| // Copyright 2010 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package runner | 
 |  | 
 | import ( | 
 | 	"crypto" | 
 | 	"crypto/aes" | 
 | 	"crypto/cipher" | 
 | 	"crypto/des" | 
 | 	"crypto/hmac" | 
 | 	"crypto/md5" | 
 | 	"crypto/sha1" | 
 | 	"crypto/sha256" | 
 | 	"crypto/sha512" | 
 | 	"crypto/x509" | 
 | 	"hash" | 
 | 	"slices" | 
 |  | 
 | 	"golang.org/x/crypto/chacha20poly1305" | 
 | ) | 
 |  | 
 | // a keyAgreement implements the client and server side of a TLS key agreement | 
 | // protocol by generating and processing key exchange messages. | 
 | type keyAgreement interface { | 
 | 	// On the server side, the first two methods are called in order. | 
 |  | 
 | 	// In the case that the key agreement protocol doesn't use a | 
 | 	// ServerKeyExchange message, generateServerKeyExchange can return nil, | 
 | 	// nil. | 
 | 	generateServerKeyExchange(*Config, *Credential, *clientHelloMsg, *serverHelloMsg, uint16) (*serverKeyExchangeMsg, error) | 
 | 	processClientKeyExchange(*Config, *Credential, *clientKeyExchangeMsg, uint16) ([]byte, error) | 
 |  | 
 | 	// On the client side, the next two methods are called in order. | 
 |  | 
 | 	// This method may not be called if the server doesn't send a | 
 | 	// ServerKeyExchange message. | 
 | 	processServerKeyExchange(*Config, *clientHelloMsg, *serverHelloMsg, crypto.PublicKey, *serverKeyExchangeMsg) error | 
 | 	generateClientKeyExchange(*Config, *clientHelloMsg, *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) | 
 |  | 
 | 	// peerSignatureAlgorithm returns the signature algorithm used by the | 
 | 	// peer, or zero if not applicable. | 
 | 	peerSignatureAlgorithm() signatureAlgorithm | 
 | } | 
 |  | 
 | const ( | 
 | 	// suiteECDH indicates that the cipher suite involves elliptic curve | 
 | 	// Diffie-Hellman. This means that it should only be selected when the | 
 | 	// client indicates that it supports ECC with a curve and point format | 
 | 	// that we're happy with. | 
 | 	suiteECDHE = 1 << iota | 
 | 	// suiteECDSA indicates that the cipher suite involves an ECDSA | 
 | 	// signature and therefore may only be selected when the server's | 
 | 	// certificate is ECDSA. If this is not set then the cipher suite is | 
 | 	// RSA based. | 
 | 	suiteECDSA | 
 | 	// suiteTLS12 indicates that the cipher suite should only be advertised | 
 | 	// and accepted when using TLS 1.2 or greater. | 
 | 	suiteTLS12 | 
 | 	// suiteTLS13 indicates that the cipher suite can be used with TLS 1.3. | 
 | 	// Cipher suites lacking this flag may not be used with TLS 1.3. | 
 | 	suiteTLS13 | 
 | 	// suiteSHA384 indicates that the cipher suite uses SHA384 as the | 
 | 	// handshake hash. | 
 | 	suiteSHA384 | 
 | 	// suitePSK indicates that the cipher suite authenticates with | 
 | 	// a pre-shared key rather than a server private key. | 
 | 	suitePSK | 
 | ) | 
 |  | 
 | type tlsAead struct { | 
 | 	cipher.AEAD | 
 | 	explicitNonce bool | 
 | } | 
 |  | 
 | // A cipherSuite is a specific combination of key agreement, cipher and MAC | 
 | // function. All cipher suites currently assume RSA key agreement. | 
 | type cipherSuite struct { | 
 | 	id uint16 | 
 | 	// the lengths, in bytes, of the key material needed for each component. | 
 | 	keyLen int | 
 | 	macLen int | 
 | 	ivLen  func(version uint16) int | 
