| /* Copyright (c) 2020, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | // An implementation of the NIST P-256 elliptic curve point multiplication. | 
 | // 256-bit Montgomery form for 64 and 32-bit. Field operations are generated by | 
 | // Fiat, which lives in //third_party/fiat. | 
 |  | 
 | #include <openssl/base.h> | 
 |  | 
 | #include <openssl/bn.h> | 
 | #include <openssl/ec.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/type_check.h> | 
 |  | 
 | #include <assert.h> | 
 | #include <string.h> | 
 |  | 
 | #include "../../internal.h" | 
 | #include "../delocate.h" | 
 | #include "./internal.h" | 
 |  | 
 |  | 
 | // MSVC does not implement uint128_t, and crashes with intrinsics | 
 | #if defined(BORINGSSL_HAS_UINT128) | 
 | #define BORINGSSL_NISTP256_64BIT 1 | 
 | #include "../../../third_party/fiat/p256_64.h" | 
 | #else | 
 | #include "../../../third_party/fiat/p256_32.h" | 
 | #endif | 
 |  | 
 |  | 
 | // utility functions, handwritten | 
 |  | 
 | #if defined(BORINGSSL_NISTP256_64BIT) | 
 | #define FIAT_P256_NLIMBS 4 | 
 | typedef uint64_t fiat_p256_limb_t; | 
 | typedef uint64_t fiat_p256_felem[FIAT_P256_NLIMBS]; | 
 | static const fiat_p256_felem fiat_p256_one = {0x1, 0xffffffff00000000, | 
 |                                               0xffffffffffffffff, 0xfffffffe}; | 
 | #else  // 64BIT; else 32BIT | 
 | #define FIAT_P256_NLIMBS 8 | 
 | typedef uint32_t fiat_p256_limb_t; | 
 | typedef uint32_t fiat_p256_felem[FIAT_P256_NLIMBS]; | 
 | static const fiat_p256_felem fiat_p256_one = { | 
 |     0x1, 0x0, 0x0, 0xffffffff, 0xffffffff, 0xffffffff, 0xfffffffe, 0x0}; | 
 | #endif  // 64BIT | 
 |  | 
 |  | 
 | static fiat_p256_limb_t fiat_p256_nz( | 
 |     const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) { | 
 |   fiat_p256_limb_t ret; | 
 |   fiat_p256_nonzero(&ret, in1); | 
 |   return ret; | 
 | } | 
 |  | 
 | static void fiat_p256_copy(fiat_p256_limb_t out[FIAT_P256_NLIMBS], | 
 |                            const fiat_p256_limb_t in1[FIAT_P256_NLIMBS]) { | 
 |   for (size_t i = 0; i < FIAT_P256_NLIMBS; i++) { | 
 |     out[i] = in1[i]; | 
 |   } | 
 | } | 
 |  | 
 | static void fiat_p256_cmovznz(fiat_p256_limb_t out[FIAT_P256_NLIMBS], | 
 |                               fiat_p256_limb_t t, | 
 |                               const fiat_p256_limb_t z[FIAT_P256_NLIMBS], | 
 |                               const fiat_p256_limb_t nz[FIAT_P256_NLIMBS]) { | 
 |   fiat_p256_selectznz(out, !!t, z, nz); | 
 | } | 
 |  | 
 | static void fiat_p256_from_generic(fiat_p256_felem out, const EC_FELEM *in) { | 
 |   fiat_p256_from_bytes(out, in->bytes); | 
 | } | 
 |  | 
 | static void fiat_p256_to_generic(EC_FELEM *out, const fiat_p256_felem in) { | 
 |   // This works because 256 is a multiple of 64, so there are no excess bytes to | 
 |   // zero when rounding up to |BN_ULONG|s. | 
 |   OPENSSL_STATIC_ASSERT( | 
 |       256 / 8 == sizeof(BN_ULONG) * ((256 + BN_BITS2 - 1) / BN_BITS2), | 
 |       "fiat_p256_to_bytes leaves bytes uninitialized"); | 
 |   fiat_p256_to_bytes(out->bytes, in); | 
 | } | 
 |  | 
 | // fiat_p256_inv_square calculates |out| = |in|^{-2} | 
 | // | 
 | // Based on Fermat's Little Theorem: | 
 | //   a^p = a (mod p) | 
 | //   a^{p-1} = 1 (mod p) | 
 | //   a^{p-3} = a^{-2} (mod p) | 
 | static void fiat_p256_inv_square(fiat_p256_felem out, | 
 |                                  const fiat_p256_felem in) { | 
 |   // This implements the addition chain described in | 
 |   // https://briansmith.org/ecc-inversion-addition-chains-01#p256_field_inversion | 
 |   fiat_p256_felem x2, x3, x6, x12, x15, x30, x32; | 
 |   fiat_p256_square(x2, in);   // 2^2 - 2^1 | 
 |   fiat_p256_mul(x2, x2, in);  // 2^2 - 2^0 | 
 |  | 
 |   fiat_p256_square(x3, x2);   // 2^3 - 2^1 | 
