| /* | 
 |  * Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 |  * | 
 |  * Licensed under the OpenSSL license (the "License").  You may not use | 
 |  * this file except in compliance with the License.  You can obtain a copy | 
 |  * in the file LICENSE in the source distribution or at | 
 |  * https://www.openssl.org/source/license.html | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/aead.h> | 
 | #include <openssl/aes.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/nid.h> | 
 |  | 
 | #include "../../internal.h" | 
 | #include "../aes/internal.h" | 
 | #include "../bcm_interface.h" | 
 | #include "../delocate.h" | 
 | #include "../modes/internal.h" | 
 | #include "../service_indicator/internal.h" | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | OPENSSL_MSVC_PRAGMA(warning(push)) | 
 | OPENSSL_MSVC_PRAGMA(warning(disable : 4702))  // Unreachable code. | 
 |  | 
 | #define AES_GCM_NONCE_LENGTH 12 | 
 |  | 
 | typedef struct { | 
 |   union { | 
 |     double align; | 
 |     AES_KEY ks; | 
 |   } ks; | 
 |   block128_f block; | 
 |   union { | 
 |     cbc128_f cbc; | 
 |     ctr128_f ctr; | 
 |   } stream; | 
 | } EVP_AES_KEY; | 
 |  | 
 | typedef struct { | 
 |   GCM128_KEY key; | 
 |   GCM128_CONTEXT gcm; | 
 |   int key_set;  // Set if key initialised | 
 |   int iv_set;   // Set if an iv is set | 
 |   uint8_t *iv;  // Temporary IV store | 
 |   int ivlen;    // IV length | 
 |   int taglen; | 
 |   int iv_gen;  // It is OK to generate IVs | 
 |   ctr128_f ctr; | 
 | } EVP_AES_GCM_CTX; | 
 |  | 
 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
 |                         const uint8_t *iv, int enc) { | 
 |   int ret; | 
 |   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
 |   const int mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK; | 
 |  | 
 |   if (mode == EVP_CIPH_CTR_MODE) { | 
 |     switch (ctx->key_len) { | 
 |       case 16: | 
 |         boringssl_fips_inc_counter(fips_counter_evp_aes_128_ctr); | 
 |         break; | 
 |  | 
 |       case 32: | 
 |         boringssl_fips_inc_counter(fips_counter_evp_aes_256_ctr); | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { | 
 |     if (hwaes_capable()) { | 
 |       ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |       dat->block = aes_hw_decrypt; | 
 |       dat->stream.cbc = NULL; | 
 |       if (mode == EVP_CIPH_CBC_MODE) { | 
 |         dat->stream.cbc = aes_hw_cbc_encrypt; | 
 |       } | 
 |     } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) { | 
 |       assert(vpaes_capable()); | 
 |       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |       if (ret == 0) { | 
 |         vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks); | 
 |       } | 
 |       // If |dat->stream.cbc| is provided, |dat->block| is never used. | 
 |       dat->block = NULL; | 
 |       dat->stream.cbc = bsaes_cbc_encrypt; | 
 |     } else if (vpaes_capable()) { | 
 |       ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |       dat->block = vpaes_decrypt; | 
 |       dat->stream.cbc = NULL; | 
 | #if defined(VPAES_CBC) | 
 |       if (mode == EVP_CIPH_CBC_MODE) { | 
 |         dat->stream.cbc = vpaes_cbc_encrypt; | 
 |       } | 
 | #endif | 
 |     } else { | 
 |       ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |       dat->block = aes_nohw_decrypt; | 
 |       dat->stream.cbc = NULL; | 
 |       if (mode == EVP_CIPH_CBC_MODE) { | 
 |         dat->stream.cbc = aes_nohw_cbc_encrypt; | 
 |       } | 
 |     } | 
 |   } else if (hwaes_capable()) { | 
 |     ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |     dat->block = aes_hw_encrypt; | 
 |     dat->stream.cbc = NULL; | 
 |     if (mode == EVP_CIPH_CBC_MODE) { | 
 |       dat->stream.cbc = aes_hw_cbc_encrypt; | 
 |     } else if (mode == EVP_CIPH_CTR_MODE) { | 
 |       dat->stream.ctr = aes_hw_ctr32_encrypt_blocks; | 
 |     } | 
 |   } else if (vpaes_capable()) { | 
 |     ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |     dat->block = vpaes_encrypt; | 
 |     dat->stream.cbc = NULL; | 
 | #if defined(VPAES_CBC) | 
 |     if (mode == EVP_CIPH_CBC_MODE) { | 
 |       dat->stream.cbc = vpaes_cbc_encrypt; | 
 |     } | 
 | #endif | 
 |     if (mode == EVP_CIPH_CTR_MODE) { | 
 | #if defined(BSAES) | 
 |       assert(bsaes_capable()); | 
 |       dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes; | 
 | #else | 
 |       dat->stream.ctr = vpaes_ctr32_encrypt_blocks; | 