 | 	ka     func(version uint16) keyAgreement | 
 | 	// flags is a bitmask of the suite* values, above. | 
 | 	flags  int | 
 | 	cipher func(key, iv []byte, isRead bool) any | 
 | 	mac    func(version uint16, macKey []byte) macFunction | 
 | 	aead   func(version uint16, key, fixedNonce []byte) *tlsAead | 
 | } | 
 |  | 
 | func (cs cipherSuite) hash() crypto.Hash { | 
 | 	if cs.flags&suiteSHA384 != 0 { | 
 | 		return crypto.SHA384 | 
 | 	} | 
 | 	return crypto.SHA256 | 
 | } | 
 |  | 
 | var cipherSuites = []*cipherSuite{ | 
 | 	{TLS_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, nil, suiteTLS13, nil, nil, aeadCHACHA20POLY1305}, | 
 | 	{TLS_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, nil, suiteTLS13, nil, nil, aeadAESGCM}, | 
 | 	{TLS_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, nil, suiteTLS13 | suiteSHA384, nil, nil, aeadAESGCM}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, | 
 | 	{TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12, nil, nil, aeadAESGCM}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, nil, nil, aeadAESGCM}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12, cipherAES, macSHA256, nil}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12, cipherAES, macSHA256, nil}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheRSAKA, suiteECDHE | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, 32, 48, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA | suiteTLS12 | suiteSHA384, cipherAES, macSHA384, nil}, | 
 | 	{TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheRSAKA, suiteECDHE, cipherAES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdheECDSAKA, suiteECDHE | suiteECDSA, cipherAES, macSHA1, nil}, | 
 | 	{TLS_RSA_WITH_AES_128_GCM_SHA256, 16, 0, ivLenAESGCM, rsaKA, suiteTLS12, nil, nil, aeadAESGCM}, | 
 | 	{TLS_RSA_WITH_AES_256_GCM_SHA384, 32, 0, ivLenAESGCM, rsaKA, suiteTLS12 | suiteSHA384, nil, nil, aeadAESGCM}, | 
 | 	{TLS_RSA_WITH_AES_128_CBC_SHA256, 16, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, | 
 | 	{TLS_RSA_WITH_AES_256_CBC_SHA256, 32, 32, ivLenAES, rsaKA, suiteTLS12, cipherAES, macSHA256, nil}, | 
 | 	{TLS_RSA_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, | 
 | 	{TLS_RSA_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, rsaKA, 0, cipherAES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, ecdheRSAKA, suiteECDHE, cipher3DES, macSHA1, nil}, | 
 | 	{TLS_RSA_WITH_3DES_EDE_CBC_SHA, 24, 20, ivLen3DES, rsaKA, 0, cipher3DES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, 32, 0, ivLenChaCha20Poly1305, ecdhePSKKA, suiteECDHE | suitePSK | suiteTLS12, nil, nil, aeadCHACHA20POLY1305}, | 
 | 	{TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, | 
 | 	{TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, ecdhePSKKA, suiteECDHE | suitePSK, cipherAES, macSHA1, nil}, | 
 | 	{TLS_PSK_WITH_AES_128_CBC_SHA, 16, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, | 
 | 	{TLS_PSK_WITH_AES_256_CBC_SHA, 32, 20, ivLenAES, pskKA, suitePSK, cipherAES, macSHA1, nil}, | 
 | } | 
 |  | 
 | func ivLenChaCha20Poly1305(vers uint16) int { | 
 | 	return 12 | 
 | } | 
 |  | 
 | func ivLenAESGCM(vers uint16) int { | 
 | 	if vers >= VersionTLS13 { | 
 | 		return 12 | 
 | 	} | 
 | 	return 4 | 
 | } | 
 |  | 