 |   fiat_p256_mul(x3, x3, in);  // 2^3 - 2^0 | 
 |  | 
 |   fiat_p256_square(x6, x3); | 
 |   for (int i = 1; i < 3; i++) { | 
 |     fiat_p256_square(x6, x6); | 
 |   }                           // 2^6 - 2^3 | 
 |   fiat_p256_mul(x6, x6, x3);  // 2^6 - 2^0 | 
 |  | 
 |   fiat_p256_square(x12, x6); | 
 |   for (int i = 1; i < 6; i++) { | 
 |     fiat_p256_square(x12, x12); | 
 |   }                             // 2^12 - 2^6 | 
 |   fiat_p256_mul(x12, x12, x6);  // 2^12 - 2^0 | 
 |  | 
 |   fiat_p256_square(x15, x12); | 
 |   for (int i = 1; i < 3; i++) { | 
 |     fiat_p256_square(x15, x15); | 
 |   }                             // 2^15 - 2^3 | 
 |   fiat_p256_mul(x15, x15, x3);  // 2^15 - 2^0 | 
 |  | 
 |   fiat_p256_square(x30, x15); | 
 |   for (int i = 1; i < 15; i++) { | 
 |     fiat_p256_square(x30, x30); | 
 |   }                              // 2^30 - 2^15 | 
 |   fiat_p256_mul(x30, x30, x15);  // 2^30 - 2^0 | 
 |  | 
 |   fiat_p256_square(x32, x30); | 
 |   fiat_p256_square(x32, x32);   // 2^32 - 2^2 | 
 |   fiat_p256_mul(x32, x32, x2);  // 2^32 - 2^0 | 
 |  | 
 |   fiat_p256_felem ret; | 
 |   fiat_p256_square(ret, x32); | 
 |   for (int i = 1; i < 31 + 1; i++) { | 
 |     fiat_p256_square(ret, ret); | 
 |   }                             // 2^64 - 2^32 | 
 |   fiat_p256_mul(ret, ret, in);  // 2^64 - 2^32 + 2^0 | 
 |  | 
 |   for (int i = 0; i < 96 + 32; i++) { | 
 |     fiat_p256_square(ret, ret); | 
 |   }                              // 2^192 - 2^160 + 2^128 | 
 |   fiat_p256_mul(ret, ret, x32);  // 2^192 - 2^160 + 2^128 + 2^32 - 2^0 | 
 |  | 
 |   for (int i = 0; i < 32; i++) { | 
 |     fiat_p256_square(ret, ret); | 
 |   }                              // 2^224 - 2^192 + 2^160 + 2^64 - 2^32 | 
 |   fiat_p256_mul(ret, ret, x32);  // 2^224 - 2^192 + 2^160 + 2^64 - 2^0 | 
 |  | 
 |   for (int i = 0; i < 30; i++) { | 
 |     fiat_p256_square(ret, ret); | 
 |   }                              // 2^254 - 2^222 + 2^190 + 2^94 - 2^30 | 
 |   fiat_p256_mul(ret, ret, x30);  // 2^254 - 2^222 + 2^190 + 2^94 - 2^0 | 
 |  | 
 |   fiat_p256_square(ret, ret); | 
 |   fiat_p256_square(out, ret);  // 2^256 - 2^224 + 2^192 + 2^96 - 2^2 | 
 | } | 
 |  | 
 | // Group operations | 
 | // ---------------- | 
 | // | 
 | // Building on top of the field operations we have the operations on the | 
 | // elliptic curve group itself. Points on the curve are represented in Jacobian | 
 | // coordinates. | 
 | // | 
 | // Both operations were transcribed to Coq and proven to correspond to naive | 
 | // implementations using Affine coordinates, for all suitable fields.  In the | 
 | // Coq proofs, issues of constant-time execution and memory layout (aliasing) | 
 | // conventions were not considered. Specification of affine coordinates: | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Spec/WeierstrassCurve.v#L28> | 
 | // As a sanity check, a proof that these points form a commutative group: | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/AffineProofs.v#L33> | 
 |  | 
 | // fiat_p256_point_double calculates 2*(x_in, y_in, z_in) | 
 | // | 
 | // The method is taken from: | 
 | //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | 
 | // | 
 | // Coq transcription and correctness proof: | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> | 
 | // | 
 | // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. | 
 | // while x_out == y_in is not (maybe this works, but it's not tested). | 
 | static void fiat_p256_point_double(fiat_p256_felem x_out, fiat_p256_felem y_out, | 
 |                                    fiat_p256_felem z_out, | 
 |                                    const fiat_p256_felem x_in, | 
 |                                    const fiat_p256_felem y_in, | 
