|  | /* Copyright (c) 2018, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include "handshake_util.h" | 
|  |  | 
|  | #include <assert.h> | 
|  | #if defined(HANDSHAKER_SUPPORTED) | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <spawn.h> | 
|  | #include <sys/socket.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/wait.h> | 
|  | #include <unistd.h> | 
|  | #endif | 
|  |  | 
|  | #include <functional> | 
|  | #include <map> | 
|  | #include <vector> | 
|  |  | 
|  | #include "async_bio.h" | 
|  | #include "packeted_bio.h" | 
|  | #include "test_config.h" | 
|  | #include "test_state.h" | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | using namespace bssl; | 
|  |  | 
|  | bool RetryAsync(SSL *ssl, int ret) { | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | TestState *test_state = GetTestState(ssl); | 
|  | if (ret >= 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int ssl_err = SSL_get_error(ssl, ret); | 
|  | if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE && config->renegotiate_explicit) { | 
|  | test_state->explicit_renegotiates++; | 
|  | return SSL_renegotiate(ssl); | 
|  | } | 
|  |  | 
|  | if (test_state->quic_transport && ssl_err == SSL_ERROR_WANT_READ) { | 
|  | return test_state->quic_transport->ReadHandshake(); | 
|  | } | 
|  |  | 
|  | if (!config->async) { | 
|  | // Only asynchronous tests should trigger other retries. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (test_state->packeted_bio != nullptr && | 
|  | PacketedBioAdvanceClock(test_state->packeted_bio)) { | 
|  | // The DTLS retransmit logic silently ignores write failures. So the test | 
|  | // may progress, allow writes through synchronously. | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, false); | 
|  | int timeout_ret = DTLSv1_handle_timeout(ssl); | 
|  | AsyncBioEnforceWriteQuota(test_state->async_bio, true); | 
|  |  | 
|  | if (timeout_ret < 0) { | 
|  | fprintf(stderr, "Error retransmitting.\n"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // See if we needed to read or write more. If so, allow one byte through on | 
|  | // the appropriate end to maximally stress the state machine. | 
|  | switch (ssl_err) { | 
|  | case SSL_ERROR_WANT_READ: | 
|  | AsyncBioAllowRead(test_state->async_bio, 1); | 
|  | return true; | 
|  | case SSL_ERROR_WANT_WRITE: | 
|  | AsyncBioAllowWrite(test_state->async_bio, 1); | 
|  | return true; | 
|  | case SSL_ERROR_WANT_X509_LOOKUP: | 
|  | test_state->cert_ready = true; | 
|  | return true; | 
|  | case SSL_ERROR_PENDING_SESSION: | 
|  | test_state->session = std::move(test_state->pending_session); | 
|  | return true; | 
|  | case SSL_ERROR_PENDING_CERTIFICATE: | 
|  | test_state->early_callback_ready = true; | 
|  | return true; | 
|  | case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: | 
|  | test_state->private_key_retries++; | 
|  | return true; | 
|  | case SSL_ERROR_WANT_CERTIFICATE_VERIFY: | 
|  | test_state->custom_verify_ready = true; | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | int CheckIdempotentError(const char *name, SSL *ssl, | 
|  | std::function<int()> func) { | 
|  | int ret = func(); | 
|  | int ssl_err = SSL_get_error(ssl, ret); | 
|  | uint32_t err = ERR_peek_error(); | 
|  | if (ssl_err == SSL_ERROR_SSL || ssl_err == SSL_ERROR_ZERO_RETURN) { | 
|  | int ret2 = func(); | 
