| /* Copyright (c) 2017, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | #include <openssl/aead.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include <openssl/cipher.h> | 
 | #include <openssl/crypto.h> | 
 | #include <openssl/err.h> | 
 |  | 
 | #include "../fipsmodule/cipher/internal.h" | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | #define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12 | 
 | #define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16 | 
 |  | 
 | // TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save | 
 | // and restore xmm6 through xmm15. | 
 | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ | 
 |     !defined(OPENSSL_WINDOWS) | 
 | #define AES_GCM_SIV_ASM | 
 |  | 
 | // Optimised AES-GCM-SIV | 
 |  | 
 | struct aead_aes_gcm_siv_asm_ctx { | 
 |   alignas(16) uint8_t key[16*15]; | 
 |   int is_128_bit; | 
 | }; | 
 |  | 
 | // The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and | 
 | // aligns to 16 bytes itself. | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >= | 
 |                   sizeof(struct aead_aes_gcm_siv_asm_ctx), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= 8, | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | // asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|. | 
 | static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx( | 
 |     const EVP_AEAD_CTX *ctx) { | 
 |   // ctx->state must already be 8-byte aligned. Thus, at most, we may need to | 
 |   // add eight to align it to 16 bytes. | 
 |   const uintptr_t offset = ((uintptr_t)&ctx->state) & 8; | 
 |   return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]); | 
 | } | 
 |  | 
 | // aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to | 
 | // |out_expanded_key|. | 
 | extern void aes128gcmsiv_aes_ks( | 
 |     const uint8_t key[16], uint8_t out_expanded_key[16*15]); | 
 |  | 
 | // aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to | 
 | // |out_expanded_key|. | 
 | extern void aes256gcmsiv_aes_ks( | 
 |     const uint8_t key[32], uint8_t out_expanded_key[16*15]); | 
 |  | 
 | static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                      size_t key_len, size_t tag_len) { | 
 |   const size_t key_bits = key_len * 8; | 
 |  | 
 |   if (key_bits != 128 && key_bits != 256) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
 |     return 0;  // EVP_AEAD_CTX_init should catch this. | 
 |   } | 
 |  | 
 |   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
 |     tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |   } | 
 |  | 
 |   if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); | 
 |   assert((((uintptr_t)gcm_siv_ctx) & 15) == 0); | 
 |  | 
 |   if (key_bits == 128) { | 
 |     aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); | 
 |     gcm_siv_ctx->is_128_bit = 1; | 
 |   } else { | 
 |     aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]); | 
 |     gcm_siv_ctx->is_128_bit = 0; | 
 |   } | 
 |  | 
 |   ctx->tag_len = tag_len; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {} | 
 |  | 
 | // aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to | 
 | // include a number (|in_blocks|) of 16-byte blocks of data from |in|, given | 
 | // the POLYVAL key in |key|. | 
 | extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16], | 
 |                                      const uint8_t key[16], const uint8_t *in, | 
 |                                      size_t in_blocks); | 
 |  | 
 | // aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|. | 
 | extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8], | 
 |                                   const uint8_t auth_key[16]); | 
 |  | 
 | // aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|. | 
 | extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6], | 
 |                                    const uint8_t auth_key[16]); | 
 |  | 
 | // aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to | 
 | // include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple | 
 | // of 16.) It uses the precomputed powers of the key given in |htable|. | 
 | extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8], | 
 |                                      const uint8_t *in, size_t in_len, | 
 |                                      uint8_t in_out_poly[16]); | 
 |  | 
 | // aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to | 
 | // |in|. (The full value of |in_len| is still used to find the authentication | 
 | // tag appended to the ciphertext, however, so must not be pre-masked.) | 