 |                                    const fiat_p256_felem z_in) { | 
 |   fiat_p256_felem delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; | 
 |   // delta = z^2 | 
 |   fiat_p256_square(delta, z_in); | 
 |   // gamma = y^2 | 
 |   fiat_p256_square(gamma, y_in); | 
 |   // beta = x*gamma | 
 |   fiat_p256_mul(beta, x_in, gamma); | 
 |  | 
 |   // alpha = 3*(x-delta)*(x+delta) | 
 |   fiat_p256_sub(ftmp, x_in, delta); | 
 |   fiat_p256_add(ftmp2, x_in, delta); | 
 |  | 
 |   fiat_p256_add(tmptmp, ftmp2, ftmp2); | 
 |   fiat_p256_add(ftmp2, ftmp2, tmptmp); | 
 |   fiat_p256_mul(alpha, ftmp, ftmp2); | 
 |  | 
 |   // x' = alpha^2 - 8*beta | 
 |   fiat_p256_square(x_out, alpha); | 
 |   fiat_p256_add(fourbeta, beta, beta); | 
 |   fiat_p256_add(fourbeta, fourbeta, fourbeta); | 
 |   fiat_p256_add(tmptmp, fourbeta, fourbeta); | 
 |   fiat_p256_sub(x_out, x_out, tmptmp); | 
 |  | 
 |   // z' = (y + z)^2 - gamma - delta | 
 |   fiat_p256_add(delta, gamma, delta); | 
 |   fiat_p256_add(ftmp, y_in, z_in); | 
 |   fiat_p256_square(z_out, ftmp); | 
 |   fiat_p256_sub(z_out, z_out, delta); | 
 |  | 
 |   // y' = alpha*(4*beta - x') - 8*gamma^2 | 
 |   fiat_p256_sub(y_out, fourbeta, x_out); | 
 |   fiat_p256_add(gamma, gamma, gamma); | 
 |   fiat_p256_square(gamma, gamma); | 
 |   fiat_p256_mul(y_out, alpha, y_out); | 
 |   fiat_p256_add(gamma, gamma, gamma); | 
 |   fiat_p256_sub(y_out, y_out, gamma); | 
 | } | 
 |  | 
 | // fiat_p256_point_add calculates (x1, y1, z1) + (x2, y2, z2) | 
 | // | 
 | // The method is taken from: | 
 | //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, | 
 | // adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). | 
 | // | 
 | // Coq transcription and correctness proof: | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L135> | 
 | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L205> | 
 | // | 
 | // This function includes a branch for checking whether the two input points | 
 | // are equal, (while not equal to the point at infinity). This case never | 
 | // happens during single point multiplication, so there is no timing leak for | 
 | // ECDH or ECDSA signing. | 
 | static void fiat_p256_point_add(fiat_p256_felem x3, fiat_p256_felem y3, | 
 |                                 fiat_p256_felem z3, const fiat_p256_felem x1, | 
 |                                 const fiat_p256_felem y1, | 
 |                                 const fiat_p256_felem z1, const int mixed, | 
 |                                 const fiat_p256_felem x2, | 
 |                                 const fiat_p256_felem y2, | 
 |                                 const fiat_p256_felem z2) { | 
 |   fiat_p256_felem x_out, y_out, z_out; | 
 |   fiat_p256_limb_t z1nz = fiat_p256_nz(z1); | 
 |   fiat_p256_limb_t z2nz = fiat_p256_nz(z2); | 
 |  | 
 |   // z1z1 = z1z1 = z1**2 | 
 |   fiat_p256_felem z1z1; | 
 |   fiat_p256_square(z1z1, z1); | 
 |  | 
 |   fiat_p256_felem u1, s1, two_z1z2; | 
 |   if (!mixed) { | 
 |     // z2z2 = z2**2 | 
 |     fiat_p256_felem z2z2; | 
 |     fiat_p256_square(z2z2, z2); | 
 |  | 
 |     // u1 = x1*z2z2 | 
 |     fiat_p256_mul(u1, x1, z2z2); | 
 |  | 
 |     // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 | 
 |     fiat_p256_add(two_z1z2, z1, z2); | 
 |     fiat_p256_square(two_z1z2, two_z1z2); | 
 |     fiat_p256_sub(two_z1z2, two_z1z2, z1z1); | 
 |     fiat_p256_sub(two_z1z2, two_z1z2, z2z2); | 
 |  | 
 |     // s1 = y1 * z2**3 | 
 |     fiat_p256_mul(s1, z2, z2z2); | 
 |     fiat_p256_mul(s1, s1, y1); | 
 |   } else { | 
 |     // We'll assume z2 = 1 (special case z2 = 0 is handled later). | 
 |  | 
 |     // u1 = x1*z2z2 | 
 |     fiat_p256_copy(u1, x1); | 
 |     // two_z1z2 = 2z1z2 | 
 |     fiat_p256_add(two_z1z2, z1, z1); | 
 |     // s1 = y1 * z2**3 | 
