|  | /* Copyright (c) 2020, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/hpke.h> | 
|  |  | 
|  | #include <cstdint> | 
|  | #include <limits> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/base.h> | 
|  | #include <openssl/curve25519.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha.h> | 
|  | #include <openssl/span.h> | 
|  |  | 
|  | #include "../test/file_test.h" | 
|  | #include "../test/test_util.h" | 
|  |  | 
|  |  | 
|  | namespace bssl { | 
|  | namespace { | 
|  |  | 
|  | const decltype(&EVP_hpke_aes_128_gcm) kAllAEADs[] = { | 
|  | &EVP_hpke_aes_128_gcm, | 
|  | &EVP_hpke_aes_256_gcm, | 
|  | &EVP_hpke_chacha20_poly1305, | 
|  | }; | 
|  |  | 
|  | const decltype(&EVP_hpke_hkdf_sha256) kAllKDFs[] = { | 
|  | &EVP_hpke_hkdf_sha256, | 
|  | }; | 
|  |  | 
|  | // HPKETestVector corresponds to one array member in the published | 
|  | // test-vectors.json. | 
|  | class HPKETestVector { | 
|  | public: | 
|  | explicit HPKETestVector() = default; | 
|  | ~HPKETestVector() = default; | 
|  |  | 
|  | bool ReadFromFileTest(FileTest *t); | 
|  |  | 
|  | void Verify() const { | 
|  | const EVP_HPKE_KEM *kem = EVP_hpke_x25519_hkdf_sha256(); | 
|  | const EVP_HPKE_AEAD *aead = GetAEAD(); | 
|  | ASSERT_TRUE(aead); | 
|  | const EVP_HPKE_KDF *kdf = GetKDF(); | 
|  | ASSERT_TRUE(kdf); | 
|  |  | 
|  | // Test the sender. | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[EVP_HPKE_MAX_ENC_LENGTH]; | 
|  | size_t enc_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_sender_with_seed_for_testing( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), kem, kdf, aead, | 
|  | public_key_r_.data(), public_key_r_.size(), info_.data(), info_.size(), | 
|  | secret_key_e_.data(), secret_key_e_.size())); | 
|  | EXPECT_EQ(Bytes(enc, enc_len), Bytes(public_key_e_)); | 
|  | VerifySender(sender_ctx.get()); | 
|  |  | 
|  | // Test the recipient. | 
|  | ScopedEVP_HPKE_KEY base_key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_init(base_key.get(), kem, secret_key_r_.data(), | 
|  | secret_key_r_.size())); | 
|  | for (bool copy : {false, true}) { | 
|  | SCOPED_TRACE(copy); | 
|  | const EVP_HPKE_KEY *key = base_key.get(); | 
|  | ScopedEVP_HPKE_KEY key_copy; | 
|  | if (copy) { | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_copy(key_copy.get(), base_key.get())); | 
|  | key = key_copy.get(); | 
|  | } | 
|  |  | 
|  | uint8_t public_key[EVP_HPKE_MAX_PUBLIC_KEY_LENGTH]; | 
|  | size_t public_key_len; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_public_key(key, public_key, &public_key_len, | 
|  | sizeof(public_key))); | 
|  | EXPECT_EQ(Bytes(public_key, public_key_len), Bytes(public_key_r_)); | 
|  |  | 
|  | uint8_t private_key[EVP_HPKE_MAX_PRIVATE_KEY_LENGTH]; | 
|  | size_t private_key_len; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_private_key(key, private_key, &private_key_len, | 
|  | sizeof(private_key))); | 
|  | EXPECT_EQ(Bytes(private_key, private_key_len), Bytes(secret_key_r_)); | 
|  |  | 
|  | // Set up the recipient. | 
|  | ScopedEVP_HPKE_CTX recipient_ctx; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient(recipient_ctx.get(), key, kdf, | 
|  | aead, enc, enc_len, info_.data(), | 
|  | info_.size())); | 
|  |  | 
|  | VerifyRecipient(recipient_ctx.get()); | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | const EVP_HPKE_AEAD *GetAEAD() const { | 
|  | for (const auto aead : kAllAEADs) { | 
