blob: d1308950ee92611f1e515dda4729c3f70a839ff2 [file] [log] [blame]
Adam Langley95c29f32014-06-20 12:00:00 -07001// Copyright 2010 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// TLS low level connection and record layer
6
7package main
8
9import (
10 "bytes"
11 "crypto/cipher"
12 "crypto/subtle"
13 "crypto/x509"
14 "errors"
15 "fmt"
16 "io"
17 "net"
18 "sync"
19 "time"
20)
21
22// A Conn represents a secured connection.
23// It implements the net.Conn interface.
24type Conn struct {
25 // constant
26 conn net.Conn
27 isClient bool
28
29 // constant after handshake; protected by handshakeMutex
30 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
31 handshakeErr error // error resulting from handshake
32 vers uint16 // TLS version
33 haveVers bool // version has been negotiated
34 config *Config // configuration passed to constructor
35 handshakeComplete bool
36 didResume bool // whether this connection was a session resumption
37 cipherSuite uint16
38 ocspResponse []byte // stapled OCSP response
39 peerCertificates []*x509.Certificate
40 // verifiedChains contains the certificate chains that we built, as
41 // opposed to the ones presented by the server.
42 verifiedChains [][]*x509.Certificate
43 // serverName contains the server name indicated by the client, if any.
44 serverName string
45
46 clientProtocol string
47 clientProtocolFallback bool
48
49 // input/output
50 in, out halfConn // in.Mutex < out.Mutex
51 rawInput *block // raw input, right off the wire
52 input *block // application data waiting to be read
53 hand bytes.Buffer // handshake data waiting to be read
54
55 tmp [16]byte
56}
57
58// Access to net.Conn methods.
59// Cannot just embed net.Conn because that would
60// export the struct field too.
61
62// LocalAddr returns the local network address.
63func (c *Conn) LocalAddr() net.Addr {
64 return c.conn.LocalAddr()
65}
66
67// RemoteAddr returns the remote network address.
68func (c *Conn) RemoteAddr() net.Addr {
69 return c.conn.RemoteAddr()
70}
71
72// SetDeadline sets the read and write deadlines associated with the connection.
73// A zero value for t means Read and Write will not time out.
74// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
75func (c *Conn) SetDeadline(t time.Time) error {
76 return c.conn.SetDeadline(t)
77}
78
79// SetReadDeadline sets the read deadline on the underlying connection.
80// A zero value for t means Read will not time out.
81func (c *Conn) SetReadDeadline(t time.Time) error {
82 return c.conn.SetReadDeadline(t)
83}
84
85// SetWriteDeadline sets the write deadline on the underlying conneciton.
86// A zero value for t means Write will not time out.
87// After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
88func (c *Conn) SetWriteDeadline(t time.Time) error {
89 return c.conn.SetWriteDeadline(t)
90}
91
92// A halfConn represents one direction of the record layer
93// connection, either sending or receiving.
94type halfConn struct {
95 sync.Mutex
96
97 err error // first permanent error
98 version uint16 // protocol version
99 cipher interface{} // cipher algorithm
100 mac macFunction
101 seq [8]byte // 64-bit sequence number
102 bfree *block // list of free blocks
103
104 nextCipher interface{} // next encryption state
105 nextMac macFunction // next MAC algorithm
106
107 // used to save allocating a new buffer for each MAC.
108 inDigestBuf, outDigestBuf []byte
109}
110
111func (hc *halfConn) setErrorLocked(err error) error {
112 hc.err = err
113 return err
114}
115
116func (hc *halfConn) error() error {
117 hc.Lock()
118 err := hc.err
119 hc.Unlock()
120 return err
121}
122
123// prepareCipherSpec sets the encryption and MAC states
124// that a subsequent changeCipherSpec will use.
125func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
126 hc.version = version
127 hc.nextCipher = cipher
128 hc.nextMac = mac
129}
130
131// changeCipherSpec changes the encryption and MAC states
132// to the ones previously passed to prepareCipherSpec.