 | // | 
 | // |in| and |out| may be equal, but must not otherwise overlap. | 
 | // | 
 | // While decrypting, it updates the POLYVAL value found at the beginning of | 
 | // |in_out_calculated_tag_and_scratch| and writes the updated value back before | 
 | // return. During executation, it may use the whole of this space for other | 
 | // purposes. In order to decrypt and update the POLYVAL value, it uses the | 
 | // expanded key from |key| and the table of powers in |htable|. | 
 | extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out, | 
 |                              uint8_t in_out_calculated_tag_and_scratch[16 * 8], | 
 |                              const uint8_t htable[16 * 6], | 
 |                              const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                              size_t in_len); | 
 |  | 
 | // aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256. | 
 | extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out, | 
 |                              uint8_t in_out_calculated_tag_and_scratch[16 * 8], | 
 |                              const uint8_t htable[16 * 6], | 
 |                              const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                              size_t in_len); | 
 |  | 
 | // aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from | 
 | // |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of | 
 | // the nonce are used, 16 bytes are read and so the value must be | 
 | // right-padded. | 
 | extern void aes128gcmsiv_kdf(const uint8_t nonce[16], | 
 |                              uint64_t out_key_material[8], | 
 |                              const uint8_t *key_schedule); | 
 |  | 
 | // aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256. | 
 | extern void aes256gcmsiv_kdf(const uint8_t nonce[16], | 
 |                              uint64_t out_key_material[12], | 
 |                              const uint8_t *key_schedule); | 
 |  | 
 | // aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in | 
 | // |key|, writes the expanded key to |out_expanded_key| and encrypts a single | 
 | // block from |in| to |out|. | 
 | extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], | 
 |                                        uint8_t out_expanded_key[16 * 15], | 
 |                                        const uint64_t key[2]); | 
 |  | 
 | // aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for | 
 | // AES-256. | 
 | extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16], | 
 |                                        uint8_t out_expanded_key[16 * 15], | 
 |                                        const uint64_t key[4]); | 
 |  | 
 | // aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using | 
 | // the expanded key in |expanded_key|. | 
 | extern void aes128gcmsiv_ecb_enc_block( | 
 |     const uint8_t in[16], uint8_t out[16], | 
 |     const struct aead_aes_gcm_siv_asm_ctx *expanded_key); | 
 |  | 
 | // aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for | 
 | // AES-256. | 
 | extern void aes256gcmsiv_ecb_enc_block( | 
 |     const uint8_t in[16], uint8_t out[16], | 
 |     const struct aead_aes_gcm_siv_asm_ctx *expanded_key); | 
 |  | 
 | // aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the | 
 | // expanded key from |key|. (The value of |in_len| must be a multiple of 16.) | 
 | // The |in| and |out| buffers may be equal but must not otherwise overlap. The | 
 | // initial counter is constructed from the given |tag| as required by | 
 | // AES-GCM-SIV. | 
 | extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, | 
 |                                     const uint8_t *tag, | 
 |                                     const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                                     size_t in_len); | 
 |  | 
 | // aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for | 
 | // AES-256. | 
 | extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out, | 
 |                                     const uint8_t *tag, | 
 |                                     const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                                     size_t in_len); | 
 |  | 
 | // aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is | 
 | // optimised for longer messages. | 
 | extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, | 
 |                                     const uint8_t *tag, | 