 | #endif | 
 |     } | 
 |   } else { | 
 |     ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks); | 
 |     dat->block = aes_nohw_encrypt; | 
 |     dat->stream.cbc = NULL; | 
 |     if (mode == EVP_CIPH_CBC_MODE) { | 
 |       dat->stream.cbc = aes_nohw_cbc_encrypt; | 
 |     } else if (mode == EVP_CIPH_CTR_MODE) { | 
 |       dat->stream.ctr = aes_nohw_ctr32_encrypt_blocks; | 
 |     } | 
 |   } | 
 |  | 
 |   if (ret < 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
 |                           size_t len) { | 
 |   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
 |  | 
 |   if (dat->stream.cbc) { | 
 |     (*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt); | 
 |   } else if (ctx->encrypt) { | 
 |     CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); | 
 |   } else { | 
 |     CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
 |                           size_t len) { | 
 |   size_t bl = ctx->cipher->block_size; | 
 |   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
 |  | 
 |   if (len < bl) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   len -= bl; | 
 |   for (size_t i = 0; i <= len; i += bl) { | 
 |     (*dat->block)(in + i, out + i, &dat->ks.ks); | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
 |                           size_t len) { | 
 |   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
 |   CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf, | 
 |                               &ctx->num, dat->stream.ctr); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
 |                           size_t len) { | 
 |   EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data; | 
 |  | 
 |   CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num, | 
 |                         dat->block); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key, | 
 |                             const uint8_t *iv, int enc) { | 
 |   EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); | 
 |   if (!iv && !key) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   // We must configure first the key, then the IV, but the caller may pass both | 
 |   // together, or separately in either order. | 
 |   if (key) { | 
 |     OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm)); | 
 |     CRYPTO_gcm128_init_aes_key(&gctx->key, key, ctx->key_len); | 
 |     // Use the IV if specified. Otherwise, use the saved IV, if any. | 
 |     if (iv == NULL && gctx->iv_set) { | 
 |       iv = gctx->iv; | 
 |     } | 
 |     if (iv) { | 
 |       CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); | 
 |       gctx->iv_set = 1; | 
 |     } | 
 |     gctx->key_set = 1; | 
 |   } else { | 
 |     if (gctx->key_set) { | 
 |       CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, iv, gctx->ivlen); | 
 |     } else { | 
 |       // The caller specified the IV before the key. Save the IV for later. | 
 |       OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen); | 
 |     } | 
 |     gctx->iv_set = 1; | 
 |     gctx->iv_gen = 0; | 
 |   } | 
 |   return 1; | 
 | } | 
 |  | 
 | static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) { | 
 |   EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); | 
 |   OPENSSL_cleanse(&gctx->key, sizeof(gctx->key)); | 
 |   OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); | 
 |   if (gctx->iv != c->iv) { | 
 |     OPENSSL_free(gctx->iv); | 
 |   } | 
 | } | 
 |  | 
 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { | 
 |   EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(c->cipher_data); | 
 |   switch (type) { | 
 |     case EVP_CTRL_INIT: | 
 |       gctx->key_set = 0; | 
 |       gctx->iv_set = 0; | 
 |       gctx->ivlen = c->cipher->iv_len; | 
 |       gctx->iv = c->iv; | 
 |       gctx->taglen = -1; | 
 |       gctx->iv_gen = 0; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_AEAD_SET_IVLEN: | 
 |       if (arg <= 0) { | 
 |         return 0; | 
 |       } | 
 |  | 
 |       // Allocate memory for IV if needed | 
 |       if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) { | 
 |         if (gctx->iv != c->iv) { | 
 |           OPENSSL_free(gctx->iv); | 
 |         } | 
 |         gctx->iv = reinterpret_cast<uint8_t *>(OPENSSL_malloc(arg)); | 
 |         if (!gctx->iv) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       gctx->ivlen = arg; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_GET_IVLEN: | 