 |     fiat_p256_copy(s1, y1); | 
 |   } | 
 |  | 
 |   // u2 = x2*z1z1 | 
 |   fiat_p256_felem u2; | 
 |   fiat_p256_mul(u2, x2, z1z1); | 
 |  | 
 |   // h = u2 - u1 | 
 |   fiat_p256_felem h; | 
 |   fiat_p256_sub(h, u2, u1); | 
 |  | 
 |   fiat_p256_limb_t xneq = fiat_p256_nz(h); | 
 |  | 
 |   // z_out = two_z1z2 * h | 
 |   fiat_p256_mul(z_out, h, two_z1z2); | 
 |  | 
 |   // z1z1z1 = z1 * z1z1 | 
 |   fiat_p256_felem z1z1z1; | 
 |   fiat_p256_mul(z1z1z1, z1, z1z1); | 
 |  | 
 |   // s2 = y2 * z1**3 | 
 |   fiat_p256_felem s2; | 
 |   fiat_p256_mul(s2, y2, z1z1z1); | 
 |  | 
 |   // r = (s2 - s1)*2 | 
 |   fiat_p256_felem r; | 
 |   fiat_p256_sub(r, s2, s1); | 
 |   fiat_p256_add(r, r, r); | 
 |  | 
 |   fiat_p256_limb_t yneq = fiat_p256_nz(r); | 
 |  | 
 |   fiat_p256_limb_t is_nontrivial_double = constant_time_is_zero_w(xneq | yneq) & | 
 |                                           ~constant_time_is_zero_w(z1nz) & | 
 |                                           ~constant_time_is_zero_w(z2nz); | 
 |   if (is_nontrivial_double) { | 
 |     fiat_p256_point_double(x3, y3, z3, x1, y1, z1); | 
 |     return; | 
 |   } | 
 |  | 
 |   // I = (2h)**2 | 
 |   fiat_p256_felem i; | 
 |   fiat_p256_add(i, h, h); | 
 |   fiat_p256_square(i, i); | 
 |  | 
 |   // J = h * I | 
 |   fiat_p256_felem j; | 
 |   fiat_p256_mul(j, h, i); | 
 |  | 
 |   // V = U1 * I | 
 |   fiat_p256_felem v; | 
 |   fiat_p256_mul(v, u1, i); | 
 |  | 
 |   // x_out = r**2 - J - 2V | 
 |   fiat_p256_square(x_out, r); | 
 |   fiat_p256_sub(x_out, x_out, j); | 
 |   fiat_p256_sub(x_out, x_out, v); | 
 |   fiat_p256_sub(x_out, x_out, v); | 
 |  | 
 |   // y_out = r(V-x_out) - 2 * s1 * J | 
 |   fiat_p256_sub(y_out, v, x_out); | 
 |   fiat_p256_mul(y_out, y_out, r); | 
 |   fiat_p256_felem s1j; | 
 |   fiat_p256_mul(s1j, s1, j); | 
 |   fiat_p256_sub(y_out, y_out, s1j); | 
 |   fiat_p256_sub(y_out, y_out, s1j); | 
 |  | 
 |   fiat_p256_cmovznz(x_out, z1nz, x2, x_out); | 
 |   fiat_p256_cmovznz(x3, z2nz, x1, x_out); | 
 |   fiat_p256_cmovznz(y_out, z1nz, y2, y_out); | 
 |   fiat_p256_cmovznz(y3, z2nz, y1, y_out); | 
 |   fiat_p256_cmovznz(z_out, z1nz, z2, z_out); | 
 |   fiat_p256_cmovznz(z3, z2nz, z1, z_out); | 
 | } | 
 |  | 
 | #include "./p256_table.h" | 
 |  | 
 | // fiat_p256_select_point_affine selects the |idx-1|th point from a | 
 | // precomputation table and copies it to out. If |idx| is zero, the output is | 
 | // the point at infinity. | 
 | static void fiat_p256_select_point_affine( | 
 |     const fiat_p256_limb_t idx, size_t size, | 
 |     const fiat_p256_felem pre_comp[/*size*/][2], fiat_p256_felem out[3]) { | 
 |   OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3); | 
 |   for (size_t i = 0; i < size; i++) { | 
 |     fiat_p256_limb_t mismatch = i ^ (idx - 1); | 
 |     fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]); | 
 |     fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]); | 
 |   } | 
 |   fiat_p256_cmovznz(out[2], idx, out[2], fiat_p256_one); | 
 | } | 
 |  | 
 | // fiat_p256_select_point selects the |idx|th point from a precomputation table | 
 | // and copies it to out. | 
 | static void fiat_p256_select_point(const fiat_p256_limb_t idx, size_t size, | 
 |                                    const fiat_p256_felem pre_comp[/*size*/][3], | 
 |                                    fiat_p256_felem out[3]) { | 
 |   OPENSSL_memset(out, 0, sizeof(fiat_p256_felem) * 3); | 
 |   for (size_t i = 0; i < size; i++) { | 
 |     fiat_p256_limb_t mismatch = i ^ idx; | 
 |     fiat_p256_cmovznz(out[0], mismatch, pre_comp[i][0], out[0]); | 
 |     fiat_p256_cmovznz(out[1], mismatch, pre_comp[i][1], out[1]); | 
 |     fiat_p256_cmovznz(out[2], mismatch, pre_comp[i][2], out[2]); | 
 |   } | 
 | } | 
 |  | 