|  | int ssl_err2 = SSL_get_error(ssl, ret2); | 
|  | uint32_t err2 = ERR_peek_error(); | 
|  | if (ret != ret2 || ssl_err != ssl_err2 || err != err2) { | 
|  | fprintf(stderr, "Repeating %s did not replay the error.\n", name); | 
|  | char buf[256]; | 
|  | ERR_error_string_n(err, buf, sizeof(buf)); | 
|  | fprintf(stderr, "Wanted: %d %d %s\n", ret, ssl_err, buf); | 
|  | ERR_error_string_n(err2, buf, sizeof(buf)); | 
|  | fprintf(stderr, "Got:    %d %d %s\n", ret2, ssl_err2, buf); | 
|  | // runner treats exit code 90 as always failing. Otherwise, it may | 
|  | // accidentally consider the result an expected protocol failure. | 
|  | exit(90); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined(HANDSHAKER_SUPPORTED) | 
|  |  | 
|  | // MoveBIOs moves the |BIO|s of |src| to |dst|.  It is used for handoff. | 
|  | static void MoveBIOs(SSL *dest, SSL *src) { | 
|  | BIO *rbio = SSL_get_rbio(src); | 
|  | BIO_up_ref(rbio); | 
|  | SSL_set0_rbio(dest, rbio); | 
|  |  | 
|  | BIO *wbio = SSL_get_wbio(src); | 
|  | BIO_up_ref(wbio); | 
|  | SSL_set0_wbio(dest, wbio); | 
|  |  | 
|  | SSL_set0_rbio(src, nullptr); | 
|  | SSL_set0_wbio(src, nullptr); | 
|  | } | 
|  |  | 
|  | static bool HandoffReady(SSL *ssl, int ret) { | 
|  | return ret < 0 && SSL_get_error(ssl, ret) == SSL_ERROR_HANDOFF; | 
|  | } | 
|  |  | 
|  | static ssize_t read_eintr(int fd, void *out, size_t len) { | 
|  | ssize_t ret; | 
|  | do { | 
|  | ret = read(fd, out, len); | 
|  | } while (ret < 0 && errno == EINTR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t write_eintr(int fd, const void *in, size_t len) { | 
|  | ssize_t ret; | 
|  | do { | 
|  | ret = write(fd, in, len); | 
|  | } while (ret < 0 && errno == EINTR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t waitpid_eintr(pid_t pid, int *wstatus, int options) { | 
|  | pid_t ret; | 
|  | do { | 
|  | ret = waitpid(pid, wstatus, options); | 
|  | } while (ret < 0 && errno == EINTR); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Proxy relays data between |socket|, which is connected to the client, and the | 
|  | // handshaker, which is connected to the numerically specified file descriptors, | 
|  | // until the handshaker returns control. | 
|  | static bool Proxy(BIO *socket, bool async, int control, int rfd, int wfd) { | 
|  | for (;;) { | 
|  | fd_set rfds; | 
|  | FD_ZERO(&rfds); | 
|  | FD_SET(wfd, &rfds); | 
|  | FD_SET(control, &rfds); | 
|  | int fd_max = wfd > control ? wfd : control; | 
|  | if (select(fd_max + 1, &rfds, nullptr, nullptr, nullptr) == -1) { | 
|  | perror("select"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char buf[64]; | 
|  | ssize_t bytes; | 
|  | if (FD_ISSET(wfd, &rfds) && | 
|  | (bytes = read_eintr(wfd, buf, sizeof(buf))) > 0) { | 
|  | char *b = buf; | 
|  | while (bytes) { | 
|  | int written = BIO_write(socket, b, bytes); | 
|  | if (!written) { | 
|  | fprintf(stderr, "BIO_write wrote nothing\n"); | 
|  | return false; | 
|  | } | 
|  | if (written < 0) { | 
|  | if (async) { | 
|  | AsyncBioAllowWrite(socket, 1); | 
|  | continue; | 
|  | } | 
|  | fprintf(stderr, "BIO_write failed\n"); | 
|  | return false; | 
|  | } | 
|  | b += written; | 
|  | bytes -= written; | 
|  | } | 
|  | // Flush all pending data from the handshaker to the client before | 