 | func ivLenAES(vers uint16) int { | 
 | 	return 16 | 
 | } | 
 |  | 
 | func ivLen3DES(vers uint16) int { | 
 | 	return 8 | 
 | } | 
 |  | 
 | type nullCipher struct{} | 
 |  | 
 | func cipherNull(key, iv []byte, isRead bool) any { | 
 | 	return nullCipher{} | 
 | } | 
 |  | 
 | type cbcMode struct { | 
 | 	cipher.BlockMode | 
 | 	new func(iv []byte) cipher.BlockMode | 
 | } | 
 |  | 
 | func (c *cbcMode) SetIV(iv []byte) { | 
 | 	c.BlockMode = c.new(iv) | 
 | } | 
 |  | 
 | func cipher3DES(key, iv []byte, isRead bool) any { | 
 | 	c := &cbcMode{} | 
 | 	block, _ := des.NewTripleDESCipher(key) | 
 | 	if isRead { | 
 | 		c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCDecrypter(block, iv) } | 
 | 	} else { | 
 | 		c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCEncrypter(block, iv) } | 
 | 	} | 
 | 	c.SetIV(iv) | 
 | 	return c | 
 | } | 
 |  | 
 | func cipherAES(key, iv []byte, isRead bool) any { | 
 | 	c := &cbcMode{} | 
 | 	block, _ := aes.NewCipher(key) | 
 | 	if isRead { | 
 | 		c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCDecrypter(block, iv) } | 
 | 	} else { | 
 | 		c.new = func(iv []byte) cipher.BlockMode { return cipher.NewCBCEncrypter(block, iv) } | 
 | 	} | 
 | 	c.SetIV(iv) | 
 | 	return c | 
 | } | 
 |  | 
 | // macSHA1 returns a macFunction for the given protocol version. | 
 | func macSHA1(version uint16, key []byte) macFunction { | 
 | 	return tls10MAC{hmac.New(sha1.New, key)} | 
 | } | 
 |  | 
 | func macMD5(version uint16, key []byte) macFunction { | 
 | 	return tls10MAC{hmac.New(md5.New, key)} | 
 | } | 
 |  | 
 | func macSHA256(version uint16, key []byte) macFunction { | 
 | 	return tls10MAC{hmac.New(sha256.New, key)} | 
 | } | 
 |  | 
 | func macSHA384(version uint16, key []byte) macFunction { | 
 | 	return tls10MAC{hmac.New(sha512.New384, key)} | 
 | } | 
 |  | 
 | type macFunction interface { | 
 | 	Size() int | 
 | 	MAC(digestBuf, seq, header, length, data []byte) []byte | 
 | } | 
 |  | 
 | // fixedNonceAEAD wraps an AEAD and prefixes a fixed portion of the nonce to | 
 | // each call. | 
 | type fixedNonceAEAD struct { | 
 | 	// sealNonce and openNonce are buffers where the larger nonce will be | 
 | 	// constructed. Since a seal and open operation may be running | 
 | 	// concurrently, there is a separate buffer for each. | 
 | 	sealNonce, openNonce []byte | 
 | 	aead                 cipher.AEAD | 
 | } | 
 |  | 
 | func (f *fixedNonceAEAD) NonceSize() int { return 8 } | 
 | func (f *fixedNonceAEAD) Overhead() int  { return f.aead.Overhead() } | 
 |  | 
 | func (f *fixedNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { | 
 | 	copy(f.sealNonce[len(f.sealNonce)-8:], nonce) | 
 | 	return f.aead.Seal(out, f.sealNonce, plaintext, additionalData) | 
 | } | 
 |  | 
 | func (f *fixedNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { | 
 | 	copy(f.openNonce[len(f.openNonce)-8:], nonce) | 
 | 	return f.aead.Open(out, f.openNonce, plaintext, additionalData) | 
 | } | 
 |  | 
 | func aeadAESGCM(version uint16, key, fixedNonce []byte) *tlsAead { | 
 | 	aes, err := aes.NewCipher(key) | 
 | 	if err != nil { | 
 | 		panic(err) | 
 | 	} | 
 | 	aead, err := cipher.NewGCM(aes) | 
 | 	if err != nil { | 
 | 		panic(err) | 
 | 	} | 
 |  | 
 | 	nonce1, nonce2 := make([]byte, 12), make([]byte, 12) | 
 | 	copy(nonce1, fixedNonce) | 