133func (hc *halfConn) changeCipherSpec() error {
134 if hc.nextCipher == nil {
135 return alertInternalError
136 }
137 hc.cipher = hc.nextCipher
138 hc.mac = hc.nextMac
139 hc.nextCipher = nil
140 hc.nextMac = nil
141 for i := range hc.seq {
142 hc.seq[i] = 0
143 }
144 return nil
145}
146
147// incSeq increments the sequence number.
148func (hc *halfConn) incSeq() {
149 for i := 7; i >= 0; i-- {
150 hc.seq[i]++
151 if hc.seq[i] != 0 {
152 return
153 }
154 }
155
156 // Not allowed to let sequence number wrap.
157 // Instead, must renegotiate before it does.
158 // Not likely enough to bother.
159 panic("TLS: sequence number wraparound")
160}
161
162// resetSeq resets the sequence number to zero.
163func (hc *halfConn) resetSeq() {
164 for i := range hc.seq {
165 hc.seq[i] = 0
166 }
167}
168
169// removePadding returns an unpadded slice, in constant time, which is a prefix
170// of the input. It also returns a byte which is equal to 255 if the padding
171// was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
172func removePadding(payload []byte) ([]byte, byte) {
173 if len(payload) < 1 {
174 return payload, 0
175 }
176
177 paddingLen := payload[len(payload)-1]
178 t := uint(len(payload)-1) - uint(paddingLen)
179 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero
180 good := byte(int32(^t) >> 31)
181
182 toCheck := 255 // the maximum possible padding length
183 // The length of the padded data is public, so we can use an if here
184 if toCheck+1 > len(payload) {
185 toCheck = len(payload) - 1
186 }
187
188 for i := 0; i < toCheck; i++ {
189 t := uint(paddingLen) - uint(i)
190 // if i <= paddingLen then the MSB of t is zero
191 mask := byte(int32(^t) >> 31)
192 b := payload[len(payload)-1-i]
193 good &^= mask&paddingLen ^ mask&b
194 }
195
196 // We AND together the bits of good and replicate the result across
197 // all the bits.
198 good &= good << 4
199 good &= good << 2
200 good &= good << 1
201 good = uint8(int8(good) >> 7)
202
203 toRemove := good&paddingLen + 1
204 return payload[:len(payload)-int(toRemove)], good
205}
206
207// removePaddingSSL30 is a replacement for removePadding in the case that the
208// protocol version is SSLv3. In this version, the contents of the padding
209// are random and cannot be checked.
210func removePaddingSSL30(payload []byte) ([]byte, byte) {
211 if len(payload) < 1 {
212 return payload, 0
213 }
214
215 paddingLen := int(payload[len(payload)-1]) + 1
216 if paddingLen > len(payload) {
217 return payload, 0
218 }
219
220 return payload[:len(payload)-paddingLen], 255
221}
222
223func roundUp(a, b int) int {
224 return a + (b-a%b)%b
225}
226
227// cbcMode is an interface for block ciphers using cipher block chaining.
228type cbcMode interface {
229 cipher.BlockMode
230 SetIV([]byte)
231}
232
233// decrypt checks and strips the mac and decrypts the data in b. Returns a
234// success boolean, the number of bytes to skip from the start of the record in
235// order to get the application payload, and an optional alert value.