|  | // considering control messages. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!FD_ISSET(control, &rfds)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | char msg; | 
|  | if (read_eintr(control, &msg, 1) != 1) { | 
|  | perror("read"); | 
|  | return false; | 
|  | } | 
|  | switch (msg) { | 
|  | case kControlMsgDone: | 
|  | return true; | 
|  | case kControlMsgError: | 
|  | return false; | 
|  | case kControlMsgWantRead: | 
|  | break; | 
|  | default: | 
|  | fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto proxy_data = [&](uint8_t *out, size_t len) -> bool { | 
|  | if (async) { | 
|  | AsyncBioAllowRead(socket, len); | 
|  | } | 
|  |  | 
|  | while (len > 0) { | 
|  | int bytes_read = BIO_read(socket, out, len); | 
|  | if (bytes_read < 1) { | 
|  | fprintf(stderr, "BIO_read failed\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ssize_t bytes_written = write_eintr(rfd, out, bytes_read); | 
|  | if (bytes_written == -1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  | if (bytes_written != bytes_read) { | 
|  | fprintf(stderr, "short write (%zd of %d bytes)\n", bytes_written, | 
|  | bytes_read); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | len -= bytes_read; | 
|  | out += bytes_read; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | // Process one SSL record at a time.  That way, we don't send the handshaker | 
|  | // anything it doesn't want to process, e.g. early data. | 
|  | uint8_t header[SSL3_RT_HEADER_LENGTH]; | 
|  | if (!proxy_data(header, sizeof(header))) { | 
|  | return false; | 
|  | } | 
|  | if (header[1] != 3) { | 
|  | fprintf(stderr, "bad header\n"); | 
|  | return false; | 
|  | } | 
|  | size_t remaining = (header[3] << 8) + header[4]; | 
|  | while (remaining > 0) { | 
|  | uint8_t readbuf[64]; | 
|  | size_t len = remaining > sizeof(readbuf) ? sizeof(readbuf) : remaining; | 
|  | if (!proxy_data(readbuf, len)) { | 
|  | return false; | 
|  | } | 
|  | remaining -= len; | 
|  | } | 
|  |  | 
|  | // The handshaker blocks on the control channel, so we have to signal | 
|  | // it that the data have been written. | 
|  | msg = kControlMsgWriteCompleted; | 
|  | if (write_eintr(control, &msg, 1) != 1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class ScopedFD { | 
|  | public: | 
|  | ScopedFD() : fd_(-1) {} | 
|  | explicit ScopedFD(int fd) : fd_(fd) {} | 
|  | ~ScopedFD() { Reset(); } | 
|  |  | 
|  | ScopedFD(ScopedFD &&other) { *this = std::move(other); } | 
|  | ScopedFD &operator=(ScopedFD &&other) { | 
|  | Reset(other.fd_); | 
|  | other.fd_ = -1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | int fd() const { return fd_; } | 
|  |  | 
|  | void Reset(int fd = -1) { | 
|  | if (fd_ >= 0) { | 
|  | close(fd_); | 
|  | } | 
|  | fd_ = fd; | 
|  | } | 
|  |  | 
|  | private: | 
|  | int fd_; | 
|  | }; | 
|  |  | 
|  | class ScopedProcess { | 
|  | public: | 
|  | ScopedProcess() : pid_(-1) {} | 
|  | ~ScopedProcess() { Reset(); } | 
|  |  | 
|  | ScopedProcess(ScopedProcess &&other) { *this = std::move(other); } | 
|  | ScopedProcess &operator=(ScopedProcess &&other) { | 
|  | Reset(other.pid_); | 
|  | other.pid_ = -1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | pid_t pid() const { return pid_; } | 
|  |  | 
|  | void Reset(pid_t pid = -1) { | 
|  | if (pid_ >= 0) { | 
|  | kill(pid_, SIGTERM); | 
|  | int unused; | 
|  | Wait(&unused); | 
|  | } | 