 |                                     const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                                     size_t in_len); | 
 |  | 
 | // aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is | 
 | // optimised for longer messages. | 
 | extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out, | 
 |                                     const uint8_t *tag, | 
 |                                     const struct aead_aes_gcm_siv_asm_ctx *key, | 
 |                                     size_t in_len); | 
 |  | 
 | // gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext | 
 | // and AD. The result is written to |out_tag|. | 
 | static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in, | 
 |                                 size_t in_len, const uint8_t *ad, size_t ad_len, | 
 |                                 const uint8_t auth_key[16], | 
 |                                 const uint8_t nonce[12]) { | 
 |   OPENSSL_memset(out_tag, 0, 16); | 
 |   const size_t ad_blocks = ad_len / 16; | 
 |   const size_t in_blocks = in_len / 16; | 
 |   int htable_init = 0; | 
 |   alignas(16) uint8_t htable[16*8]; | 
 |  | 
 |   if (ad_blocks > 8 || in_blocks > 8) { | 
 |     htable_init = 1; | 
 |     aesgcmsiv_htable_init(htable, auth_key); | 
 |   } | 
 |  | 
 |   if (htable_init) { | 
 |     aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag); | 
 |   } else { | 
 |     aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks); | 
 |   } | 
 |  | 
 |   uint8_t scratch[16]; | 
 |   if (ad_len & 15) { | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); | 
 |     aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); | 
 |   } | 
 |  | 
 |   if (htable_init) { | 
 |     aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag); | 
 |   } else { | 
 |     aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks); | 
 |   } | 
 |  | 
 |   if (in_len & 15) { | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); | 
 |     aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1); | 
 |   } | 
 |  | 
 |   uint8_t length_block[16]; | 
 |   CRYPTO_store_u64_le(length_block, ad_len * 8); | 
 |   CRYPTO_store_u64_le(length_block + 8, in_len * 8); | 
 |   aesgcmsiv_polyval_horner(out_tag, auth_key, length_block, 1); | 
 |  | 
 |   for (size_t i = 0; i < 12; i++) { | 
 |     out_tag[i] ^= nonce[i]; | 
 |   } | 
 |  | 
 |   out_tag[15] &= 0x7f; | 
 | } | 
 |  | 
 | // aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption | 
 | // (same thing in CTR mode) of the final block of a plaintext/ciphertext. It | 
 | // writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter | 
 | // derived from |tag|. | 
 | static void aead_aes_gcm_siv_asm_crypt_last_block( | 
 |     int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len, | 
 |     const uint8_t tag[16], | 
 |     const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) { | 
 |   alignas(16) uint8_t counter[16]; | 
 |   OPENSSL_memcpy(&counter, tag, sizeof(counter)); | 
 |   counter[15] |= 0x80; | 
 |   CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + in_len / 16); | 
 |  | 
 |   if (is_128_bit) { | 
 |     aes128gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded); | 
 |   } else { | 
 |     aes256gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded); | 
 |   } | 
 |  | 
 |   const size_t last_bytes_offset = in_len & ~15; | 
 |   const size_t last_bytes_len = in_len & 15; | 
 |   uint8_t *last_bytes_out = &out[last_bytes_offset]; | 
 |   const uint8_t *last_bytes_in = &in[last_bytes_offset]; | 
 |   for (size_t i = 0; i < last_bytes_len; i++) { | 
 |     last_bytes_out[i] = last_bytes_in[i] ^ counter[i]; | 
 |   } | 
 | } | 
 |  | 
 | // aead_aes_gcm_siv_kdf calculates the record encryption and authentication | 
 | // keys given the |nonce|. | 
 | static void aead_aes_gcm_siv_kdf( | 
 |     int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx, | 
 |     uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4], | 
 |     const uint8_t nonce[12]) { | 
 |   alignas(16) uint8_t padded_nonce[16]; | 
 |   OPENSSL_memcpy(padded_nonce, nonce, 12); | 
 |  | 
 |   alignas(16) uint64_t key_material[12]; | 
 |   if (is_128_bit) { | 
 |     aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); | 
 |     out_record_enc_key[0] = key_material[4]; | 
 |     out_record_enc_key[1] = key_material[6]; | 
 |   } else { | 
 |     aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]); | 
 |     out_record_enc_key[0] = key_material[4]; | 
 |     out_record_enc_key[1] = key_material[6]; | 
