David Benjamin | b529253 | 2017-06-09 19:27:37 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <openssl/evp.h> |
| 11 | |
| 12 | #include <assert.h> |
| 13 | |
| 14 | #include <openssl/err.h> |
| 15 | #include <openssl/mem.h> |
| 16 | #include <openssl/type_check.h> |
| 17 | |
| 18 | #include "../internal.h" |
| 19 | |
| 20 | |
| 21 | /* This file implements scrypt, described in RFC 7914. |
| 22 | * |
| 23 | * Note scrypt refers to both "blocks" and a "block size" parameter, r. These |
| 24 | * are two different notions of blocks. A Salsa20 block is 64 bytes long, |
| 25 | * represented in this implementation by 16 |uint32_t|s. |r| determines the |
| 26 | * number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| |
| 27 | * Salsa20 blocks. This implementation refers to them as Salsa20 blocks and |
| 28 | * scrypt blocks, respectively. */ |
| 29 | |
| 30 | /* A block_t is a Salsa20 block. */ |
| 31 | typedef struct { uint32_t words[16]; } block_t; |
| 32 | |
| 33 | OPENSSL_COMPILE_ASSERT(sizeof(block_t) == 64, block_t_has_padding); |
| 34 | |
| 35 | #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| 36 | |
| 37 | /* salsa208_word_specification implements the Salsa20/8 core function, also |
| 38 | * described in RFC 7914, section 3. It modifies the block at |inout| |
| 39 | * in-place. */ |
| 40 | static void salsa208_word_specification(block_t *inout) { |
| 41 | block_t x; |
| 42 | OPENSSL_memcpy(&x, inout, sizeof(x)); |
| 43 | |
| 44 | for (int i = 8; i > 0; i -= 2) { |
| 45 | x.words[4] ^= R(x.words[0] + x.words[12], 7); |
| 46 | x.words[8] ^= R(x.words[4] + x.words[0], 9); |
| 47 | x.words[12] ^= R(x.words[8] + x.words[4], 13); |
| 48 | x.words[0] ^= R(x.words[12] + x.words[8], 18); |
| 49 | x.words[9] ^= R(x.words[5] + x.words[1], 7); |
| 50 | x.words[13] ^= R(x.words[9] + x.words[5], 9); |
| 51 | x.words[1] ^= R(x.words[13] + x.words[9], 13); |
| 52 | x.words[5] ^= R(x.words[1] + x.words[13], 18); |
| 53 | x.words[14] ^= R(x.words[10] + x.words[6], 7); |
| 54 | x.words[2] ^= R(x.words[14] + x.words[10], 9); |
| 55 | x.words[6] ^= R(x.words[2] + x.words[14], 13); |
| 56 | x.words[10] ^= R(x.words[6] + x.words[2], 18); |
| 57 | x.words[3] ^= R(x.words[15] + x.words[11], 7); |
| 58 | x.words[7] ^= R(x.words[3] + x.words[15], 9); |
| 59 | x.words[11] ^= R(x.words[7] + x.words[3], 13); |
| 60 | x.words[15] ^= R(x.words[11] + x.words[7], 18); |
| 61 | x.words[1] ^= R(x.words[0] + x.words[3], 7); |
| 62 | x.words[2] ^= R(x.words[1] + x.words[0], 9); |
| 63 | x.words[3] ^= R(x.words[2] + x.words[1], 13); |
| 64 | x.words[0] ^= R(x.words[3] + x.words[2], 18); |
| 65 | x.words[6] ^= R(x.words[5] + x.words[4], 7); |
| 66 | x.words[7] ^= R(x.words[6] + x.words[5], 9); |
| 67 | x.words[4] ^= R(x.words[7] + x.words[6], 13); |
| 68 | x.words[5] ^= R(x.words[4] + x.words[7], 18); |
| 69 | x.words[11] ^= R(x.words[10] + x.words[9], 7); |
| 70 | x.words[8] ^= R(x.words[11] + x.words[10], 9); |
| 71 | x.words[9] ^= R(x.words[8] + x.words[11], 13); |
| 72 | x.words[10] ^= R(x.words[9] + x.words[8], 18); |
| 73 | x.words[12] ^= R(x.words[15] + x.words[14], 7); |
| 74 | x.words[13] ^= R(x.words[12] + x.words[15], 9); |
| 75 | x.words[14] ^= R(x.words[13] + x.words[12], 13); |
| 76 | x.words[15] ^= R(x.words[14] + x.words[13], 18); |
| 77 | } |
| 78 | |
| 79 | for (int i = 0; i < 16; ++i) { |
| 80 | inout->words[i] += x.words[i]; |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | /* xor_block sets |*out| to be |*a| XOR |*b|. */ |
| 85 | static void xor_block(block_t *out, const block_t *a, const block_t *b) { |
| 86 | for (size_t i = 0; i < 16; i++) { |
| 87 | out->words[i] = a->words[i] ^ b->words[i]; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | /* scryptBlockMix implements the function described in RFC 7914, section 4. B' |
| 92 | * is written to |out|. |out| and |B| may not alias and must be each one scrypt |
| 93 | * block (2 * |r| Salsa20 blocks) long. */ |
| 94 | static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { |
| 95 | assert(out != B); |
| 96 | |
| 97 | block_t X; |
| 98 | OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); |
| 99 | for (uint64_t i = 0; i < r * 2; i++) { |
| 100 | xor_block(&X, &X, &B[i]); |
| 101 | salsa208_word_specification(&X); |