 |       *(int *)ptr = gctx->ivlen; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_AEAD_SET_TAG: | 
 |       if (arg <= 0 || arg > 16 || c->encrypt) { | 
 |         return 0; | 
 |       } | 
 |       OPENSSL_memcpy(c->buf, ptr, arg); | 
 |       gctx->taglen = arg; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_AEAD_GET_TAG: | 
 |       if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) { | 
 |         return 0; | 
 |       } | 
 |       OPENSSL_memcpy(ptr, c->buf, arg); | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_AEAD_SET_IV_FIXED: | 
 |       // Special case: -1 length restores whole IV | 
 |       if (arg == -1) { | 
 |         OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen); | 
 |         gctx->iv_gen = 1; | 
 |         return 1; | 
 |       } | 
 |       // Fixed field must be at least 4 bytes and invocation field | 
 |       // at least 8. | 
 |       if (arg < 4 || (gctx->ivlen - arg) < 8) { | 
 |         return 0; | 
 |       } | 
 |       OPENSSL_memcpy(gctx->iv, ptr, arg); | 
 |       if (c->encrypt) { | 
 |         // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with | 
 |         // state lock functions to avoid updating the service indicator with the | 
 |         // DRBG functions. | 
 |         FIPS_service_indicator_lock_state(); | 
 |         BCM_rand_bytes(gctx->iv + arg, gctx->ivlen - arg); | 
 |         FIPS_service_indicator_unlock_state(); | 
 |       } | 
 |       gctx->iv_gen = 1; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_GCM_IV_GEN: { | 
 |       if (gctx->iv_gen == 0 || gctx->key_set == 0) { | 
 |         return 0; | 
 |       } | 
 |       CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); | 
 |       if (arg <= 0 || arg > gctx->ivlen) { | 
 |         arg = gctx->ivlen; | 
 |       } | 
 |       OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); | 
 |       // Invocation field will be at least 8 bytes in size, so no need to check | 
 |       // wrap around or increment more than last 8 bytes. | 
 |       uint8_t *ctr = gctx->iv + gctx->ivlen - 8; | 
 |       CRYPTO_store_u64_be(ctr, CRYPTO_load_u64_be(ctr) + 1); | 
 |       gctx->iv_set = 1; | 
 |       return 1; | 
 |     } | 
 |  | 
 |     case EVP_CTRL_GCM_SET_IV_INV: | 
 |       if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) { | 
 |         return 0; | 
 |       } | 
 |       OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); | 
 |       CRYPTO_gcm128_init_ctx(&gctx->key, &gctx->gcm, gctx->iv, gctx->ivlen); | 
 |       gctx->iv_set = 1; | 
 |       return 1; | 
 |  | 
 |     case EVP_CTRL_COPY: { | 
 |       EVP_CIPHER_CTX *out = reinterpret_cast<EVP_CIPHER_CTX *>(ptr); | 
 |       EVP_AES_GCM_CTX *gctx_out = | 
 |           reinterpret_cast<EVP_AES_GCM_CTX *>(out->cipher_data); | 
 |       if (gctx->iv == c->iv) { | 
 |         gctx_out->iv = out->iv; | 
 |       } else { | 
 |         gctx_out->iv = | 
 |             reinterpret_cast<uint8_t *>(OPENSSL_memdup(gctx->iv, gctx->ivlen)); | 
 |         if (!gctx_out->iv) { | 
 |           return 0; | 
 |         } | 
 |       } | 
 |       return 1; | 
 |     } | 
 |  | 
 |     default: | 
 |       return -1; | 
 |   } | 
 | } | 
 |  | 
 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in, | 
 |                           size_t len) { | 
 |   EVP_AES_GCM_CTX *gctx = reinterpret_cast<EVP_AES_GCM_CTX *>(ctx->cipher_data); | 
 |  | 
 |   // If not set up, return error | 
 |   if (!gctx->key_set) { | 
 |     return -1; | 
 |   } | 
 |   if (!gctx->iv_set) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (len > INT_MAX) { | 
 |     // This function signature can only express up to |INT_MAX| bytes encrypted. | 
 |     // | 
 |     // TODO(https://crbug.com/boringssl/494): Make the internal |EVP_CIPHER| | 
 |     // calling convention |size_t|-clean. | 
 |     return -1; | 
 |   } | 
 |  | 
 |   if (in) { | 
 |     if (out == NULL) { | 
 |       if (!CRYPTO_gcm128_aad(&gctx->key, &gctx->gcm, in, len)) { | 
 |         return -1; | 
 |       } | 
 |     } else if (ctx->encrypt) { | 
 |       if (!CRYPTO_gcm128_encrypt(&gctx->key, &gctx->gcm, in, out, len)) { | 
 |         return -1; | 
 |       } | 
 |     } else { | 
 |       if (!CRYPTO_gcm128_decrypt(&gctx->key, &gctx->gcm, in, out, len)) { | 
 |         return -1; | 
 |       } | 
 |     } | 
 |     return (int)len; | 
 |   } else { | 
 |     if (!ctx->encrypt) { | 
 |       if (gctx->taglen < 0 || !CRYPTO_gcm128_finish(&gctx->key, &gctx->gcm, | 
