|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] | 
|  | * | 
|  | * The DSS routines are based on patches supplied by | 
|  | * Steven Schoch <schoch@sheba.arc.nasa.gov>. */ | 
|  |  | 
|  | #include <openssl/dsa.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/pem.h> | 
|  | #include <openssl/span.h> | 
|  |  | 
|  | #include "../test/test_util.h" | 
|  |  | 
|  |  | 
|  | // The following values are taken from the updated Appendix 5 to FIPS PUB 186 | 
|  | // and also appear in Appendix 5 to FIPS PUB 186-1. | 
|  |  | 
|  | static const uint8_t seed[20] = { | 
|  | 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b, | 
|  | 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_p[] = { | 
|  | 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75, | 
|  | 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d, | 
|  | 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0, | 
|  | 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac, | 
|  | 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24, | 
|  | 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_q[] = { | 
|  | 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f, | 
|  | 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_g[] = { | 
|  | 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63, | 
|  | 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c, | 
|  | 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71, | 
|  | 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95, | 
|  | 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08, | 
|  | 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_x[] = { | 
|  | 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f, | 
|  | 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_y[] = { | 
|  | 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2, | 
|  | 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6, | 
|  | 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d, | 
|  | 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25, | 
|  | 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06, | 
|  | 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33, | 
|  | }; | 
|  |  | 
|  | static const uint8_t fips_digest[] = { | 
|  | 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, | 
|  | 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d, | 
|  | }; | 
|  |  | 
|  | // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1. | 
|  | static const uint8_t fips_sig[] = { | 
|  | 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, | 
|  | 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, | 
|  | 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, | 
|  | 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, | 
|  | 0xdc, 0xd8, 0xc8, | 
|  | }; | 
|  |  | 
|  | // fips_sig_negative is fips_sig with r encoded as a negative number. | 
|  | static const uint8_t fips_sig_negative[] = { | 
|  | 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, | 
|  | 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, | 
|  | 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, | 
|  | 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, | 
|  | 0xd8, 0xc8, | 
|  | }; | 
|  |  | 
|  | // fip_sig_extra is fips_sig with trailing data. | 
|  | static const uint8_t fips_sig_extra[] = { | 
|  | 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, | 
|  | 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, | 
|  | 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, | 
|  | 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, | 
|  | 0xdc, 0xd8, 0xc8, 0x00, | 
|  | }; | 
|  |  | 
|  | // fips_sig_lengths is fips_sig with a non-minimally encoded length. | 
|  | static const uint8_t fips_sig_bad_length[] = { | 
|  | 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, | 
|  | 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, | 
|  | 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, | 
|  | 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, | 
|  | 0xb6, 0xdc, 0xd8, 0xc8, 0x00, | 
|  | }; | 
|  |  | 
|  | // fips_sig_bad_r is fips_sig with a bad r value. | 
|  | static const uint8_t fips_sig_bad_r[] = { | 
|  | 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10, | 
|  | 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, | 
|  | 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, | 
|  | 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, | 
|  | 0xdc, 0xd8, 0xc8, | 
|  | }; | 
|  |  | 
|  | static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) { | 
|  | bssl::UniquePtr<DSA> dsa(DSA_new()); | 
|  | if (!dsa) { | 
|  | return nullptr; | 
|  | } | 
|  | bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr)); | 
|  | bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr)); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr)); | 
|  | if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | // |DSA_set0_pqg| takes ownership. | 
|  | p.release(); | 
|  | q.release(); | 
|  | g.release(); | 
|  | return dsa; | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<DSA> GetFIPSDSA(void) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); | 