| 102 | |
| 103 | /* This implements the permutation in step 3. */ |
| 104 | OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /* scryptROMix implements the function described in RFC 7914, section 5. |B| is |
| 109 | * an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and |
| 110 | * |V| are scratch space allocated by the caller. |T| must have space for one |
| 111 | * scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt |
| 112 | * blocks (2 * |r| * |N| Salsa20 blocks). */ |
| 113 | static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, |
| 114 | block_t *V) { |
| 115 | /* Steps 1 and 2. */ |
| 116 | OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); |
| 117 | for (uint64_t i = 1; i < N; i++) { |
| 118 | scryptBlockMix(&V[2 * r * i /* scrypt block i */], |
| 119 | &V[2 * r * (i - 1) /* scrypt block i-1 */], r); |
| 120 | } |
| 121 | scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); |
| 122 | |
| 123 | /* Step 3. */ |
| 124 | for (uint64_t i = 0; i < N; i++) { |
| 125 | /* Note this assumes |N| <= 2^32 and is a power of 2. */ |
| 126 | uint32_t j = B[2 * r - 1].words[0] & (N - 1); |
| 127 | for (size_t k = 0; k < 2 * r; k++) { |
| 128 | xor_block(&T[k], &B[k], &V[2 * r * j + k]); |
| 129 | } |
| 130 | scryptBlockMix(B, T, r); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | /* SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the |
| 135 | * bounds on p in section 6: |
| 136 | * |
| 137 | * p <= ((2^32-1) * hLen) / MFLen iff |
| 138 | * p <= ((2^32-1) * 32) / (128 * r) iff |
| 139 | * p * r <= (2^30-1) */ |
| 140 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| 141 | |
| 142 | /* SCRYPT_MAX_MEM is the default maximum memory that may be allocated by |
| 143 | * |EVP_PBE_scrypt|. */ |
| 144 | #define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
| 145 | |
| 146 | int EVP_PBE_scrypt(const char *password, size_t password_len, |
| 147 | const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, |
| 148 | uint64_t p, size_t max_mem, uint8_t *out_key, |
| 149 | size_t key_len) { |
| 150 | if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || |
| 151 | /* |N| must be a power of two. */ |
| 152 | N < 2 || (N & (N - 1)) || |
| 153 | /* We only support |N| <= 2^32 in |scryptROMix|. */ |
| 154 | N > UINT64_C(1) << 32 || |
| 155 | /* Check that |N| < 2^(128×r / 8). */ |
| 156 | (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { |
| 157 | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); |
| 158 | return 0; |
| 159 | } |
| 160 | |
| 161 | /* Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| |
| 162 | * scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. */ |
| 163 | if (max_mem == 0) { |
| 164 | max_mem = SCRYPT_MAX_MEM; |
| 165 | } |
| 166 | |
| 167 | size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); |
| 168 | if (max_scrypt_blocks < p + 1 || |
| 169 | max_scrypt_blocks - p - 1 < N) { |
| 170 | OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | /* Allocate and divide up the scratch space. |max_mem| fits in a size_t, which |
| 175 | * is no bigger than uint64_t, so none of these operations may overflow. */ |
| 176 | OPENSSL_COMPILE_ASSERT(UINT64_MAX >= ((size_t)-1), size_t_exceeds_u64); |
| 177 | size_t B_blocks = p * 2 * r; |
| 178 | size_t B_bytes = B_blocks * sizeof(block_t); |
| 179 | size_t T_blocks = 2 * r; |
| 180 | size_t V_blocks = N * 2 * r; |
| 181 | block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); |
| 182 | if (B == NULL) { |
| 183 | OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
| 184 | return 0; |
| 185 | } |
| 186 | |
| 187 | int ret = 0; |
| 188 | block_t *T = B + B_blocks; |
| 189 | block_t *V = T + T_blocks; |
| 190 | if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, |
| 191 | EVP_sha256(), B_bytes, (uint8_t *)B)) { |
| 192 | goto err; |
| 193 | } |
| 194 | |
| 195 | for (uint64_t i = 0; i < p; i++) { |
| 196 | scryptROMix(B + 2 * r * i, r, N, T, V); |
| 197 | } |
| 198 | |
| 199 | if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, |
| 200 | EVP_sha256(), key_len, out_key)) { |
| 201 | goto err; |
| 202 | } |
| 203 | |
| 204 | ret = 1; |
| 205 | |
| 206 | err: |
| 207 | OPENSSL_free(B); |
| 208 | return ret; |
| 209 | } |