 |                                                     ctx->buf, gctx->taglen)) { | 
 |         return -1; | 
 |       } | 
 |       gctx->iv_set = 0; | 
 |       return 0; | 
 |     } | 
 |     CRYPTO_gcm128_tag(&gctx->key, &gctx->gcm, ctx->buf, 16); | 
 |     gctx->taglen = 16; | 
 |     // Don't reuse the IV | 
 |     gctx->iv_set = 0; | 
 |     return 0; | 
 |   } | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_cbc) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_cbc; | 
 |   out->block_size = 16; | 
 |   out->key_len = 16; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CBC_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_cbc_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ctr) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_ctr; | 
 |   out->block_size = 1; | 
 |   out->key_len = 16; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CTR_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ctr_cipher; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ecb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_ofb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_ofb128; | 
 |   out->block_size = 1; | 
 |   out->key_len = 16; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_OFB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ofb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_128_gcm) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_gcm; | 
 |   out->block_size = 1; | 
 |   out->key_len = 16; | 
 |   out->iv_len = AES_GCM_NONCE_LENGTH; | 
 |   out->ctx_size = sizeof(EVP_AES_GCM_CTX); | 
 |   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | | 
 |                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | | 
 |                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; | 
 |   out->init = aes_gcm_init_key; | 
 |   out->cipher = aes_gcm_cipher; | 
 |   out->cleanup = aes_gcm_cleanup; | 
 |   out->ctrl = aes_gcm_ctrl; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_cbc) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_cbc; | 
 |   out->block_size = 16; | 
 |   out->key_len = 24; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CBC_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_cbc_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ctr) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_ctr; | 
 |   out->block_size = 1; | 
 |   out->key_len = 24; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CTR_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ctr_cipher; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 24; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ecb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_ofb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_ofb128; | 
 |   out->block_size = 1; | 
 |   out->key_len = 24; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_OFB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ofb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_192_gcm) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_gcm; | 
 |   out->block_size = 1; | 
 |   out->key_len = 24; | 
 |   out->iv_len = AES_GCM_NONCE_LENGTH; | 
 |   out->ctx_size = sizeof(EVP_AES_GCM_CTX); | 
 |   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | | 
 |                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | | 
 |                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; | 
 |   out->init = aes_gcm_init_key; | 
 |   out->cipher = aes_gcm_cipher; | 
 |   out->cleanup = aes_gcm_cleanup; | 
 |   out->ctrl = aes_gcm_ctrl; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_cbc) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_cbc; | 
 |   out->block_size = 16; | 
 |   out->key_len = 32; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CBC_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_cbc_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ctr) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_ctr; | 
 |   out->block_size = 1; | 
 |   out->key_len = 32; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_CTR_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ctr_cipher; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 32; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ecb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_ofb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_ofb128; | 
 |   out->block_size = 1; | 
 |   out->key_len = 32; | 