 |     out_record_enc_key[2] = key_material[8]; | 
 |     out_record_enc_key[3] = key_material[10]; | 
 |   } | 
 |  | 
 |   out_record_auth_key[0] = key_material[0]; | 
 |   out_record_auth_key[1] = key_material[2]; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_siv_asm_seal_scatter( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
 |   const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); | 
 |   const uint64_t in_len_64 = in_len; | 
 |   const uint64_t ad_len_64 = ad_len; | 
 |  | 
 |   if (in_len_64 > (UINT64_C(1) << 36) || | 
 |       ad_len_64 >= (UINT64_C(1) << 61)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   alignas(16) uint64_t record_auth_key[2]; | 
 |   alignas(16) uint64_t record_enc_key[4]; | 
 |   aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, | 
 |                        record_enc_key, nonce); | 
 |  | 
 |   alignas(16) uint8_t tag[16] = {0}; | 
 |   gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len, | 
 |                       (const uint8_t *)record_auth_key, nonce); | 
 |  | 
 |   struct aead_aes_gcm_siv_asm_ctx enc_key_expanded; | 
 |  | 
 |   if (gcm_siv_ctx->is_128_bit) { | 
 |     aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], | 
 |                                record_enc_key); | 
 |  | 
 |     if (in_len < 128) { | 
 |       aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); | 
 |     } else { | 
 |       aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); | 
 |     } | 
 |   } else { | 
 |     aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0], | 
 |                                record_enc_key); | 
 |  | 
 |     if (in_len < 128) { | 
 |       aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15); | 
 |     } else { | 
 |       aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15); | 
 |     } | 
 |   } | 
 |  | 
 |   if (in_len & 15) { | 
 |     aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, | 
 |                                           in_len, tag, &enc_key_expanded); | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out_tag, tag, sizeof(tag)); | 
 |   *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | // TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec | 
 | // expects ciphertext and tag in a contiguous buffer. | 
 |  | 
 | static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                                      size_t *out_len, size_t max_out_len, | 
 |                                      const uint8_t *nonce, size_t nonce_len, | 
 |                                      const uint8_t *in, size_t in_len, | 
 |                                      const uint8_t *ad, size_t ad_len) { | 
 |   const uint64_t ad_len_64 = ad_len; | 
 |   if (ad_len_64 >= (UINT64_C(1) << 61)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const uint64_t in_len_64 = in_len; | 
 |   if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN || | 
 |       in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx); | 
 |   const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |   const uint8_t *const given_tag = in + plaintext_len; | 
 |  | 
 |   if (max_out_len < plaintext_len) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   alignas(16) uint64_t record_auth_key[2]; | 
 |   alignas(16) uint64_t record_enc_key[4]; | 
 |   aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key, | 
 |                        record_enc_key, nonce); | 
 |  | 
 |   struct aead_aes_gcm_siv_asm_ctx expanded_key; | 
 |   if (gcm_siv_ctx->is_128_bit) { | 
 |     aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); | 
 |   } else { | 
 |     aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]); | 
 |   } | 
 |   // calculated_tag is 16*8 bytes, rather than 16 bytes, because | 
 |   // aes[128|256]gcmsiv_dec uses the extra as scratch space. | 
 |   alignas(16) uint8_t calculated_tag[16 * 8] = {0}; | 
 |  | 
 |   OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN); | 
 |   const size_t ad_blocks = ad_len / 16; | 
 |   aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad, | 
 |                            ad_blocks); | 
 |  | 
 |   uint8_t scratch[16]; | 
 |   if (ad_len & 15) { | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); | 
 |     aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, | 
 |                              scratch, 1); | 
 |   } | 
 |  | 
 |   alignas(16) uint8_t htable[16 * 6]; | 
 |   aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key); | 
 |  | 
 |   if (gcm_siv_ctx->is_128_bit) { | 