 | // fiat_p256_get_bit returns the |i|th bit in |in| | 
 | static crypto_word_t fiat_p256_get_bit(const uint8_t *in, int i) { | 
 |   if (i < 0 || i >= 256) { | 
 |     return 0; | 
 |   } | 
 |   return (in[i >> 3] >> (i & 7)) & 1; | 
 | } | 
 |  | 
 | // OPENSSL EC_METHOD FUNCTIONS | 
 |  | 
 | // Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = | 
 | // (X/Z^2, Y/Z^3). | 
 | static int ec_GFp_nistp256_point_get_affine_coordinates( | 
 |     const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x_out, | 
 |     EC_FELEM *y_out) { | 
 |   if (ec_GFp_simple_is_at_infinity(group, point)) { | 
 |     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   fiat_p256_felem z1, z2; | 
 |   fiat_p256_from_generic(z1, &point->Z); | 
 |   fiat_p256_inv_square(z2, z1); | 
 |  | 
 |   if (x_out != NULL) { | 
 |     fiat_p256_felem x; | 
 |     fiat_p256_from_generic(x, &point->X); | 
 |     fiat_p256_mul(x, x, z2); | 
 |     fiat_p256_to_generic(x_out, x); | 
 |   } | 
 |  | 
 |   if (y_out != NULL) { | 
 |     fiat_p256_felem y; | 
 |     fiat_p256_from_generic(y, &point->Y); | 
 |     fiat_p256_square(z2, z2);  // z^-4 | 
 |     fiat_p256_mul(y, y, z1);   // y * z | 
 |     fiat_p256_mul(y, y, z2);   // y * z^-3 | 
 |     fiat_p256_to_generic(y_out, y); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static void ec_GFp_nistp256_add(const EC_GROUP *group, EC_RAW_POINT *r, | 
 |                                 const EC_RAW_POINT *a, const EC_RAW_POINT *b) { | 
 |   fiat_p256_felem x1, y1, z1, x2, y2, z2; | 
 |   fiat_p256_from_generic(x1, &a->X); | 
 |   fiat_p256_from_generic(y1, &a->Y); | 
 |   fiat_p256_from_generic(z1, &a->Z); | 
 |   fiat_p256_from_generic(x2, &b->X); | 
 |   fiat_p256_from_generic(y2, &b->Y); | 
 |   fiat_p256_from_generic(z2, &b->Z); | 
 |   fiat_p256_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, | 
 |                       z2); | 
 |   fiat_p256_to_generic(&r->X, x1); | 
 |   fiat_p256_to_generic(&r->Y, y1); | 
 |   fiat_p256_to_generic(&r->Z, z1); | 
 | } | 
 |  | 
 | static void ec_GFp_nistp256_dbl(const EC_GROUP *group, EC_RAW_POINT *r, | 
 |                                 const EC_RAW_POINT *a) { | 
 |   fiat_p256_felem x, y, z; | 
 |   fiat_p256_from_generic(x, &a->X); | 
 |   fiat_p256_from_generic(y, &a->Y); | 
 |   fiat_p256_from_generic(z, &a->Z); | 
 |   fiat_p256_point_double(x, y, z, x, y, z); | 
 |   fiat_p256_to_generic(&r->X, x); | 
 |   fiat_p256_to_generic(&r->Y, y); | 
 |   fiat_p256_to_generic(&r->Z, z); | 
 | } | 
 |  | 
 | static void ec_GFp_nistp256_point_mul(const EC_GROUP *group, EC_RAW_POINT *r, | 
 |                                       const EC_RAW_POINT *p, | 
 |                                       const EC_SCALAR *scalar) { | 
 |   fiat_p256_felem p_pre_comp[17][3]; | 
 |   OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp)); | 
 |   // Precompute multiples. | 
 |   fiat_p256_from_generic(p_pre_comp[1][0], &p->X); | 
 |   fiat_p256_from_generic(p_pre_comp[1][1], &p->Y); | 
 |   fiat_p256_from_generic(p_pre_comp[1][2], &p->Z); | 
 |   for (size_t j = 2; j <= 16; ++j) { | 
 |     if (j & 1) { | 
 |       fiat_p256_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2], | 
 |                           p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2], | 
 |                           0, p_pre_comp[j - 1][0], p_pre_comp[j - 1][1], | 
 |                           p_pre_comp[j - 1][2]); | 
 |     } else { | 
 |       fiat_p256_point_double(p_pre_comp[j][0], p_pre_comp[j][1], | 
 |                              p_pre_comp[j][2], p_pre_comp[j / 2][0], | 
 |                              p_pre_comp[j / 2][1], p_pre_comp[j / 2][2]); | 
 |     } | 
 |   } | 
 |  | 
 |   // Set nq to the point at infinity. | 