 | 	copy(nonce2, fixedNonce) | 
 |  | 
 | 	if version >= VersionTLS13 { | 
 | 		return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} | 
 | 	} | 
 |  | 
 | 	return &tlsAead{&fixedNonceAEAD{nonce1, nonce2, aead}, true} | 
 | } | 
 |  | 
 | func xorSlice(out, in []byte) { | 
 | 	for i := range out { | 
 | 		out[i] ^= in[i] | 
 | 	} | 
 | } | 
 |  | 
 | // xorNonceAEAD wraps an AEAD and XORs a fixed portion of the nonce, left-padded | 
 | // if necessary, each call. | 
 | type xorNonceAEAD struct { | 
 | 	// sealNonce and openNonce are buffers where the larger nonce will be | 
 | 	// constructed. Since a seal and open operation may be running | 
 | 	// concurrently, there is a separate buffer for each. | 
 | 	sealNonce, openNonce []byte | 
 | 	aead                 cipher.AEAD | 
 | } | 
 |  | 
 | func (x *xorNonceAEAD) NonceSize() int { return 8 } | 
 | func (x *xorNonceAEAD) Overhead() int  { return x.aead.Overhead() } | 
 |  | 
 | func (x *xorNonceAEAD) Seal(out, nonce, plaintext, additionalData []byte) []byte { | 
 | 	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) | 
 | 	ret := x.aead.Seal(out, x.sealNonce, plaintext, additionalData) | 
 | 	xorSlice(x.sealNonce[len(x.sealNonce)-len(nonce):], nonce) | 
 | 	return ret | 
 | } | 
 |  | 
 | func (x *xorNonceAEAD) Open(out, nonce, plaintext, additionalData []byte) ([]byte, error) { | 
 | 	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) | 
 | 	ret, err := x.aead.Open(out, x.openNonce, plaintext, additionalData) | 
 | 	xorSlice(x.openNonce[len(x.openNonce)-len(nonce):], nonce) | 
 | 	return ret, err | 
 | } | 
 |  | 
 | func aeadCHACHA20POLY1305(version uint16, key, fixedNonce []byte) *tlsAead { | 
 | 	aead, err := chacha20poly1305.New(key) | 
 | 	if err != nil { | 
 | 		panic(err) | 
 | 	} | 
 |  | 
 | 	nonce1, nonce2 := make([]byte, len(fixedNonce)), make([]byte, len(fixedNonce)) | 
 | 	copy(nonce1, fixedNonce) | 
 | 	copy(nonce2, fixedNonce) | 
 |  | 
 | 	return &tlsAead{&xorNonceAEAD{nonce1, nonce2, aead}, false} | 
 | } | 
 |  | 
 | // tls10MAC implements the TLS 1.0 MAC function. RFC 2246, section 6.2.3. | 
 | type tls10MAC struct { | 
 | 	h hash.Hash | 
 | } | 
 |  | 
 | func (s tls10MAC) Size() int { | 
 | 	return s.h.Size() | 
 | } | 
 |  | 
 | func (s tls10MAC) MAC(digestBuf, seq, header, length, data []byte) []byte { | 
 | 	s.h.Reset() | 
 | 	s.h.Write(seq) | 
 | 	s.h.Write(header) | 
 | 	s.h.Write(length) | 
 | 	s.h.Write(data) | 
 | 	return s.h.Sum(digestBuf[:0]) | 
 | } | 
 |  | 
 | func rsaKA(version uint16) keyAgreement { | 
 | 	return &rsaKeyAgreement{version: version} | 
 | } | 
 |  | 
 | func ecdheECDSAKA(version uint16) keyAgreement { | 
 | 	return &ecdheKeyAgreement{ | 
 | 		auth: &signedKeyAgreement{ | 
 | 			keyType: keyTypeECDSA, | 
 | 			version: version, | 
 | 		}, | 
 | 	} | 
 | } | 
 |  | 
 | func ecdheRSAKA(version uint16) keyAgreement { | 
 | 	return &ecdheKeyAgreement{ | 
 | 		auth: &signedKeyAgreement{ | 
 | 			keyType: keyTypeRSA, | 
 | 			version: version, | 
 | 		}, | 
 | 	} | 
 | } | 
 |  | 
 | func pskKA(version uint16) keyAgreement { | 
 | 	return &pskKeyAgreement{ | 
 | 		base: &nilKeyAgreement{}, | 
 | 	} | 
 | } | 
 |  | 
 | func ecdhePSKKA(version uint16) keyAgreement { | 
 | 	return &pskKeyAgreement{ | 
 | 		base: &ecdheKeyAgreement{ | 