236func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
237 // pull out payload
238 payload := b.data[recordHeaderLen:]
239
240 macSize := 0
241 if hc.mac != nil {
242 macSize = hc.mac.Size()
243 }
244
245 paddingGood := byte(255)
246 explicitIVLen := 0
247
248 // decrypt
249 if hc.cipher != nil {
250 switch c := hc.cipher.(type) {
251 case cipher.Stream:
252 c.XORKeyStream(payload, payload)
253 case cipher.AEAD:
254 explicitIVLen = 8
255 if len(payload) < explicitIVLen {
256 return false, 0, alertBadRecordMAC
257 }
258 nonce := payload[:8]
259 payload = payload[8:]
260
261 var additionalData [13]byte
262 copy(additionalData[:], hc.seq[:])
263 copy(additionalData[8:], b.data[:3])
264 n := len(payload) - c.Overhead()
265 additionalData[11] = byte(n >> 8)
266 additionalData[12] = byte(n)
267 var err error
268 payload, err = c.Open(payload[:0], nonce, payload, additionalData[:])
269 if err != nil {
270 return false, 0, alertBadRecordMAC
271 }
272 b.resize(recordHeaderLen + explicitIVLen + len(payload))
273 case cbcMode:
274 blockSize := c.BlockSize()
275 if hc.version >= VersionTLS11 {
276 explicitIVLen = blockSize
277 }
278
279 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
280 return false, 0, alertBadRecordMAC
281 }
282
283 if explicitIVLen > 0 {
284 c.SetIV(payload[:explicitIVLen])
285 payload = payload[explicitIVLen:]
286 }
287 c.CryptBlocks(payload, payload)
288 if hc.version == VersionSSL30 {
289 payload, paddingGood = removePaddingSSL30(payload)
290 } else {
291 payload, paddingGood = removePadding(payload)
292 }
293 b.resize(recordHeaderLen + explicitIVLen + len(payload))
294
295 // note that we still have a timing side-channel in the
296 // MAC check, below. An attacker can align the record
297 // so that a correct padding will cause one less hash
298 // block to be calculated. Then they can iteratively
299 // decrypt a record by breaking each byte. See
300 // "Password Interception in a SSL/TLS Channel", Brice
301 // Canvel et al.
302 //
303 // However, our behavior matches OpenSSL, so we leak
304 // only as much as they do.
305 default:
306 panic("unknown cipher type")
307 }
308 }
309
310 // check, strip mac
311 if hc.mac != nil {
312 if len(payload) < macSize {
313 return false, 0, alertBadRecordMAC
314 }
315
316 // strip mac off payload, b.data
317 n := len(payload) - macSize
318 b.data[3] = byte(n >> 8)
319 b.data[4] = byte(n)
320 b.resize(recordHeaderLen + explicitIVLen + n)
321 remoteMAC := payload[n:]
322 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
323
324 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
325 return false, 0, alertBadRecordMAC
326 }
327 hc.inDigestBuf = localMAC
328 }
329 hc.incSeq()
330
331 return true, recordHeaderLen + explicitIVLen, 0
332}
333
334// padToBlockSize calculates the needed padding block, if any, for a payload.
335// On exit, prefix aliases payload and extends to the end of the last full
336// block of payload. finalBlock is a fresh slice which contains the contents of
337// any suffix of payload as well as the needed padding to make finalBlock a
338// full block.
339func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
340 overrun := len(payload) % blockSize
341 paddingLen := blockSize - overrun
342 prefix = payload[:len(payload)-overrun]
343 finalBlock = make([]byte, blockSize)
344 copy(finalBlock, payload[len(payload)-overrun:])
345 for i := overrun; i < blockSize; i++ {
346 finalBlock[i] = byte(paddingLen - 1)
347 }
348 return
349}
350
351// encrypt encrypts and macs the data in b.
352func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
353 // mac
354 if hc.mac != nil {
355 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
356
357 n := len(b.data)
358 b.resize(n + len(mac))
359 copy(b.data[n:], mac)
360 hc.outDigestBuf = mac
361 }
362
363 payload := b.data[recordHeaderLen:]
364
365 // encrypt
366 if hc.cipher != nil {
367 switch c := hc.cipher.(type) {
368 case cipher.Stream:
369 c.XORKeyStream(payload, payload)
370 case cipher.AEAD:
371 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
372 b.resize(len(b.data) + c.Overhead())
373 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
374 payload := b.data[recordHeaderLen+explicitIVLen:]
375 payload = payload[:payloadLen]
376
377 var additionalData [13]byte
378 copy(additionalData[:], hc.seq[:])
379 copy(additionalData[8:], b.data[:3])
380 additionalData[11] = byte(payloadLen >> 8)
381 additionalData[12] = byte(payloadLen)
382
383 c.Seal(payload[:0], nonce, payload, additionalData[:])
384 case cbcMode:
385 blockSize := c.BlockSize()
386 if explicitIVLen > 0 {
387 c.SetIV(payload[:explicitIVLen])
388 payload = payload[explicitIVLen:]
389 }
390 prefix, finalBlock := padToBlockSize(payload, blockSize)
391 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
392 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
393 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
394 default:
395 panic("unknown cipher type")
396 }
397 }
398
399 // update length to include MAC and any block padding needed.
