| 477 | if (pkcs8 == NULL) { |
| 478 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_MALLOC_FAILURE); |
| 479 | goto err; |
| 480 | } |
| 481 | |
| 482 | if (pbe_nid == -1) { |
| 483 | pbe = PKCS5_pbe2_set(cipher, iterations, salt, salt_len); |
| 484 | } else { |
| 485 | pbe = PKCS5_pbe_set(pbe_nid, iterations, salt, salt_len); |
| 486 | } |
| 487 | |
| 488 | if (!pbe) { |
| 489 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, ERR_R_ASN1_LIB); |
| 490 | goto err; |
| 491 | } |
| 492 | |
| 493 | X509_ALGOR_free(pkcs8->algor); |
| 494 | pkcs8->algor = pbe; |
| 495 | M_ASN1_OCTET_STRING_free(pkcs8->digest); |
| 496 | pkcs8->digest = pkcs12_item_i2d_encrypt( |
| 497 | pbe, ASN1_ITEM_rptr(PKCS8_PRIV_KEY_INFO), pass, pass_len, p8inf); |
| 498 | if (!pkcs8->digest) { |
| 499 | OPENSSL_PUT_ERROR(PKCS8, PKCS8_encrypt, PKCS8_R_ENCRYPT_ERROR); |
| 500 | goto err; |
| 501 | } |
| 502 | |
| 503 | return pkcs8; |
| 504 | |
| 505 | err: |
| 506 | X509_SIG_free(pkcs8); |
| 507 | return NULL; |
| 508 | } |
| 509 | |
| 510 | EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| 511 | EVP_PKEY *pkey = NULL; |
| 512 | ASN1_OBJECT *algoid; |
| 513 | char obj_tmp[80]; |
| 514 | |
| 515 | if (!PKCS8_pkey_get0(&algoid, NULL, NULL, NULL, p8)) |
| 516 | return NULL; |
| 517 | |
| 518 | pkey = EVP_PKEY_new(); |
| 519 | if (pkey == NULL) { |
| 520 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, ERR_R_MALLOC_FAILURE); |
| 521 | return NULL; |
| 522 | } |
| 523 | |
| 524 | if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(algoid))) { |
| 525 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, |
| 526 | PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| 527 | i2t_ASN1_OBJECT(obj_tmp, 80, algoid); |
| 528 | ERR_add_error_data(2, "TYPE=", obj_tmp); |
| 529 | goto error; |
| 530 | } |
| 531 | |
| 532 | if (pkey->ameth->priv_decode) { |
| 533 | if (!pkey->ameth->priv_decode(pkey, p8)) { |
| 534 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_PRIVATE_KEY_DECODE_ERROR); |
| 535 | goto error; |
| 536 | } |
| 537 | } else { |
| 538 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKCS82PKEY, PKCS8_R_METHOD_NOT_SUPPORTED); |
| 539 | goto error; |
| 540 | } |
| 541 | |
| 542 | return pkey; |
| 543 | |
| 544 | error: |
| 545 | EVP_PKEY_free(pkey); |
| 546 | return NULL; |
| 547 | } |
| 548 | |
| 549 | PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| 550 | PKCS8_PRIV_KEY_INFO *p8; |
| 551 | |
| 552 | p8 = PKCS8_PRIV_KEY_INFO_new(); |
| 553 | if (p8 == NULL) { |
| 554 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, ERR_R_MALLOC_FAILURE); |
| 555 | return NULL; |
| 556 | } |
| 557 | p8->broken = PKCS8_OK; |
| 558 | |
| 559 | if (pkey->ameth) { |
| 560 | if (pkey->ameth->priv_encode) { |
| 561 | if (!pkey->ameth->priv_encode(p8, pkey)) { |
| 562 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| 563 | PKCS8_R_PRIVATE_KEY_ENCODE_ERROR); |
| 564 | goto error; |
| 565 | } |
| 566 | } else { |
| 567 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, PKCS8_R_METHOD_NOT_SUPPORTED); |
| 568 | goto error; |
| 569 | } |
| 570 | } else { |
| 571 | OPENSSL_PUT_ERROR(PKCS8, EVP_PKEY2PKCS8, |
| 572 | PKCS8_R_UNSUPPORTED_PRIVATE_KEY_ALGORITHM); |
| 573 | goto error; |
| 574 | } |
| 575 | return p8; |
| 576 | |
| 577 | error: |
| 578 | PKCS8_PRIV_KEY_INFO_free(p8); |
| 579 | return NULL; |
| 580 | } |