 |   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, ftmp, tmp[3]; | 
 |  | 
 |   // Loop over |scalar| msb-to-lsb, incorporating |p_pre_comp| every 5th round. | 
 |   int skip = 1;  // Save two point operations in the first round. | 
 |   for (size_t i = 255; i < 256; i--) { | 
 |     // double | 
 |     if (!skip) { | 
 |       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | 
 |     } | 
 |  | 
 |     // do other additions every 5 doublings | 
 |     if (i % 5 == 0) { | 
 |       crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 4) << 5; | 
 |       bits |= fiat_p256_get_bit(scalar->bytes, i + 3) << 4; | 
 |       bits |= fiat_p256_get_bit(scalar->bytes, i + 2) << 3; | 
 |       bits |= fiat_p256_get_bit(scalar->bytes, i + 1) << 2; | 
 |       bits |= fiat_p256_get_bit(scalar->bytes, i) << 1; | 
 |       bits |= fiat_p256_get_bit(scalar->bytes, i - 1); | 
 |       crypto_word_t sign, digit; | 
 |       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); | 
 |  | 
 |       // select the point to add or subtract, in constant time. | 
 |       fiat_p256_select_point((fiat_p256_limb_t)digit, 17, | 
 |                              (const fiat_p256_felem(*)[3])p_pre_comp, tmp); | 
 |       fiat_p256_opp(ftmp, tmp[1]);  // (X, -Y, Z) is the negative point. | 
 |       fiat_p256_cmovznz(tmp[1], (fiat_p256_limb_t)sign, tmp[1], ftmp); | 
 |  | 
 |       if (!skip) { | 
 |         fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], | 
 |                             0 /* mixed */, tmp[0], tmp[1], tmp[2]); | 
 |       } else { | 
 |         fiat_p256_copy(nq[0], tmp[0]); | 
 |         fiat_p256_copy(nq[1], tmp[1]); | 
 |         fiat_p256_copy(nq[2], tmp[2]); | 
 |         skip = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   fiat_p256_to_generic(&r->X, nq[0]); | 
 |   fiat_p256_to_generic(&r->Y, nq[1]); | 
 |   fiat_p256_to_generic(&r->Z, nq[2]); | 
 | } | 
 |  | 
 | static void ec_GFp_nistp256_point_mul_base(const EC_GROUP *group, | 
 |                                            EC_RAW_POINT *r, | 
 |                                            const EC_SCALAR *scalar) { | 
 |   // Set nq to the point at infinity. | 
 |   fiat_p256_felem nq[3] = {{0}, {0}, {0}}, tmp[3]; | 
 |  | 
 |   int skip = 1;  // Save two point operations in the first round. | 
 |   for (size_t i = 31; i < 32; i--) { | 
 |     if (!skip) { | 
 |       fiat_p256_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); | 
 |     } | 
 |  | 
 |     // First, look 32 bits upwards. | 
 |     crypto_word_t bits = fiat_p256_get_bit(scalar->bytes, i + 224) << 3; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i + 160) << 2; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i + 96) << 1; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i + 32); | 
 |     // Select the point to add, in constant time. | 
 |     fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15, | 
 |                                   fiat_p256_g_pre_comp[1], tmp); | 
 |  | 
 |     if (!skip) { | 
 |       fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], | 
 |                           1 /* mixed */, tmp[0], tmp[1], tmp[2]); | 
 |     } else { | 
 |       fiat_p256_copy(nq[0], tmp[0]); | 
 |       fiat_p256_copy(nq[1], tmp[1]); | 
 |       fiat_p256_copy(nq[2], tmp[2]); | 
 |       skip = 0; | 
 |     } | 
 |  | 
 |     // Second, look at the current position. | 
 |     bits = fiat_p256_get_bit(scalar->bytes, i + 192) << 3; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i + 128) << 2; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i + 64) << 1; | 
 |     bits |= fiat_p256_get_bit(scalar->bytes, i); | 
 |     // Select the point to add, in constant time. | 
 |     fiat_p256_select_point_affine((fiat_p256_limb_t)bits, 15, | 
