| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL | 
 |  * project 1999-2004. | 
 |  */ | 
 | /* ==================================================================== | 
 |  * Copyright (c) 1999 The OpenSSL Project.  All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * 3. All advertising materials mentioning features or use of this | 
 |  *    software must display the following acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
 |  *    endorse or promote products derived from this software without | 
 |  *    prior written permission. For written permission, please contact | 
 |  *    licensing@OpenSSL.org. | 
 |  * | 
 |  * 5. Products derived from this software may not be called "OpenSSL" | 
 |  *    nor may "OpenSSL" appear in their names without prior written | 
 |  *    permission of the OpenSSL Project. | 
 |  * | 
 |  * 6. Redistributions of any form whatsoever must retain the following | 
 |  *    acknowledgment: | 
 |  *    "This product includes software developed by the OpenSSL Project | 
 |  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
 |  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
 |  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
 |  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |  * OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  * ==================================================================== | 
 |  * | 
 |  * This product includes cryptographic software written by Eric Young | 
 |  * (eay@cryptsoft.com).  This product includes software written by Tim | 
 |  * Hudson (tjh@cryptsoft.com). */ | 
 |  | 
 | #include <openssl/pkcs8.h> | 
 |  | 
 | #include <limits.h> | 
 | #include <string.h> | 
 |  | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/mem.h> | 
 | #include <openssl/nid.h> | 
 | #include <openssl/rand.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | // 1.2.840.113549.1.5.12 | 
 | static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                   0x0d, 0x01, 0x05, 0x0c}; | 
 |  | 
 | // 1.2.840.113549.1.5.13 | 
 | static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, | 
 |                                  0x0d, 0x01, 0x05, 0x0d}; | 
 |  | 
 | // 1.2.840.113549.2.7 | 
 | static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, | 
 |                                         0xf7, 0x0d, 0x02, 0x07}; | 
 |  | 
 | // 1.2.840.113549.2.9 | 
 | static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86, | 
 |                                           0xf7, 0x0d, 0x02, 0x09}; | 
 |  | 
 | static const struct { | 
 |   uint8_t oid[9]; | 
 |   uint8_t oid_len; | 
 |   int nid; | 
 |   const EVP_CIPHER *(*cipher_func)(void); | 
 | } kCipherOIDs[] = { | 
 |     // 1.2.840.113549.3.2 | 
 |     {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, | 
 |      8, | 
 |      NID_rc2_cbc, | 
 |      &EVP_rc2_cbc}, | 
 |     // 1.2.840.113549.3.7 | 
 |     {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, | 
 |      8, | 
 |      NID_des_ede3_cbc, | 
 |      &EVP_des_ede3_cbc}, | 
 |     // 2.16.840.1.101.3.4.1.2 | 
 |     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, | 
 |      9, | 
 |      NID_aes_128_cbc, | 
 |      &EVP_aes_128_cbc}, | 
 |     // 2.16.840.1.101.3.4.1.22 | 
 |     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, | 
 |      9, | 
 |      NID_aes_192_cbc, | 
 |      &EVP_aes_192_cbc}, | 
 |     // 2.16.840.1.101.3.4.1.42 | 
 |     {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, | 
 |      9, | 
 |      NID_aes_256_cbc, | 
 |      &EVP_aes_256_cbc}, | 
 | }; | 
 |  | 
 | static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { | 
 |   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { | 
 |     if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) { | 
 |       return kCipherOIDs[i].cipher_func(); | 
 |     } | 
 |   } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | static int add_cipher_oid(CBB *out, int nid) { | 
 |   for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) { | 
 |     if (kCipherOIDs[i].nid == nid) { | 
 |       CBB child; | 
 |       return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) && | 
 |              CBB_add_bytes(&child, kCipherOIDs[i].oid, | 
 |                            kCipherOIDs[i].oid_len) && | 
 |              CBB_flush(out); | 
 |     } | 
 |   } | 
 |  | 
 |   OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); | 
 |   return 0; | 
 | } | 
 |  | 
 | static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, | 
 |                                   const EVP_MD *pbkdf2_md, unsigned iterations, | 
 |                                   const char *pass, size_t pass_len, | 
 |                                   const uint8_t *salt, size_t salt_len, | 
 |                                   const uint8_t *iv, size_t iv_len, int enc) { | 
 |   if (iv_len != EVP_CIPHER_iv_length(cipher)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   uint8_t key[EVP_MAX_KEY_LENGTH]; | 
 |   int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations, | 
 |                               pbkdf2_md, EVP_CIPHER_key_length(cipher), key) && | 
 |             EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc); | 
 |   OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); | 
 |   return ret; | 
 | } | 
 |  | 