 |   out->iv_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_OFB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_ofb_cipher; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_CIPHER, EVP_aes_256_gcm) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_gcm; | 
 |   out->block_size = 1; | 
 |   out->key_len = 32; | 
 |   out->iv_len = AES_GCM_NONCE_LENGTH; | 
 |   out->ctx_size = sizeof(EVP_AES_GCM_CTX); | 
 |   out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY | | 
 |                EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | | 
 |                EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER; | 
 |   out->init = aes_gcm_init_key; | 
 |   out->cipher = aes_gcm_cipher; | 
 |   out->cleanup = aes_gcm_cleanup; | 
 |   out->ctrl = aes_gcm_ctrl; | 
 | } | 
 |  | 
 | #if defined(HWAES_ECB) | 
 |  | 
 | static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, | 
 |                              const uint8_t *in, size_t len) { | 
 |   size_t bl = ctx->cipher->block_size; | 
 |  | 
 |   if (len < bl) { | 
 |     return 1; | 
 |   } | 
 |  | 
 |   aes_hw_ecb_encrypt(in, out, len, | 
 |                      reinterpret_cast<const AES_KEY *>(ctx->cipher_data), | 
 |                      ctx->encrypt); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_128_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 16; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_hw_ecb_cipher; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_192_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 24; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_hw_ecb_cipher; | 
 | } | 
 |  | 
 | DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) { | 
 |   memset(out, 0, sizeof(EVP_CIPHER)); | 
 |  | 
 |   out->nid = NID_aes_256_ecb; | 
 |   out->block_size = 16; | 
 |   out->key_len = 32; | 
 |   out->ctx_size = sizeof(EVP_AES_KEY); | 
 |   out->flags = EVP_CIPH_ECB_MODE; | 
 |   out->init = aes_init_key; | 
 |   out->cipher = aes_hw_ecb_cipher; | 
 | } | 
 |  | 
 | #define EVP_ECB_CIPHER_FUNCTION(keybits)            \ | 
 |   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ | 
 |     if (hwaes_capable()) {                          \ | 
 |       return aes_hw_##keybits##_ecb();              \ | 
 |     }                                               \ | 
 |     return aes_##keybits##_ecb_generic();           \ | 
 |   } | 
 |  | 
 | #else | 
 |  | 
 | #define EVP_ECB_CIPHER_FUNCTION(keybits)            \ | 
 |   const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \ | 
 |     return aes_##keybits##_ecb_generic();           \ | 
 |   } | 
 |  | 
 | #endif  // HWAES_ECB | 
 |  | 
 | EVP_ECB_CIPHER_FUNCTION(128) | 
 | EVP_ECB_CIPHER_FUNCTION(192) | 
 | EVP_ECB_CIPHER_FUNCTION(256) | 
 |  | 
 |  | 
 | #define EVP_AEAD_AES_GCM_TAG_LEN 16 | 
 |  | 
 | namespace { | 
 | struct aead_aes_gcm_ctx { | 
 |   GCM128_KEY key; | 
 | }; | 
 | }  // namespace | 
 |  | 
 | static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx, | 
 |                                   size_t *out_tag_len, const uint8_t *key, | 
 |                                   size_t key_len, size_t tag_len) { | 
 |   const size_t key_bits = key_len * 8; | 
 |   if (key_bits != 128 && key_bits != 192 && key_bits != 256) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
 |     return 0;  // EVP_AEAD_CTX_init should catch this. | 
 |   } | 
 |  | 
 |   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
 |     tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   } | 
 |  | 
 |   if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CRYPTO_gcm128_init_aes_key(&gcm_ctx->key, key, key_len); | 
 |   *out_tag_len = tag_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= | 
 |                   sizeof(struct aead_aes_gcm_ctx), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= | 
 |                   alignof(struct aead_aes_gcm_ctx), | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                              size_t key_len, size_t requested_tag_len) { | 
 |   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; | 
 |  | 
 |   size_t actual_tag_len; | 
 |   if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len, | 
 |                               requested_tag_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ctx->tag_len = actual_tag_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {} | 
 |  | 
 | static int aead_aes_gcm_seal_scatter_impl( | 