400 n := len(b.data) - recordHeaderLen
401 b.data[3] = byte(n >> 8)
402 b.data[4] = byte(n)
403 hc.incSeq()
404
405 return true, 0
406}
407
408// A block is a simple data buffer.
409type block struct {
410 data []byte
411 off int // index for Read
412 link *block
413}
414
415// resize resizes block to be n bytes, growing if necessary.
416func (b *block) resize(n int) {
417 if n > cap(b.data) {
418 b.reserve(n)
419 }
420 b.data = b.data[0:n]
421}
422
423// reserve makes sure that block contains a capacity of at least n bytes.
424func (b *block) reserve(n int) {
425 if cap(b.data) >= n {
426 return
427 }
428 m := cap(b.data)
429 if m == 0 {
430 m = 1024
431 }
432 for m < n {
433 m *= 2
434 }
435 data := make([]byte, len(b.data), m)
436 copy(data, b.data)
437 b.data = data
438}
439
440// readFromUntil reads from r into b until b contains at least n bytes
441// or else returns an error.
442func (b *block) readFromUntil(r io.Reader, n int) error {
443 // quick case
444 if len(b.data) >= n {
445 return nil
446 }
447
448 // read until have enough.
449 b.reserve(n)
450 for {
451 m, err := r.Read(b.data[len(b.data):cap(b.data)])
452 b.data = b.data[0 : len(b.data)+m]
453 if len(b.data) >= n {
454 // TODO(bradfitz,agl): slightly suspicious
455 // that we're throwing away r.Read's err here.
456 break
457 }
458 if err != nil {
459 return err
460 }
461 }
462 return nil
463}
464
465func (b *block) Read(p []byte) (n int, err error) {
466 n = copy(p, b.data[b.off:])
467 b.off += n
468 return
469}
470
471// newBlock allocates a new block, from hc's free list if possible.
472func (hc *halfConn) newBlock() *block {
473 b := hc.bfree
474 if b == nil {
475 return new(block)
476 }
477 hc.bfree = b.link
478 b.link = nil
479 b.resize(0)
480 return b
481}
482
483// freeBlock returns a block to hc's free list.
484// The protocol is such that each side only has a block or two on
485// its free list at a time, so there's no need to worry about
486// trimming the list, etc.
487func (hc *halfConn) freeBlock(b *block) {
488 b.link = hc.bfree
489 hc.bfree = b
490}
491
492// splitBlock splits a block after the first n bytes,
493// returning a block with those n bytes and a
494// block with the remainder. the latter may be nil.
495func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
496 if len(b.data) <= n {
497 return b, nil
498 }
499 bb := hc.newBlock()
500 bb.resize(len(b.data) - n)
501 copy(bb.data, b.data[n:])
502 b.data = b.data[0:n]
503 return b, bb
504}
505
506// readRecord reads the next TLS record from the connection
507// and updates the record layer state.
508// c.in.Mutex <= L; c.input == nil.
509func (c *Conn) readRecord(want recordType) error {
510 // Caller must be in sync with connection:
511 // handshake data if handshake not yet completed,
512 // else application data. (We don't support renegotiation.)