 | int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, | 
 |                             const EVP_CIPHER *cipher, unsigned iterations, | 
 |                             const char *pass, size_t pass_len, | 
 |                             const uint8_t *salt, size_t salt_len) { | 
 |   int cipher_nid = EVP_CIPHER_nid(cipher); | 
 |   if (cipher_nid == NID_undef) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Generate a random IV. | 
 |   uint8_t iv[EVP_MAX_IV_LENGTH]; | 
 |   if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // See RFC 2898, appendix A. | 
 |   CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb, | 
 |       iv_cbb; | 
 |   if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) || | 
 |       !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) || | 
 |       !CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) || | 
 |       !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || | 
 |       !CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) || | 
 |       !CBB_add_bytes(&salt_cbb, salt, salt_len) || | 
 |       !CBB_add_asn1_uint64(&kdf_param, iterations) || | 
 |       // Specify a key length for RC2. | 
 |       (cipher_nid == NID_rc2_cbc && | 
 |        !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || | 
 |       // Omit the PRF. We use the default hmacWithSHA1. | 
 |       !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || | 
 |       !add_cipher_oid(&cipher_cbb, cipher_nid) || | 
 |       // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and | 
 |       // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. | 
 |       !CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) || | 
 |       !CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) || | 
 |       !CBB_flush(out)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass, | 
 |                                 pass_len, salt, salt_len, iv, | 
 |                                 EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); | 
 | } | 
 |  | 
 | int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, | 
 |                             const char *pass, size_t pass_len, CBS *param) { | 
 |   CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; | 
 |   if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || | 
 |       CBS_len(param) != 0 || | 
 |       !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || | 
 |       !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || | 
 |       CBS_len(&pbe_param) != 0 || | 
 |       !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Only PBKDF2 is supported. | 
 |   if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // See if we recognise the encryption algorithm. | 
 |   const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); | 
 |   if (cipher == NULL) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Parse the KDF parameters. See RFC 8018, appendix A.2. | 
 |   CBS pbkdf2_params, salt; | 
 |   uint64_t iterations; | 
 |   if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || | 
 |       CBS_len(&kdf) != 0 || | 
 |       !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || | 
 |       !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (!pkcs12_iterations_acceptable(iterations)) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The optional keyLength parameter, if present, must match the key length of | 
 |   // the cipher. | 
 |   if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { | 
 |     uint64_t key_len; | 
 |     if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (key_len != EVP_CIPHER_key_length(cipher)) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   const EVP_MD *md = EVP_sha1(); | 
 |   if (CBS_len(&pbkdf2_params) != 0) { | 
 |     CBS alg_id, prf; | 
 |     if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || | 
 |         !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || | 
 |         CBS_len(&pbkdf2_params) != 0) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { | 
 |       // hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we | 
 |       // match OpenSSL in tolerating it being present. | 
 |       md = EVP_sha1(); | 
 |     } else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) { | 
 |       md = EVP_sha256(); | 
 |     } else { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); | 
 |       return 0; | 
 |     } | 
 |  | 
 |     // All supported PRFs use a NULL parameter. | 
 |     CBS null; | 
 |     if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || | 
 |         CBS_len(&null) != 0 || | 
 |         CBS_len(&alg_id) != 0) { | 
 |       OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   // Parse the encryption scheme parameters. Note OpenSSL does not match the | 
 |   // specification. Per RFC 2898, this should depend on the encryption scheme. | 
 |   // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with | 
 |   // OpenSSL. | 
 |   CBS iv; | 
 |   if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || | 
 |       CBS_len(&enc_scheme) != 0) { | 
 |     OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return pkcs5_pbe2_cipher_init(ctx, cipher, md, (unsigned)iterations, pass, | 
 |                                 pass_len, CBS_data(&salt), CBS_len(&salt), | 
 |                                 CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); | 
 | } |