|  | if (!dsa) { | 
|  | return nullptr; | 
|  | } | 
|  | bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr)); | 
|  | bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr)); | 
|  | if (!pub_key || !priv_key || | 
|  | !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | // |DSA_set0_key| takes ownership. | 
|  | pub_key.release(); | 
|  | priv_key.release(); | 
|  | return dsa; | 
|  | } | 
|  |  | 
|  | TEST(DSATest, Generate) { | 
|  | bssl::UniquePtr<DSA> dsa(DSA_new()); | 
|  | ASSERT_TRUE(dsa); | 
|  | int counter; | 
|  | unsigned long h; | 
|  | ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h, | 
|  | nullptr)); | 
|  | EXPECT_EQ(counter, 105); | 
|  | EXPECT_EQ(h, 2u); | 
|  |  | 
|  | auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn, | 
|  | bssl::Span<const uint8_t> bytes) { | 
|  | std::vector<uint8_t> buf(BN_num_bytes(bn)); | 
|  | BN_bn2bin(bn, buf.data()); | 
|  | EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg; | 
|  | }; | 
|  | expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q); | 
|  | expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p); | 
|  | expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g); | 
|  |  | 
|  | ASSERT_TRUE(DSA_generate_key(dsa.get())); | 
|  |  | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), | 
|  | &sig_len, dsa.get())); | 
|  |  | 
|  | EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), | 
|  | sig_len, dsa.get())); | 
|  | } | 
|  |  | 
|  | TEST(DSATest, Verify) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); | 
|  | ASSERT_TRUE(dsa); | 
|  |  | 
|  | EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, | 
|  | sizeof(fips_sig), dsa.get())); | 
|  | EXPECT_EQ(-1, | 
|  | DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative, | 
|  | sizeof(fips_sig_negative), dsa.get())); | 
|  | EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra, | 
|  | sizeof(fips_sig_extra), dsa.get())); | 
|  | EXPECT_EQ(-1, | 
|  | DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length, | 
|  | sizeof(fips_sig_bad_length), dsa.get())); | 
|  | EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r, | 
|  | sizeof(fips_sig_bad_r), dsa.get())); | 
|  | } | 
|  |  | 
|  | TEST(DSATest, InvalidGroup) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); | 
|  | ASSERT_TRUE(dsa); | 
|  | BN_zero(dsa->g); | 
|  |  | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | static const uint8_t kDigest[32] = {0}; | 
|  | EXPECT_FALSE( | 
|  | DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get())); | 
|  | uint32_t err = ERR_get_error(); | 
|  | EXPECT_EQ(ERR_LIB_DSA, ERR_GET_LIB(err)); | 
|  | EXPECT_EQ(DSA_R_INVALID_PARAMETERS, ERR_GET_REASON(err)); | 
|  | } | 
|  |  | 
|  | // Signing and verifying should cleanly fail when the DSA object is empty. | 
|  | TEST(DSATest, MissingParameters) { | 
|  | bssl::UniquePtr<DSA> dsa(DSA_new()); | 
|  | ASSERT_TRUE(dsa); | 
|  | EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, | 
|  | sizeof(fips_sig), dsa.get())); | 
|  |  | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), | 
|  | &sig_len, dsa.get())); | 
|  | } | 
|  |  | 
|  | // Verifying should cleanly fail when the public key is missing. | 
|  | TEST(DSATest, MissingPublic) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); | 
|  | ASSERT_TRUE(dsa); | 
|  | EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, | 
|  | sizeof(fips_sig), dsa.get())); | 
|  | } | 
|  |  | 
|  | // Signing should cleanly fail when the private key is missing. | 
|  | TEST(DSATest, MissingPrivate) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); | 
|  | ASSERT_TRUE(dsa); | 
|  |  | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), | 
|  | &sig_len, dsa.get())); | 
|  | } | 
|  |  | 
|  | // A zero private key is invalid and can cause signing to loop forever. | 
|  | TEST(DSATest, ZeroPrivateKey) { | 
|  | bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); | 
|  | ASSERT_TRUE(dsa); | 
|  | BN_zero(dsa->priv_key); | 
|  |  | 
|  | static const uint8_t kZeroDigest[32] = {0}; | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(), | 
|  | &sig_len, dsa.get())); | 
|  | } | 
|  |  | 
|  | // If the "field" is actually a ring and the "generator" of the multiplicative | 
|  | // subgroup is actually nilpotent with low degree, DSA signing never completes. | 
|  | // Test that we give up in the infinite loop. | 
|  | TEST(DSATest, NilpotentGenerator) { | 
|  | static const char kPEM[] = R"( | 
|  | -----BEGIN DSA PRIVATE KEY----- | 
|  | MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z | 
|  | E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB | 
|  | Epvg | 
|  | -----END DSA PRIVATE KEY----- | 
|  | )"; | 
|  | bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM))); | 
|  | ASSERT_TRUE(bio); | 
|  | bssl::UniquePtr<DSA> dsa( | 
|  | PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr)); | 
|  | ASSERT_TRUE(dsa); | 
|  |  | 
|  | std::vector<uint8_t> sig(DSA_size(dsa.get())); | 
|  | unsigned sig_len; | 
|  | EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), | 
|  | &sig_len, dsa.get())); | 
|  | } |