 |     const struct aead_aes_gcm_ctx *gcm_ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len, size_t tag_len) { | 
 |   if (extra_in_len + tag_len < tag_len) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |   if (max_out_tag_len < extra_in_len + tag_len) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |   if (nonce_len == 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const GCM128_KEY *key = &gcm_ctx->key; | 
 |   GCM128_CONTEXT gcm; | 
 |   CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); | 
 |  | 
 |   if (ad_len > 0 && !CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!CRYPTO_gcm128_encrypt(key, &gcm, in, out, in_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (extra_in_len > 0 && | 
 |       !CRYPTO_gcm128_encrypt(key, &gcm, extra_in, out_tag, extra_in_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CRYPTO_gcm128_tag(key, &gcm, out_tag + extra_in_len, tag_len); | 
 |   *out_tag_len = tag_len + extra_in_len; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_seal_scatter( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
 |   const struct aead_aes_gcm_ctx *gcm_ctx = | 
 |       (const struct aead_aes_gcm_ctx *)&ctx->state; | 
 |   return aead_aes_gcm_seal_scatter_impl( | 
 |       gcm_ctx, out, out_tag, out_tag_len, max_out_tag_len, nonce, nonce_len, in, | 
 |       in_len, extra_in, extra_in_len, ad, ad_len, ctx->tag_len); | 
 | } | 
 |  | 
 | static int aead_aes_gcm_open_gather_impl(const struct aead_aes_gcm_ctx *gcm_ctx, | 
 |                                          uint8_t *out, const uint8_t *nonce, | 
 |                                          size_t nonce_len, const uint8_t *in, | 
 |                                          size_t in_len, const uint8_t *in_tag, | 
 |                                          size_t in_tag_len, const uint8_t *ad, | 
 |                                          size_t ad_len, size_t tag_len) { | 
 |   uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN]; | 
 |  | 
 |   if (nonce_len == 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_tag_len != tag_len) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const GCM128_KEY *key = &gcm_ctx->key; | 
 |   GCM128_CONTEXT gcm; | 
 |   CRYPTO_gcm128_init_ctx(key, &gcm, nonce, nonce_len); | 
 |  | 
 |   if (!CRYPTO_gcm128_aad(key, &gcm, ad, ad_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!CRYPTO_gcm128_decrypt(key, &gcm, in, out, in_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   CRYPTO_gcm128_tag(key, &gcm, tag, tag_len); | 
 |   if (CRYPTO_memcmp(tag, in_tag, tag_len) != 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                                     const uint8_t *nonce, size_t nonce_len, | 
 |                                     const uint8_t *in, size_t in_len, | 
 |                                     const uint8_t *in_tag, size_t in_tag_len, | 
 |                                     const uint8_t *ad, size_t ad_len) { | 
 |   struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *)&ctx->state; | 
 |   if (!aead_aes_gcm_open_gather_impl(gcm_ctx, out, nonce, nonce_len, in, in_len, | 
 |                                      in_tag, in_tag_len, ad, ad_len, | 
 |                                      ctx->tag_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   AEAD_GCM_verify_service_indicator(ctx); | 
 |   return 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 16; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 24; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 32; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_init_randnonce(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                        size_t key_len, | 
 |                                        size_t requested_tag_len) { | 
 |   if (requested_tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
 |     if (requested_tag_len < AES_GCM_NONCE_LENGTH) { | 
 |       OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |       return 0; | 
 |     } | 
 |     requested_tag_len -= AES_GCM_NONCE_LENGTH; | 
 |   } | 
 |  | 
 |   if (!aead_aes_gcm_init(ctx, key, key_len, requested_tag_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ctx->tag_len += AES_GCM_NONCE_LENGTH; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_seal_scatter_randnonce( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *external_nonce, | 
 |     size_t external_nonce_len, const uint8_t *in, size_t in_len, | 