 |     aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, | 
 |                      plaintext_len); | 
 |   } else { | 
 |     aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key, | 
 |                      plaintext_len); | 
 |   } | 
 |  | 
 |   if (plaintext_len & 15) { | 
 |     aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in, | 
 |                                           plaintext_len, given_tag, | 
 |                                           &expanded_key); | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15); | 
 |     aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, | 
 |                              scratch, 1); | 
 |   } | 
 |  | 
 |   uint8_t length_block[16]; | 
 |   CRYPTO_store_u64_le(length_block, ad_len * 8); | 
 |   CRYPTO_store_u64_le(length_block + 8, plaintext_len * 8); | 
 |   aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, | 
 |                            length_block, 1); | 
 |  | 
 |   for (size_t i = 0; i < 12; i++) { | 
 |     calculated_tag[i] ^= nonce[i]; | 
 |   } | 
 |  | 
 |   calculated_tag[15] &= 0x7f; | 
 |  | 
 |   if (gcm_siv_ctx->is_128_bit) { | 
 |     aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); | 
 |   } else { | 
 |     aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key); | 
 |   } | 
 |  | 
 |   if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) != | 
 |       0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   *out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |   return 1; | 
 | } | 
 |  | 
 | static const EVP_AEAD aead_aes_128_gcm_siv_asm = { | 
 |     16,                              // key length | 
 |     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length | 
 |     0,                               // seal_scatter_supports_extra_in | 
 |  | 
 |     aead_aes_gcm_siv_asm_init, | 
 |     NULL /* init_with_direction */, | 
 |     aead_aes_gcm_siv_asm_cleanup, | 
 |     aead_aes_gcm_siv_asm_open, | 
 |     aead_aes_gcm_siv_asm_seal_scatter, | 
 |     NULL /* open_gather */, | 
 |     NULL /* get_iv */, | 
 |     NULL /* tag_len */, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_gcm_siv_asm = { | 
 |     32,                              // key length | 
 |     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length | 
 |     0,                               // seal_scatter_supports_extra_in | 
 |  | 
 |     aead_aes_gcm_siv_asm_init, | 
 |     NULL /* init_with_direction */, | 
 |     aead_aes_gcm_siv_asm_cleanup, | 
 |     aead_aes_gcm_siv_asm_open, | 
 |     aead_aes_gcm_siv_asm_seal_scatter, | 
 |     NULL /* open_gather */, | 
 |     NULL /* get_iv */, | 
 |     NULL /* tag_len */, | 
 | }; | 
 |  | 
 | #endif  // X86_64 && !NO_ASM && !WINDOWS | 
 |  | 
 | struct aead_aes_gcm_siv_ctx { | 
 |   union { | 
 |     double align; | 
 |     AES_KEY ks; | 
 |   } ks; | 
 |   block128_f kgk_block; | 
 |   unsigned is_256:1; | 
 | }; | 
 |  | 
 | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= | 
 |                   sizeof(struct aead_aes_gcm_siv_ctx), | 
 |               "AEAD state is too small"); | 
 | static_assert(alignof(union evp_aead_ctx_st_state) >= | 
 |                   alignof(struct aead_aes_gcm_siv_ctx), | 
 |               "AEAD state has insufficient alignment"); | 
 |  | 
 | static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
 |                                  size_t key_len, size_t tag_len) { | 
 |   const size_t key_bits = key_len * 8; | 
 |  | 
 |   if (key_bits != 128 && key_bits != 256) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
 |     return 0;  // EVP_AEAD_CTX_init should catch this. | 
 |   } | 
 |  | 
 |   if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
 |     tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |   } | 
 |   if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = | 
 |       (struct aead_aes_gcm_siv_ctx *)&ctx->state; | 
 |   OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx)); | 
 |  | 
 |   aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key, | 
 |                   key_len); | 
 |   gcm_siv_ctx->is_256 = (key_len == 32); | 
 |   ctx->tag_len = tag_len; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {} | 
 |  | 
 | // gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from | 
 | // |in| to |out|, using the block function |enc_block| with |key| in counter | 
 | // mode, starting at |initial_counter|. This differs from the traditional | 
 | // counter mode code in that the counter is handled little-endian, only the | 