 | 			auth: &nilKeyAgreementAuthentication{}, | 
 | 		}, | 
 | 	} | 
 | } | 
 |  | 
 | // mutualCipherSuite returns a cipherSuite given a list of supported | 
 | // ciphersuites and the id requested by the peer. | 
 | func mutualCipherSuite(have []uint16, id uint16) *cipherSuite { | 
 | 	if slices.Contains(have, id) { | 
 | 		return cipherSuiteFromID(id) | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | func cipherSuiteFromID(id uint16) *cipherSuite { | 
 | 	for _, suite := range cipherSuites { | 
 | 		if suite.id == id { | 
 | 			return suite | 
 | 		} | 
 | 	} | 
 | 	return nil | 
 | } | 
 |  | 
 | // A list of the possible cipher suite ids. Taken from | 
 | // http://www.iana.org/assignments/tls-parameters/tls-parameters.xml | 
 | const ( | 
 | 	TLS_RSA_WITH_3DES_EDE_CBC_SHA                 uint16 = 0x000a | 
 | 	TLS_RSA_WITH_AES_128_CBC_SHA                  uint16 = 0x002f | 
 | 	TLS_RSA_WITH_AES_256_CBC_SHA                  uint16 = 0x0035 | 
 | 	TLS_RSA_WITH_AES_128_CBC_SHA256               uint16 = 0x003c | 
 | 	TLS_RSA_WITH_AES_256_CBC_SHA256               uint16 = 0x003d | 
 | 	TLS_PSK_WITH_AES_128_CBC_SHA                  uint16 = 0x008c | 
 | 	TLS_PSK_WITH_AES_256_CBC_SHA                  uint16 = 0x008d | 
 | 	TLS_RSA_WITH_AES_128_GCM_SHA256               uint16 = 0x009c | 
 | 	TLS_RSA_WITH_AES_256_GCM_SHA384               uint16 = 0x009d | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA          uint16 = 0xc009 | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA          uint16 = 0xc00a | 
 | 	TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA           uint16 = 0xc012 | 
 | 	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA            uint16 = 0xc013 | 
 | 	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA            uint16 = 0xc014 | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256       uint16 = 0xc023 | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384       uint16 = 0xc024 | 
 | 	TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256         uint16 = 0xc027 | 
 | 	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384         uint16 = 0xc028 | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256       uint16 = 0xc02b | 
 | 	TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384       uint16 = 0xc02c | 
 | 	TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256         uint16 = 0xc02f | 
 | 	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384         uint16 = 0xc030 | 
 | 	TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA            uint16 = 0xc035 | 
 | 	TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA            uint16 = 0xc036 | 
 | 	TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xcca8 | 
 | 	TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 uint16 = 0xcca9 | 
 | 	TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256   uint16 = 0xccac | 
 | 	renegotiationSCSV                             uint16 = 0x00ff | 
 | 	fallbackSCSV                                  uint16 = 0x5600 | 
 | ) | 
 |  | 
 | // Additional cipher suite IDs, not IANA-assigned. | 
 | const ( | 
 | 	TLS_AES_128_GCM_SHA256       uint16 = 0x1301 | 
 | 	TLS_AES_256_GCM_SHA384       uint16 = 0x1302 | 
 | 	TLS_CHACHA20_POLY1305_SHA256 uint16 = 0x1303 | 
 | ) |