 |     const uint8_t *extra_in, size_t extra_in_len, const uint8_t *ad, | 
 |     size_t ad_len) { | 
 |   if (external_nonce_len != 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t nonce[AES_GCM_NONCE_LENGTH]; | 
 |   if (max_out_tag_len < sizeof(nonce)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // |BCM_rand_bytes| calls within the fipsmodule should be wrapped with state | 
 |   // lock functions to avoid updating the service indicator with the DRBG | 
 |   // functions. | 
 |   FIPS_service_indicator_lock_state(); | 
 |   BCM_rand_bytes(nonce, sizeof(nonce)); | 
 |   FIPS_service_indicator_unlock_state(); | 
 |  | 
 |   const struct aead_aes_gcm_ctx *gcm_ctx = | 
 |       (const struct aead_aes_gcm_ctx *)&ctx->state; | 
 |   if (!aead_aes_gcm_seal_scatter_impl(gcm_ctx, out, out_tag, out_tag_len, | 
 |                                       max_out_tag_len - AES_GCM_NONCE_LENGTH, | 
 |                                       nonce, sizeof(nonce), in, in_len, | 
 |                                       extra_in, extra_in_len, ad, ad_len, | 
 |                                       ctx->tag_len - AES_GCM_NONCE_LENGTH)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   assert(*out_tag_len + sizeof(nonce) <= max_out_tag_len); | 
 |   memcpy(out_tag + *out_tag_len, nonce, sizeof(nonce)); | 
 |   *out_tag_len += sizeof(nonce); | 
 |  | 
 |   AEAD_GCM_verify_service_indicator(ctx); | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_open_gather_randnonce( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *external_nonce, | 
 |     size_t external_nonce_len, const uint8_t *in, size_t in_len, | 
 |     const uint8_t *in_tag, size_t in_tag_len, const uint8_t *ad, | 
 |     size_t ad_len) { | 
 |   if (external_nonce_len != 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (in_tag_len < AES_GCM_NONCE_LENGTH) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |   const uint8_t *nonce = in_tag + in_tag_len - AES_GCM_NONCE_LENGTH; | 
 |  | 
 |   const struct aead_aes_gcm_ctx *gcm_ctx = | 
 |       (const struct aead_aes_gcm_ctx *)&ctx->state; | 
 |   if (!aead_aes_gcm_open_gather_impl( | 
 |           gcm_ctx, out, nonce, AES_GCM_NONCE_LENGTH, in, in_len, in_tag, | 
 |           in_tag_len - AES_GCM_NONCE_LENGTH, ad, ad_len, | 
 |           ctx->tag_len - AES_GCM_NONCE_LENGTH)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   AEAD_GCM_verify_service_indicator(ctx); | 
 |   return 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_randnonce) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 16; | 
 |   out->nonce_len = 0; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_init_randnonce; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; | 
 |   out->open_gather = aead_aes_gcm_open_gather_randnonce; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_randnonce) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 32; | 
 |   out->nonce_len = 0; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN + AES_GCM_NONCE_LENGTH; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_init_randnonce; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_seal_scatter_randnonce; | 
 |   out->open_gather = aead_aes_gcm_open_gather_randnonce; | 
 | } | 
 |  | 
 | namespace { | 
 | struct aead_aes_gcm_tls12_ctx { | 
 |   struct aead_aes_gcm_ctx gcm_ctx; | 
 |   uint64_t min_next_nonce; | 
 | }; | 
 | }  // namespace | 
 |  | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= | 
 |                   sizeof(struct aead_aes_gcm_tls12_ctx), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= | 
 |                   alignof(struct aead_aes_gcm_tls12_ctx), | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                    size_t key_len, size_t requested_tag_len) { | 
 |   struct aead_aes_gcm_tls12_ctx *gcm_ctx = | 
 |       (struct aead_aes_gcm_tls12_ctx *)&ctx->state; | 
 |  | 
 |   gcm_ctx->min_next_nonce = 0; | 
 |  | 
 |   size_t actual_tag_len; | 
 |   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, | 
 |                               requested_tag_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ctx->tag_len = actual_tag_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_tls12_seal_scatter( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
 |   struct aead_aes_gcm_tls12_ctx *gcm_ctx = | 
 |       (struct aead_aes_gcm_tls12_ctx *)&ctx->state; | 
 |  | 
 |   if (nonce_len != AES_GCM_NONCE_LENGTH) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The given nonces must be strictly monotonically increasing. | 