513 switch want {
514 default:
515 c.sendAlert(alertInternalError)
516 return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
517 case recordTypeHandshake, recordTypeChangeCipherSpec:
518 if c.handshakeComplete {
519 c.sendAlert(alertInternalError)
520 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested after handshake complete"))
521 }
522 case recordTypeApplicationData:
523 if !c.handshakeComplete {
524 c.sendAlert(alertInternalError)
525 return c.in.setErrorLocked(errors.New("tls: application data record requested before handshake complete"))
526 }
527 }
528
529Again:
530 if c.rawInput == nil {
531 c.rawInput = c.in.newBlock()
532 }
533 b := c.rawInput
534
535 // Read header, payload.
536 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
537 // RFC suggests that EOF without an alertCloseNotify is
538 // an error, but popular web sites seem to do this,
539 // so we can't make it an error.
540 // if err == io.EOF {
541 // err = io.ErrUnexpectedEOF
542 // }
543 if e, ok := err.(net.Error); !ok || !e.Temporary() {
544 c.in.setErrorLocked(err)
545 }
546 return err
547 }
548 typ := recordType(b.data[0])
549
550 // No valid TLS record has a type of 0x80, however SSLv2 handshakes
551 // start with a uint16 length where the MSB is set and the first record
552 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
553 // an SSLv2 client.
554 if want == recordTypeHandshake && typ == 0x80 {
555 c.sendAlert(alertProtocolVersion)
556 return c.in.setErrorLocked(errors.New("tls: unsupported SSLv2 handshake received"))
557 }
558
559 vers := uint16(b.data[1])<<8 | uint16(b.data[2])
560 n := int(b.data[3])<<8 | int(b.data[4])
561 if c.haveVers && vers != c.vers {
562 c.sendAlert(alertProtocolVersion)
563 return c.in.setErrorLocked(fmt.Errorf("tls: received record with version %x when expecting version %x", vers, c.vers))
564 }
565 if n > maxCiphertext {
566 c.sendAlert(alertRecordOverflow)
567 return c.in.setErrorLocked(fmt.Errorf("tls: oversized record received with length %d", n))
568 }
569 if !c.haveVers {
570 // First message, be extra suspicious:
571 // this might not be a TLS client.
572 // Bail out before reading a full 'body', if possible.
573 // The current max version is 3.1.
574 // If the version is >= 16.0, it's probably not real.
575 // Similarly, a clientHello message encodes in
576 // well under a kilobyte. If the length is >= 12 kB,
577 // it's probably not real.
578 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 || n >= 0x3000 {
579 c.sendAlert(alertUnexpectedMessage)
580 return c.in.setErrorLocked(fmt.Errorf("tls: first record does not look like a TLS handshake"))
581 }
582 }
583 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
584 if err == io.EOF {
585 err = io.ErrUnexpectedEOF
586 }
587 if e, ok := err.(net.Error); !ok || !e.Temporary() {
588 c.in.setErrorLocked(err)
589 }
590 return err
591 }
592
593 // Process message.
594 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
595 ok, off, err := c.in.decrypt(b)
596 if !ok {
597 c.in.setErrorLocked(c.sendAlert(err))
598 }
599 b.off = off
600 data := b.data[b.off:]
601 if len(data) > maxPlaintext {
602 err := c.sendAlert(alertRecordOverflow)
603 c.in.freeBlock(b)
604 return c.in.setErrorLocked(err)
605 }
606
607 switch typ {
608 default:
609 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
610
611 case recordTypeAlert:
612 if len(data) != 2 {
613 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
614 break
615 }
616 if alert(data[1]) == alertCloseNotify {
617 c.in.setErrorLocked(io.EOF)
618 break
619 }
620 switch data[0] {
621 case alertLevelWarning:
622 // drop on the floor
623 c.in.freeBlock(b)
624 goto Again
625 case alertLevelError:
626 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
627 default:
628 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
629 }
630
631 case recordTypeChangeCipherSpec:
632 if typ != want || len(data) != 1 || data[0] != 1 {
633 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
634 break
635 }
636 err := c.in.changeCipherSpec()
637 if err != nil {
638 c.in.setErrorLocked(c.sendAlert(err.(alert)))
639 }
640
641 case recordTypeApplicationData:
642 if typ != want {
643 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
644 break
645 }
646 c.input = b
647 b = nil
648
649 case recordTypeHandshake:
650 // TODO(rsc): Should at least pick off connection close.