|  | pid_ = pid; | 
|  | } | 
|  |  | 
|  | bool Wait(int *out_status) { | 
|  | if (pid_ < 0) { | 
|  | return false; | 
|  | } | 
|  | if (waitpid_eintr(pid_, out_status, 0) != pid_) { | 
|  | return false; | 
|  | } | 
|  | pid_ = -1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | pid_t pid_; | 
|  | }; | 
|  |  | 
|  | class FileActionsDestroyer { | 
|  | public: | 
|  | explicit FileActionsDestroyer(posix_spawn_file_actions_t *actions) | 
|  | : actions_(actions) {} | 
|  | ~FileActionsDestroyer() { posix_spawn_file_actions_destroy(actions_); } | 
|  | FileActionsDestroyer(const FileActionsDestroyer &) = delete; | 
|  | FileActionsDestroyer &operator=(const FileActionsDestroyer &) = delete; | 
|  |  | 
|  | private: | 
|  | posix_spawn_file_actions_t *actions_; | 
|  | }; | 
|  |  | 
|  | // StartHandshaker starts the handshaker process and, on success, returns a | 
|  | // handle to the process in |*out|. It sets |*out_control| to a control pipe to | 
|  | // the process. |map_fds| maps from desired fd number in the child process to | 
|  | // the source fd in the calling process. |close_fds| is the list of additional | 
|  | // fds to close, which may overlap with |map_fds|. Other than stdin, stdout, and | 
|  | // stderr, the status of fds not listed in either set is undefined. | 
|  | static bool StartHandshaker(ScopedProcess *out, ScopedFD *out_control, | 
|  | const TestConfig *config, bool is_resume, | 
|  | std::map<int, int> map_fds, | 
|  | std::vector<int> close_fds) { | 
|  | if (config->handshaker_path.empty()) { | 
|  | fprintf(stderr, "no -handshaker-path specified\n"); | 
|  | return false; | 
|  | } | 
|  | struct stat dummy; | 
|  | if (stat(config->handshaker_path.c_str(), &dummy) == -1) { | 
|  | perror(config->handshaker_path.c_str()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<const char *> args; | 
|  | args.push_back(config->handshaker_path.c_str()); | 
|  | static const char kResumeFlag[] = "-handshaker-resume"; | 
|  | if (is_resume) { | 
|  | args.push_back(kResumeFlag); | 
|  | } | 
|  | // config->handshaker_args omits argv[0]. | 
|  | for (const char *arg : config->handshaker_args) { | 
|  | args.push_back(arg); | 
|  | } | 
|  | args.push_back(nullptr); | 
|  |  | 
|  | // A datagram socket guarantees that writes are all-or-nothing. | 
|  | int control[2]; | 
|  | if (socketpair(AF_LOCAL, SOCK_DGRAM, 0, control) != 0) { | 
|  | perror("socketpair"); | 
|  | return false; | 
|  | } | 
|  | ScopedFD scoped_control0(control[0]), scoped_control1(control[1]); | 
|  | close_fds.push_back(control[0]); | 
|  | map_fds[kFdControl] = control[1]; | 
|  |  | 
|  | posix_spawn_file_actions_t actions; | 
|  | if (posix_spawn_file_actions_init(&actions) != 0) { | 
|  | return false; | 
|  | } | 
|  | FileActionsDestroyer actions_destroyer(&actions); | 
|  | for (int fd : close_fds) { | 
|  | if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (!map_fds.empty()) { | 
|  | int max_fd = STDERR_FILENO; | 
|  | for (const auto &pair : map_fds) { | 
|  | max_fd = std::max(max_fd, pair.first); | 
|  | max_fd = std::max(max_fd, pair.second); | 
|  | } | 
|  | // |map_fds| may contain cycles, so make a copy of all the source fds. | 
|  | // |posix_spawn| can only use |dup2|, not |dup|, so we assume |max_fd| is | 
|  | // the last fd we care about inheriting. |temp_fds| maps from fd number in | 