 | // first four bytes are used and the GCM-SIV tweak to the final byte is | 
 | // applied. The |in| and |out| pointers may be equal but otherwise must not | 
 | // alias. | 
 | static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len, | 
 |                           const uint8_t initial_counter[AES_BLOCK_SIZE], | 
 |                           block128_f enc_block, const AES_KEY *key) { | 
 |   uint8_t counter[16]; | 
 |  | 
 |   OPENSSL_memcpy(counter, initial_counter, AES_BLOCK_SIZE); | 
 |   counter[15] |= 0x80; | 
 |  | 
 |   for (size_t done = 0; done < in_len;) { | 
 |     uint8_t keystream[AES_BLOCK_SIZE]; | 
 |     enc_block(counter, keystream, key); | 
 |     CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + 1); | 
 |  | 
 |     size_t todo = AES_BLOCK_SIZE; | 
 |     if (in_len - done < todo) { | 
 |       todo = in_len - done; | 
 |     } | 
 |  | 
 |     for (size_t i = 0; i < todo; i++) { | 
 |       out[done + i] = keystream[i] ^ in[done + i]; | 
 |     } | 
 |  | 
 |     done += todo; | 
 |   } | 
 | } | 
 |  | 
 | // gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and | 
 | // AD. The result is written to |out_tag|. | 
 | static void gcm_siv_polyval( | 
 |     uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad, | 
 |     size_t ad_len, const uint8_t auth_key[16], | 
 |     const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { | 
 |   struct polyval_ctx polyval_ctx; | 
 |   CRYPTO_POLYVAL_init(&polyval_ctx, auth_key); | 
 |  | 
 |   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15); | 
 |  | 
 |   uint8_t scratch[16]; | 
 |   if (ad_len & 15) { | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15); | 
 |     CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); | 
 |   } | 
 |  | 
 |   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15); | 
 |   if (in_len & 15) { | 
 |     OPENSSL_memset(scratch, 0, sizeof(scratch)); | 
 |     OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15); | 
 |     CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch)); | 
 |   } | 
 |  | 
 |   uint8_t length_block[16]; | 
 |   CRYPTO_store_u64_le(length_block, ad_len * 8); | 
 |   CRYPTO_store_u64_le(length_block + 8, in_len * 8); | 
 |   CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block, | 
 |                                sizeof(length_block)); | 
 |  | 
 |   CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag); | 
 |   for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) { | 
 |     out_tag[i] ^= nonce[i]; | 
 |   } | 
 |   out_tag[15] &= 0x7f; | 
 | } | 
 |  | 
 | // gcm_siv_record_keys contains the keys used for a specific GCM-SIV record. | 
 | struct gcm_siv_record_keys { | 
 |   uint8_t auth_key[16]; | 
 |   union { | 
 |     double align; | 
 |     AES_KEY ks; | 
 |   } enc_key; | 
 |   block128_f enc_block; | 
 | }; | 
 |  | 
 | // gcm_siv_keys calculates the keys for a specific GCM-SIV record with the | 
 | // given nonce and writes them to |*out_keys|. | 
 | static void gcm_siv_keys( | 
 |     const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx, | 
 |     struct gcm_siv_record_keys *out_keys, | 
 |     const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) { | 
 |   const AES_KEY *const key = &gcm_siv_ctx->ks.ks; | 
 |   uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8]; | 
 |   const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4; | 
 |  | 
 |   uint8_t counter[AES_BLOCK_SIZE]; | 
 |   OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN); | 
 |   OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN, | 
 |                  nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN); | 
 |   for (size_t i = 0; i < blocks_needed; i++) { | 
 |     counter[0] = i; | 
 |  | 
 |     uint8_t ciphertext[AES_BLOCK_SIZE]; | 
 |     gcm_siv_ctx->kgk_block(counter, ciphertext, key); | 
 |     OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8); | 
 |   } | 
 |  | 
 |   OPENSSL_memcpy(out_keys->auth_key, key_material, 16); | 
 |   // Note the |ctr128_f| function uses a big-endian couner, while AES-GCM-SIV | 
 |   // uses a little-endian counter. We ignore the return value and only use | 
 |   // |block128_f|. This has a significant performance cost for the fallback | 
 |   // bitsliced AES implementations (bsaes and aes_nohw). | 
 |   // | 
 |   // We currently do not consider AES-GCM-SIV to be performance-sensitive on | 
 |   // client hardware. If this changes, we can write little-endian |ctr128_f| | 
 |   // functions. | 
 |   aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block, | 