 |                                   fiat_p256_g_pre_comp[0], tmp); | 
 |     fiat_p256_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, | 
 |                         tmp[0], tmp[1], tmp[2]); | 
 |   } | 
 |  | 
 |   fiat_p256_to_generic(&r->X, nq[0]); | 
 |   fiat_p256_to_generic(&r->Y, nq[1]); | 
 |   fiat_p256_to_generic(&r->Z, nq[2]); | 
 | } | 
 |  | 
 | static void ec_GFp_nistp256_point_mul_public(const EC_GROUP *group, | 
 |                                              EC_RAW_POINT *r, | 
 |                                              const EC_SCALAR *g_scalar, | 
 |                                              const EC_RAW_POINT *p, | 
 |                                              const EC_SCALAR *p_scalar) { | 
 | #define P256_WSIZE_PUBLIC 4 | 
 |   // Precompute multiples of |p|. p_pre_comp[i] is (2*i+1) * |p|. | 
 |   fiat_p256_felem p_pre_comp[1 << (P256_WSIZE_PUBLIC - 1)][3]; | 
 |   fiat_p256_from_generic(p_pre_comp[0][0], &p->X); | 
 |   fiat_p256_from_generic(p_pre_comp[0][1], &p->Y); | 
 |   fiat_p256_from_generic(p_pre_comp[0][2], &p->Z); | 
 |   fiat_p256_felem p2[3]; | 
 |   fiat_p256_point_double(p2[0], p2[1], p2[2], p_pre_comp[0][0], | 
 |                          p_pre_comp[0][1], p_pre_comp[0][2]); | 
 |   for (size_t i = 1; i < OPENSSL_ARRAY_SIZE(p_pre_comp); i++) { | 
 |     fiat_p256_point_add(p_pre_comp[i][0], p_pre_comp[i][1], p_pre_comp[i][2], | 
 |                         p_pre_comp[i - 1][0], p_pre_comp[i - 1][1], | 
 |                         p_pre_comp[i - 1][2], 0 /* not mixed */, p2[0], p2[1], | 
 |                         p2[2]); | 
 |   } | 
 |  | 
 |   // Set up the coefficients for |p_scalar|. | 
 |   int8_t p_wNAF[257]; | 
 |   ec_compute_wNAF(group, p_wNAF, p_scalar, 256, P256_WSIZE_PUBLIC); | 
 |  | 
 |   // Set |ret| to the point at infinity. | 
 |   int skip = 1;  // Save some point operations. | 
 |   fiat_p256_felem ret[3] = {{0}, {0}, {0}}; | 
 |   for (int i = 256; i >= 0; i--) { | 
 |     if (!skip) { | 
 |       fiat_p256_point_double(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2]); | 
 |     } | 
 |  | 
 |     // For the |g_scalar|, we use the precomputed table without the | 
 |     // constant-time lookup. | 
 |     if (i <= 31) { | 
 |       // First, look 32 bits upwards. | 
 |       crypto_word_t bits = fiat_p256_get_bit(g_scalar->bytes, i + 224) << 3; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 160) << 2; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 96) << 1; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 32); | 
 |       if (bits != 0) { | 
 |         size_t index = (size_t)(bits - 1); | 
 |         fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], | 
 |                             1 /* mixed */, fiat_p256_g_pre_comp[1][index][0], | 
 |                             fiat_p256_g_pre_comp[1][index][1], | 
 |                             fiat_p256_one); | 
 |         skip = 0; | 
 |       } | 
 |  | 
 |       // Second, look at the current position. | 
 |       bits = fiat_p256_get_bit(g_scalar->bytes, i + 192) << 3; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 128) << 2; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i + 64) << 1; | 
 |       bits |= fiat_p256_get_bit(g_scalar->bytes, i); | 
 |       if (bits != 0) { | 
 |         size_t index = (size_t)(bits - 1); | 
 |         fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], | 
 |                             1 /* mixed */, fiat_p256_g_pre_comp[0][index][0], | 
 |                             fiat_p256_g_pre_comp[0][index][1], | 
 |                             fiat_p256_one); | 
 |         skip = 0; | 
 |       } | 
 |     } | 
 |  | 
 |     int digit = p_wNAF[i]; | 
 |     if (digit != 0) { | 
 |       assert(digit & 1); | 