651 if typ != want {
652 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
653 }
654 c.hand.Write(data)
655 }
656
657 if b != nil {
658 c.in.freeBlock(b)
659 }
660 return c.in.err
661}
662
663// sendAlert sends a TLS alert message.
664// c.out.Mutex <= L.
665func (c *Conn) sendAlertLocked(err alert) error {
666 switch err {
667 case alertNoRenegotiation, alertCloseNotify:
668 c.tmp[0] = alertLevelWarning
669 default:
670 c.tmp[0] = alertLevelError
671 }
672 c.tmp[1] = byte(err)
673 c.writeRecord(recordTypeAlert, c.tmp[0:2])
674 // closeNotify is a special case in that it isn't an error:
675 if err != alertCloseNotify {
676 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
677 }
678 return nil
679}
680
681// sendAlert sends a TLS alert message.
682// L < c.out.Mutex.
683func (c *Conn) sendAlert(err alert) error {
684 c.out.Lock()
685 defer c.out.Unlock()
686 return c.sendAlertLocked(err)
687}
688
689// writeRecord writes a TLS record with the given type and payload
690// to the connection and updates the record layer state.
691// c.out.Mutex <= L.
692func (c *Conn) writeRecord(typ recordType, data []byte) (n int, err error) {
693 b := c.out.newBlock()
694 for len(data) > 0 {
695 m := len(data)
696 if m > maxPlaintext {
697 m = maxPlaintext
698 }
699 explicitIVLen := 0
700 explicitIVIsSeq := false
701
702 var cbc cbcMode
703 if c.out.version >= VersionTLS11 {
704 var ok bool
705 if cbc, ok = c.out.cipher.(cbcMode); ok {
706 explicitIVLen = cbc.BlockSize()
707 }
708 }
709 if explicitIVLen == 0 {
710 if _, ok := c.out.cipher.(cipher.AEAD); ok {
711 explicitIVLen = 8
712 // The AES-GCM construction in TLS has an
713 // explicit nonce so that the nonce can be
714 // random. However, the nonce is only 8 bytes
715 // which is too small for a secure, random
716 // nonce. Therefore we use the sequence number
717 // as the nonce.
718 explicitIVIsSeq = true
719 }
720 }
721 b.resize(recordHeaderLen + explicitIVLen + m)
722 b.data[0] = byte(typ)
723 vers := c.vers
724 if vers == 0 {
725 // Some TLS servers fail if the record version is
726 // greater than TLS 1.0 for the initial ClientHello.
727 vers = VersionTLS10
728 }
729 b.data[1] = byte(vers >> 8)
730 b.data[2] = byte(vers)
731 b.data[3] = byte(m >> 8)
732 b.data[4] = byte(m)
733 if explicitIVLen > 0 {
734 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
735 if explicitIVIsSeq {
736 copy(explicitIV, c.out.seq[:])
737 } else {
738 if _, err = io.ReadFull(c.config.rand(), explicitIV); err != nil {
739 break
740 }
741 }
742 }
743 copy(b.data[recordHeaderLen+explicitIVLen:], data)
744 c.out.encrypt(b, explicitIVLen)
745 _, err = c.conn.Write(b.data)
746 if err != nil {
747 break
748 }
749 n += m
750 data = data[m:]
751 }
752 c.out.freeBlock(b)
753
754 if typ == recordTypeChangeCipherSpec {
755 err = c.out.changeCipherSpec()
756 if err != nil {
757 // Cannot call sendAlert directly,
758 // because we already hold c.out.Mutex.
759 c.tmp[0] = alertLevelError
760 c.tmp[1] = byte(err.(alert))
761 c.writeRecord(recordTypeAlert, c.tmp[0:2])
762 return n, c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
763 }
764 }
765 return
766}
767
768// readHandshake reads the next handshake message from
769// the record layer.