 |                   key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16); | 
 | } | 
 |  | 
 | static int aead_aes_gcm_siv_seal_scatter( | 
 |     const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
 |     size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
 |     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
 |     size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
 |   const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = | 
 |       (struct aead_aes_gcm_siv_ctx *)&ctx->state; | 
 |   const uint64_t in_len_64 = in_len; | 
 |   const uint64_t ad_len_64 = ad_len; | 
 |  | 
 |   if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len || | 
 |       in_len_64 > (UINT64_C(1) << 36) || | 
 |       ad_len_64 >= (UINT64_C(1) << 61)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   struct gcm_siv_record_keys keys; | 
 |   gcm_siv_keys(gcm_siv_ctx, &keys, nonce); | 
 |  | 
 |   uint8_t tag[16]; | 
 |   gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce); | 
 |   keys.enc_block(tag, tag, &keys.enc_key.ks); | 
 |  | 
 |   gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks); | 
 |  | 
 |   OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN); | 
 |   *out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
 |                                         const uint8_t *nonce, size_t nonce_len, | 
 |                                         const uint8_t *in, size_t in_len, | 
 |                                         const uint8_t *in_tag, | 
 |                                         size_t in_tag_len, const uint8_t *ad, | 
 |                                         size_t ad_len) { | 
 |   const uint64_t ad_len_64 = ad_len; | 
 |   if (ad_len_64 >= (UINT64_C(1) << 61)) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const uint64_t in_len_64 = in_len; | 
 |   if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN || | 
 |       in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx = | 
 |       (struct aead_aes_gcm_siv_ctx *)&ctx->state; | 
 |  | 
 |   struct gcm_siv_record_keys keys; | 
 |   gcm_siv_keys(gcm_siv_ctx, &keys, nonce); | 
 |  | 
 |   gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks); | 
 |  | 
 |   uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN]; | 
 |   gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce); | 
 |   keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks); | 
 |  | 
 |   if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) { | 
 |     OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | static const EVP_AEAD aead_aes_128_gcm_siv = { | 
 |     16,                              // key length | 
 |     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length | 
 |     0,                               // seal_scatter_supports_extra_in | 
 |  | 
 |     aead_aes_gcm_siv_init, | 
 |     NULL /* init_with_direction */, | 
 |     aead_aes_gcm_siv_cleanup, | 
 |     NULL /* open */, | 
 |     aead_aes_gcm_siv_seal_scatter, | 
 |     aead_aes_gcm_siv_open_gather, | 
 |     NULL /* get_iv */, | 
 |     NULL /* tag_len */, | 
 | }; | 
 |  | 
 | static const EVP_AEAD aead_aes_256_gcm_siv = { | 
 |     32,                              // key length | 
 |     EVP_AEAD_AES_GCM_SIV_NONCE_LEN,  // nonce length | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // overhead | 
 |     EVP_AEAD_AES_GCM_SIV_TAG_LEN,    // max tag length | 
 |     0,                               // seal_scatter_supports_extra_in | 
 |  | 
 |     aead_aes_gcm_siv_init, | 
 |     NULL /* init_with_direction */, | 
 |     aead_aes_gcm_siv_cleanup, | 
 |     NULL /* open */, | 
 |     aead_aes_gcm_siv_seal_scatter, | 
 |     aead_aes_gcm_siv_open_gather, | 
 |     NULL /* get_iv */, | 
 |     NULL /* tag_len */, | 
 | }; | 
 |  | 
 | #if defined(AES_GCM_SIV_ASM) | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { | 
 |   if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) { | 
 |     return &aead_aes_128_gcm_siv_asm; | 
 |   } | 
 |   return &aead_aes_128_gcm_siv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { | 
 |   if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) { | 
 |     return &aead_aes_256_gcm_siv_asm; | 
 |   } | 
 |   return &aead_aes_256_gcm_siv; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) { | 
 |   return &aead_aes_128_gcm_siv; | 
 | } | 
 |  | 
 | const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) { | 
 |   return &aead_aes_256_gcm_siv; | 
 | } | 
 |  | 
 | #endif  // AES_GCM_SIV_ASM |