|  | // the parent process to a temporary fd number in the child process. | 
|  | std::map<int, int> temp_fds; | 
|  | int next_fd = max_fd + 1; | 
|  | for (const auto &pair : map_fds) { | 
|  | if (temp_fds.count(pair.second)) { | 
|  | continue; | 
|  | } | 
|  | temp_fds[pair.second] = next_fd; | 
|  | if (posix_spawn_file_actions_adddup2(&actions, pair.second, next_fd) != | 
|  | 0 || | 
|  | posix_spawn_file_actions_addclose(&actions, pair.second) != 0) { | 
|  | return false; | 
|  | } | 
|  | next_fd++; | 
|  | } | 
|  | for (const auto &pair : map_fds) { | 
|  | if (posix_spawn_file_actions_adddup2(&actions, temp_fds[pair.second], | 
|  | pair.first) != 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // Clean up temporary fds. | 
|  | for (int fd = max_fd + 1; fd < next_fd; fd++) { | 
|  | if (posix_spawn_file_actions_addclose(&actions, fd) != 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | fflush(stdout); | 
|  | fflush(stderr); | 
|  |  | 
|  | // MSan doesn't know that |posix_spawn| initializes its output, so initialize | 
|  | // it to -1. | 
|  | pid_t pid = -1; | 
|  | if (posix_spawn(&pid, args[0], &actions, nullptr, | 
|  | const_cast<char *const *>(args.data()), environ) != 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out->Reset(pid); | 
|  | *out_control = std::move(scoped_control0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // RunHandshaker forks and execs the handshaker binary, handing off |input|, | 
|  | // and, after proxying some amount of handshake traffic, handing back |out|. | 
|  | static bool RunHandshaker(BIO *bio, const TestConfig *config, bool is_resume, | 
|  | Span<const uint8_t> input, | 
|  | std::vector<uint8_t> *out) { | 
|  | int rfd[2], wfd[2]; | 
|  | // We use pipes, rather than some other mechanism, for their buffers.  During | 
|  | // the handshake, this process acts as a dumb proxy until receiving the | 
|  | // handback signal, which arrives asynchronously.  The race condition means | 
|  | // that this process could incorrectly proxy post-handshake data from the | 
|  | // client to the handshaker. | 
|  | // | 
|  | // To avoid this, this process never proxies data to the handshaker that the | 
|  | // handshaker has not explicitly requested as a result of hitting | 
|  | // |SSL_ERROR_WANT_READ|.  Pipes allow the data to sit in a buffer while the | 
|  | // two processes synchronize over the |control| channel. | 
|  | if (pipe(rfd) != 0) { | 
|  | perror("pipe"); | 
|  | return false; | 
|  | } | 
|  | ScopedFD rfd0_closer(rfd[0]), rfd1_closer(rfd[1]); | 
|  |  | 
|  | if (pipe(wfd) != 0) { | 
|  | perror("pipe"); | 
|  | return false; | 
|  | } | 
|  | ScopedFD wfd0_closer(wfd[0]), wfd1_closer(wfd[1]); | 
|  |  | 
|  | ScopedProcess handshaker; | 
|  | ScopedFD control; | 
|  | if (!StartHandshaker( | 
|  | &handshaker, &control, config, is_resume, | 
|  | {{kFdProxyToHandshaker, rfd[0]}, {kFdHandshakerToProxy, wfd[1]}}, | 
|  | {rfd[1], wfd[0]})) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | rfd0_closer.Reset(); | 
|  | wfd1_closer.Reset(); | 
|  |  | 
|  | if (write_eintr(control.fd(), input.data(), input.size()) == -1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  | bool ok = Proxy(bio, config->async, control.fd(), rfd[1], wfd[0]); | 
|  | int wstatus; | 