770// c.in.Mutex < L; c.out.Mutex < L.
771func (c *Conn) readHandshake() (interface{}, error) {
772 for c.hand.Len() < 4 {
773 if err := c.in.err; err != nil {
774 return nil, err
775 }
776 if err := c.readRecord(recordTypeHandshake); err != nil {
777 return nil, err
778 }
779 }
780
781 data := c.hand.Bytes()
782 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
783 if n > maxHandshake {
784 return nil, c.in.setErrorLocked(c.sendAlert(alertInternalError))
785 }
786 for c.hand.Len() < 4+n {
787 if err := c.in.err; err != nil {
788 return nil, err
789 }
790 if err := c.readRecord(recordTypeHandshake); err != nil {
791 return nil, err
792 }
793 }
794 data = c.hand.Next(4 + n)
795 var m handshakeMessage
796 switch data[0] {
797 case typeClientHello:
798 m = new(clientHelloMsg)
799 case typeServerHello:
800 m = new(serverHelloMsg)
801 case typeNewSessionTicket:
802 m = new(newSessionTicketMsg)
803 case typeCertificate:
804 m = new(certificateMsg)
805 case typeCertificateRequest:
806 m = &certificateRequestMsg{
807 hasSignatureAndHash: c.vers >= VersionTLS12,
808 }
809 case typeCertificateStatus:
810 m = new(certificateStatusMsg)
811 case typeServerKeyExchange:
812 m = new(serverKeyExchangeMsg)
813 case typeServerHelloDone:
814 m = new(serverHelloDoneMsg)
815 case typeClientKeyExchange:
816 m = new(clientKeyExchangeMsg)
817 case typeCertificateVerify:
818 m = &certificateVerifyMsg{
819 hasSignatureAndHash: c.vers >= VersionTLS12,
820 }
821 case typeNextProtocol:
822 m = new(nextProtoMsg)
823 case typeFinished:
824 m = new(finishedMsg)
825 default:
826 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
827 }
828
829 // The handshake message unmarshallers
830 // expect to be able to keep references to data,
831 // so pass in a fresh copy that won't be overwritten.
832 data = append([]byte(nil), data...)
833
834 if !m.unmarshal(data) {
835 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
836 }
837 return m, nil
838}
839
840// Write writes data to the connection.
841func (c *Conn) Write(b []byte) (int, error) {
842 if err := c.Handshake(); err != nil {
843 return 0, err
844 }
845
846 c.out.Lock()
847 defer c.out.Unlock()
848
849 if err := c.out.err; err != nil {
850 return 0, err
851 }
852
853 if !c.handshakeComplete {
854 return 0, alertInternalError
855 }
856
857 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
858 // attack when using block mode ciphers due to predictable IVs.
859 // This can be prevented by splitting each Application Data
860 // record into two records, effectively randomizing the IV.
861 //
862 // http://www.openssl.org/~bodo/tls-cbc.txt
863 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814
864 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html
865
866 var m int
867 if len(b) > 1 && c.vers <= VersionTLS10 {
868 if _, ok := c.out.cipher.(cipher.BlockMode); ok {
869 n, err := c.writeRecord(recordTypeApplicationData, b[:1])
870 if err != nil {
871 return n, c.out.setErrorLocked(err)
872 }
873 m, b = 1, b[1:]
874 }
875 }
876
877 n, err := c.writeRecord(recordTypeApplicationData, b)
878 return n + m, c.out.setErrorLocked(err)
879}
880
881// Read can be made to time out and return a net.Error with Timeout() == true
882// after a fixed time limit; see SetDeadline and SetReadDeadline.
883func (c *Conn) Read(b []byte) (n int, err error) {
884 if err = c.Handshake(); err != nil {
885 return
886 }
887
888 c.in.Lock()
889 defer c.in.Unlock()
890
891 // Some OpenSSL servers send empty records in order to randomize the
892 // CBC IV. So this loop ignores a limited number of empty records.