 |       size_t idx = (size_t)(digit < 0 ? (-digit) >> 1 : digit >> 1); | 
 |       fiat_p256_felem *y = &p_pre_comp[idx][1], tmp; | 
 |       if (digit < 0) { | 
 |         fiat_p256_opp(tmp, p_pre_comp[idx][1]); | 
 |         y = &tmp; | 
 |       } | 
 |       if (!skip) { | 
 |         fiat_p256_point_add(ret[0], ret[1], ret[2], ret[0], ret[1], ret[2], | 
 |                             0 /* not mixed */, p_pre_comp[idx][0], *y, | 
 |                             p_pre_comp[idx][2]); | 
 |       } else { | 
 |         fiat_p256_copy(ret[0], p_pre_comp[idx][0]); | 
 |         fiat_p256_copy(ret[1], *y); | 
 |         fiat_p256_copy(ret[2], p_pre_comp[idx][2]); | 
 |         skip = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   fiat_p256_to_generic(&r->X, ret[0]); | 
 |   fiat_p256_to_generic(&r->Y, ret[1]); | 
 |   fiat_p256_to_generic(&r->Z, ret[2]); | 
 | } | 
 |  | 
 | static int ec_GFp_nistp256_cmp_x_coordinate(const EC_GROUP *group, | 
 |                                             const EC_RAW_POINT *p, | 
 |                                             const EC_SCALAR *r) { | 
 |   if (ec_GFp_simple_is_at_infinity(group, p)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // We wish to compare X/Z^2 with r. This is equivalent to comparing X with | 
 |   // r*Z^2. Note that X and Z are represented in Montgomery form, while r is | 
 |   // not. | 
 |   fiat_p256_felem Z2_mont; | 
 |   fiat_p256_from_generic(Z2_mont, &p->Z); | 
 |   fiat_p256_mul(Z2_mont, Z2_mont, Z2_mont); | 
 |  | 
 |   fiat_p256_felem r_Z2; | 
 |   fiat_p256_from_bytes(r_Z2, r->bytes);  // r < order < p, so this is valid. | 
 |   fiat_p256_mul(r_Z2, r_Z2, Z2_mont); | 
 |  | 
 |   fiat_p256_felem X; | 
 |   fiat_p256_from_generic(X, &p->X); | 
 |   fiat_p256_from_montgomery(X, X); | 
 |  | 
 |   if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   // During signing the x coefficient is reduced modulo the group order. | 
 |   // Therefore there is a small possibility, less than 1/2^128, that group_order | 
 |   // < p.x < P. in that case we need not only to compare against |r| but also to | 
 |   // compare against r+group_order. | 
 |   assert(group->field.width == group->order.width); | 
 |   if (bn_less_than_words(r->words, group->field_minus_order.words, | 
 |                          group->field.width)) { | 
 |     // We can ignore the carry because: r + group_order < p < 2^256. | 
 |     EC_FELEM tmp; | 
 |     bn_add_words(tmp.words, r->words, group->order.d, group->order.width); | 
 |     fiat_p256_from_generic(r_Z2, &tmp); | 
 |     fiat_p256_mul(r_Z2, r_Z2, Z2_mont); | 
 |     if (OPENSSL_memcmp(&r_Z2, &X, sizeof(r_Z2)) == 0) { | 
 |       return 1; | 
 |     } | 
 |   } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp256_method) { | 
 |   out->group_init = ec_GFp_mont_group_init; | 
 |   out->group_finish = ec_GFp_mont_group_finish; | 
 |   out->group_set_curve = ec_GFp_mont_group_set_curve; | 
 |   out->point_get_affine_coordinates = | 
 |       ec_GFp_nistp256_point_get_affine_coordinates; | 
 |   out->add = ec_GFp_nistp256_add; | 
 |   out->dbl = ec_GFp_nistp256_dbl; | 
 |   out->mul = ec_GFp_nistp256_point_mul; | 
 |   out->mul_base = ec_GFp_nistp256_point_mul_base; | 
 |   out->mul_public = ec_GFp_nistp256_point_mul_public; | 
 |   out->felem_mul = ec_GFp_mont_felem_mul; | 
 |   out->felem_sqr = ec_GFp_mont_felem_sqr; | 
 |   out->felem_to_bytes = ec_GFp_mont_felem_to_bytes; | 
 |   out->felem_from_bytes = ec_GFp_mont_felem_from_bytes; | 
 |   out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery; | 
 |   out->scalar_to_montgomery_inv_vartime = | 
 |       ec_simple_scalar_to_montgomery_inv_vartime; | 
 |   out->cmp_x_coordinate = ec_GFp_nistp256_cmp_x_coordinate; | 
 | } | 
 |  | 
 | #undef BORINGSSL_NISTP256_64BIT |