|  | if (!handshaker.Wait(&wstatus)) { | 
|  | perror("waitpid"); | 
|  | return false; | 
|  | } | 
|  | if (ok && wstatus) { | 
|  | fprintf(stderr, "handshaker exited irregularly\n"); | 
|  | return false; | 
|  | } | 
|  | if (!ok) { | 
|  | return false;  // This is a "good", i.e. expected, error. | 
|  | } | 
|  |  | 
|  | constexpr size_t kBufSize = 1024 * 1024; | 
|  | std::vector<uint8_t> buf(kBufSize); | 
|  | ssize_t len = read_eintr(control.fd(), buf.data(), buf.size()); | 
|  | if (len == -1) { | 
|  | perror("read"); | 
|  | return false; | 
|  | } | 
|  | buf.resize(len); | 
|  | *out = std::move(buf); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool RequestHandshakeHint(const TestConfig *config, bool is_resume, | 
|  | Span<const uint8_t> input, bool *out_has_hints, | 
|  | std::vector<uint8_t> *out_hints) { | 
|  | ScopedProcess handshaker; | 
|  | ScopedFD control; | 
|  | if (!StartHandshaker(&handshaker, &control, config, is_resume, {}, {})) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (write_eintr(control.fd(), input.data(), input.size()) == -1) { | 
|  | perror("write"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | char msg; | 
|  | if (read_eintr(control.fd(), &msg, 1) != 1) { | 
|  | perror("read"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | switch (msg) { | 
|  | case kControlMsgDone: { | 
|  | constexpr size_t kBufSize = 1024 * 1024; | 
|  | out_hints->resize(kBufSize); | 
|  | ssize_t len = | 
|  | read_eintr(control.fd(), out_hints->data(), out_hints->size()); | 
|  | if (len == -1) { | 
|  | perror("read"); | 
|  | return false; | 
|  | } | 
|  | out_hints->resize(len); | 
|  | *out_has_hints = true; | 
|  | break; | 
|  | } | 
|  | case kControlMsgError: | 
|  | *out_has_hints = false; | 
|  | break; | 
|  | default: | 
|  | fprintf(stderr, "Unknown control message from handshaker: %c\n", msg); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int wstatus; | 
|  | if (!handshaker.Wait(&wstatus)) { | 
|  | perror("waitpid"); | 
|  | return false; | 
|  | } | 
|  | if (wstatus) { | 
|  | fprintf(stderr, "handshaker exited irregularly\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // PrepareHandoff accepts the |ClientHello| from |ssl| and serializes state to | 
|  | // be passed to the handshaker.  The serialized state includes both the SSL | 
|  | // handoff, as well test-related state. | 
|  | static bool PrepareHandoff(SSL *ssl, SettingsWriter *writer, | 
|  | std::vector<uint8_t> *out_handoff) { | 
|  | SSL_set_handoff_mode(ssl, 1); | 
|  |  | 
|  | const TestConfig *config = GetTestConfig(ssl); | 
|  | int ret = -1; | 
|  | do { | 
|  | ret = CheckIdempotentError( | 
|  | "SSL_do_handshake", ssl, | 
|  | [&]() -> int { return SSL_do_handshake(ssl); }); | 
|  | } while (!HandoffReady(ssl, ret) && | 
|  | config->async && | 
|  | RetryAsync(ssl, ret)); | 
|  | if (!HandoffReady(ssl, ret)) { | 
|  | fprintf(stderr, "Handshake failed while waiting for handoff.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ScopedCBB cbb; | 
|  | SSL_CLIENT_HELLO hello; | 
|  | if (!CBB_init(cbb.get(), 512) || | 
|  | !SSL_serialize_handoff(ssl, cbb.get(), &hello) || | 
|  | !writer->WriteHandoff({CBB_data(cbb.get()), CBB_len(cbb.get())}) || | 
|  | !SerializeContextState(SSL_get_SSL_CTX(ssl), cbb.get()) || | 
|  | !GetTestState(ssl)->Serialize(cbb.get())) { | 