 |   uint64_t given_counter = | 
 |       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); | 
 |   if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   gcm_ctx->min_next_nonce = given_counter + 1; | 
 |  | 
 |   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, | 
 |                                  max_out_tag_len, nonce, nonce_len, in, in_len, | 
 |                                  extra_in, extra_in_len, ad, ad_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   AEAD_GCM_verify_service_indicator(ctx); | 
 |   return 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 16; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_tls12_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 32; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_tls12_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_tls12_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | namespace { | 
 | struct aead_aes_gcm_tls13_ctx { | 
 |   struct aead_aes_gcm_ctx gcm_ctx; | 
 |   uint64_t min_next_nonce; | 
 |   uint64_t mask; | 
 |   uint8_t first; | 
 | }; | 
 | }  // namespace | 
 |  | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= | 
 |                   sizeof(struct aead_aes_gcm_tls13_ctx), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= | 
 |                   alignof(struct aead_aes_gcm_tls13_ctx), | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                    size_t key_len, size_t requested_tag_len) { | 
 |   struct aead_aes_gcm_tls13_ctx *gcm_ctx = | 
 |       (struct aead_aes_gcm_tls13_ctx *)&ctx->state; | 
 |  | 
 |   gcm_ctx->min_next_nonce = 0; | 
 |   gcm_ctx->first = 1; | 
 |  | 
 |   size_t actual_tag_len; | 
 |   if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len, | 
 |                               requested_tag_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   ctx->tag_len = actual_tag_len; | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_tls13_seal_scatter( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
 |   struct aead_aes_gcm_tls13_ctx *gcm_ctx = | 
 |       (struct aead_aes_gcm_tls13_ctx *)&ctx->state; | 
 |  | 
 |   if (nonce_len != AES_GCM_NONCE_LENGTH) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The given nonces must be strictly monotonically increasing. See | 
 |   // https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3 | 
 |   // nonce construction. | 
 |   uint64_t given_counter = | 
 |       CRYPTO_load_u64_be(nonce + nonce_len - sizeof(uint64_t)); | 
 |  | 
 |   if (gcm_ctx->first) { | 
 |     // In the first call the sequence number will be zero and therefore the | 
 |     // given nonce will be 0 ^ mask = mask. | 
 |     gcm_ctx->mask = given_counter; | 
 |     gcm_ctx->first = 0; | 
 |   } | 
 |   given_counter ^= gcm_ctx->mask; | 
 |  | 
 |   if (given_counter == UINT64_MAX || given_counter < gcm_ctx->min_next_nonce) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   gcm_ctx->min_next_nonce = given_counter + 1; | 
 |  | 
 |   if (!aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len, | 
 |                                  max_out_tag_len, nonce, nonce_len, in, in_len, | 
 |                                  extra_in, extra_in_len, ad, ad_len)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   AEAD_GCM_verify_service_indicator(ctx); | 
 |   return 1; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 16; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_tls13_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) { | 
 |   memset(out, 0, sizeof(EVP_AEAD)); | 
 |  | 
 |   out->key_len = 32; | 
 |   out->nonce_len = AES_GCM_NONCE_LENGTH; | 
 |   out->overhead = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN; | 
 |   out->seal_scatter_supports_extra_in = 1; | 
 |  | 
 |   out->init = aead_aes_gcm_tls13_init; | 
 |   out->cleanup = aead_aes_gcm_cleanup; | 
 |   out->seal_scatter = aead_aes_gcm_tls13_seal_scatter; | 
 |   out->open_gather = aead_aes_gcm_open_gather; | 
 | } | 
 |  | 
 | int EVP_has_aes_hardware(void) { | 
 | #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) | 
 |   return hwaes_capable() && crypto_gcm_clmul_enabled(); | 
 | #elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64) | 
 |   return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable(); | 
 | #else | 
 |   return 0; | 
 | #endif | 
 | } | 
 |  | 
 | OPENSSL_MSVC_PRAGMA(warning(pop)) |