893 const maxConsecutiveEmptyRecords = 100
894 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
895 for c.input == nil && c.in.err == nil {
896 if err := c.readRecord(recordTypeApplicationData); err != nil {
897 // Soft error, like EAGAIN
898 return 0, err
899 }
900 }
901 if err := c.in.err; err != nil {
902 return 0, err
903 }
904
905 n, err = c.input.Read(b)
906 if c.input.off >= len(c.input.data) {
907 c.in.freeBlock(c.input)
908 c.input = nil
909 }
910
911 // If a close-notify alert is waiting, read it so that
912 // we can return (n, EOF) instead of (n, nil), to signal
913 // to the HTTP response reading goroutine that the
914 // connection is now closed. This eliminates a race
915 // where the HTTP response reading goroutine would
916 // otherwise not observe the EOF until its next read,
917 // by which time a client goroutine might have already
918 // tried to reuse the HTTP connection for a new
919 // request.
920 // See https://codereview.appspot.com/76400046
921 // and http://golang.org/issue/3514
922 if ri := c.rawInput; ri != nil &&
923 n != 0 && err == nil &&
924 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
925 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
926 err = recErr // will be io.EOF on closeNotify
927 }
928 }
929
930 if n != 0 || err != nil {
931 return n, err
932 }
933 }
934
935 return 0, io.ErrNoProgress
936}
937
938// Close closes the connection.
939func (c *Conn) Close() error {
940 var alertErr error
941
942 c.handshakeMutex.Lock()
943 defer c.handshakeMutex.Unlock()
944 if c.handshakeComplete {
945 alertErr = c.sendAlert(alertCloseNotify)
946 }
947
948 if err := c.conn.Close(); err != nil {
949 return err
950 }
951 return alertErr
952}
953
954// Handshake runs the client or server handshake
955// protocol if it has not yet been run.
956// Most uses of this package need not call Handshake
957// explicitly: the first Read or Write will call it automatically.
958func (c *Conn) Handshake() error {
959 c.handshakeMutex.Lock()
960 defer c.handshakeMutex.Unlock()
961 if err := c.handshakeErr; err != nil {
962 return err
963 }
964 if c.handshakeComplete {
965 return nil
966 }
967
968 if c.isClient {
969 c.handshakeErr = c.clientHandshake()
970 } else {
971 c.handshakeErr = c.serverHandshake()
972 }
973 return c.handshakeErr
974}
975
976// ConnectionState returns basic TLS details about the connection.
977func (c *Conn) ConnectionState() ConnectionState {
978 c.handshakeMutex.Lock()
979 defer c.handshakeMutex.Unlock()
980
981 var state ConnectionState
982 state.HandshakeComplete = c.handshakeComplete
983 if c.handshakeComplete {
984 state.Version = c.vers
985 state.NegotiatedProtocol = c.clientProtocol
986 state.DidResume = c.didResume
987 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
988 state.CipherSuite = c.cipherSuite
989 state.PeerCertificates = c.peerCertificates
990 state.VerifiedChains = c.verifiedChains
991 state.ServerName = c.serverName
992 }
993
994 return state
995}
996
997// OCSPResponse returns the stapled OCSP response from the TLS server, if
998// any. (Only valid for client connections.)
999func (c *Conn) OCSPResponse() []byte {
1000 c.handshakeMutex.Lock()
1001 defer c.handshakeMutex.Unlock()
1002
1003 return c.ocspResponse
1004}
1005
1006// VerifyHostname checks that the peer certificate chain is valid for
1007// connecting to host. If so, it returns nil; if not, it returns an error
1008// describing the problem.
1009func (c *Conn) VerifyHostname(host string) error {
1010 c.handshakeMutex.Lock()
1011 defer c.handshakeMutex.Unlock()
1012 if !c.isClient {
1013 return errors.New("tls: VerifyHostname called on TLS server connection")
1014 }
1015 if !c.handshakeComplete {
1016 return errors.New("tls: handshake has not yet been performed")
1017 }
1018 return c.peerCertificates[0].VerifyHostname(host)
1019}