|  | fprintf(stderr, "Handoff serialisation failed.\n"); | 
|  | return false; | 
|  | } | 
|  | out_handoff->assign(CBB_data(cbb.get()), | 
|  | CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // DoSplitHandshake delegates the SSL handshake to a separate process, called | 
|  | // the handshaker.  This process proxies I/O between the handshaker and the | 
|  | // client, using the |BIO| from |ssl|.  After a successful handshake, |ssl| is | 
|  | // replaced with a new |SSL| object, in a way that is intended to be invisible | 
|  | // to the caller. | 
|  | bool DoSplitHandshake(UniquePtr<SSL> *ssl, SettingsWriter *writer, | 
|  | bool is_resume) { | 
|  | assert(SSL_get_rbio(ssl->get()) == SSL_get_wbio(ssl->get())); | 
|  | std::vector<uint8_t> handshaker_input; | 
|  | const TestConfig *config = GetTestConfig(ssl->get()); | 
|  | // out is the response from the handshaker, which includes a serialized | 
|  | // handback message, but also serialized updates to the |TestState|. | 
|  | std::vector<uint8_t> out; | 
|  | if (!PrepareHandoff(ssl->get(), writer, &handshaker_input) || | 
|  | !RunHandshaker(SSL_get_rbio(ssl->get()), config, is_resume, | 
|  | handshaker_input, &out)) { | 
|  | fprintf(stderr, "Handoff failed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SSL_CTX *ctx = SSL_get_SSL_CTX(ssl->get()); | 
|  | UniquePtr<SSL> ssl_handback = config->NewSSL(ctx, nullptr, nullptr); | 
|  | if (!ssl_handback) { | 
|  | return false; | 
|  | } | 
|  | CBS output, handback; | 
|  | CBS_init(&output, out.data(), out.size()); | 
|  | if (!CBS_get_u24_length_prefixed(&output, &handback) || | 
|  | !DeserializeContextState(&output, ctx) || | 
|  | !SetTestState(ssl_handback.get(), TestState::Deserialize(&output, ctx)) || | 
|  | !GetTestState(ssl_handback.get()) || !writer->WriteHandback(handback) || | 
|  | !SSL_apply_handback(ssl_handback.get(), handback)) { | 
|  | fprintf(stderr, "Handback failed.\n"); | 
|  | return false; | 
|  | } | 
|  | MoveBIOs(ssl_handback.get(), ssl->get()); | 
|  | GetTestState(ssl_handback.get())->async_bio = | 
|  | GetTestState(ssl->get())->async_bio; | 
|  | GetTestState(ssl->get())->async_bio = nullptr; | 
|  |  | 
|  | *ssl = std::move(ssl_handback); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GetHandshakeHint(SSL *ssl, SettingsWriter *writer, bool is_resume, | 
|  | const SSL_CLIENT_HELLO *client_hello) { | 
|  | ScopedCBB input; | 
|  | CBB child; | 
|  | if (!CBB_init(input.get(), client_hello->client_hello_len + 256) || | 
|  | !CBB_add_u24_length_prefixed(input.get(), &child) || | 
|  | !CBB_add_bytes(&child, client_hello->client_hello, | 
|  | client_hello->client_hello_len) || | 
|  | !CBB_add_u24_length_prefixed(input.get(), &child) || | 
|  | !SSL_serialize_capabilities(ssl, &child) ||  // | 
|  | !CBB_flush(input.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool has_hints; | 
|  | std::vector<uint8_t> hints; | 
|  | if (!RequestHandshakeHint( | 
|  | GetTestConfig(ssl), is_resume, | 
|  | MakeConstSpan(CBB_data(input.get()), CBB_len(input.get())), | 
|  | &has_hints, &hints)) { | 
|  | return false; | 
|  | } | 
|  | if (has_hints && | 
|  | (!writer->WriteHints(hints) || | 
|  | !SSL_set_handshake_hints(ssl, hints.data(), hints.size()))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif  // defined(HANDSHAKER_SUPPORTED) |