|  | if (EVP_HPKE_AEAD_id(aead()) == aead_id_) { | 
|  | return aead(); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KDF *GetKDF() const { | 
|  | for (const auto kdf : kAllKDFs) { | 
|  | if (EVP_HPKE_KDF_id(kdf()) == kdf_id_) { | 
|  | return kdf(); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void VerifySender(EVP_HPKE_CTX *ctx) const { | 
|  | for (const Encryption &task : encryptions_) { | 
|  | std::vector<uint8_t> encrypted(task.plaintext.size() + | 
|  | EVP_HPKE_CTX_max_overhead(ctx)); | 
|  | size_t encrypted_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_seal(ctx, encrypted.data(), &encrypted_len, | 
|  | encrypted.size(), task.plaintext.data(), | 
|  | task.plaintext.size(), task.aad.data(), | 
|  | task.aad.size())); | 
|  |  | 
|  | ASSERT_EQ(Bytes(encrypted.data(), encrypted_len), Bytes(task.ciphertext)); | 
|  | } | 
|  | VerifyExports(ctx); | 
|  | } | 
|  |  | 
|  | void VerifyRecipient(EVP_HPKE_CTX *ctx) const { | 
|  | for (const Encryption &task : encryptions_) { | 
|  | std::vector<uint8_t> decrypted(task.ciphertext.size()); | 
|  | size_t decrypted_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_open(ctx, decrypted.data(), &decrypted_len, | 
|  | decrypted.size(), task.ciphertext.data(), | 
|  | task.ciphertext.size(), task.aad.data(), | 
|  | task.aad.size())); | 
|  |  | 
|  | ASSERT_EQ(Bytes(decrypted.data(), decrypted_len), Bytes(task.plaintext)); | 
|  | } | 
|  | VerifyExports(ctx); | 
|  | } | 
|  |  | 
|  | void VerifyExports(EVP_HPKE_CTX *ctx) const { | 
|  | for (const Export &task : exports_) { | 
|  | std::vector<uint8_t> exported_secret(task.export_length); | 
|  |  | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_export( | 
|  | ctx, exported_secret.data(), exported_secret.size(), | 
|  | task.exporter_context.data(), task.exporter_context.size())); | 
|  | ASSERT_EQ(Bytes(exported_secret), Bytes(task.exported_value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct Encryption { | 
|  | std::vector<uint8_t> aad; | 
|  | std::vector<uint8_t> ciphertext; | 
|  | std::vector<uint8_t> plaintext; | 
|  | }; | 
|  |  | 
|  | struct Export { | 
|  | std::vector<uint8_t> exporter_context; | 
|  | size_t export_length; | 
|  | std::vector<uint8_t> exported_value; | 
|  | }; | 
|  |  | 
|  | uint16_t kdf_id_; | 
|  | uint16_t aead_id_; | 
|  | std::vector<uint8_t> context_; | 
|  | std::vector<uint8_t> info_; | 
|  | std::vector<uint8_t> public_key_e_; | 
|  | std::vector<uint8_t> secret_key_e_; | 
|  | std::vector<uint8_t> public_key_r_; | 
|  | std::vector<uint8_t> secret_key_r_; | 
|  | std::vector<Encryption> encryptions_; | 
|  | std::vector<Export> exports_; | 
|  | }; | 
|  |  | 
|  | // Match FileTest's naming scheme for duplicated attribute names. | 
|  | std::string BuildAttrName(const std::string &name, int iter) { | 
|  | return iter == 1 ? name : name + "/" + std::to_string(iter); | 
|  | } | 
|  |  | 
|  | // Parses |s| as an unsigned integer of type T and writes the value to |out|. | 
|  | // Returns true on success. If the integer value exceeds the maximum T value, | 
|  | // returns false. | 
|  | template <typename T> | 
|  | bool ParseIntSafe(T *out, const std::string &s) { | 
|  | T value = 0; | 
|  | for (char c : s) { | 
|  | if (c < '0' || c > '9') { | 
|  | return false; | 
|  | } | 
|  | if (value > (std::numeric_limits<T>::max() - (c - '0')) / 10) { | 
|  | return false; | 
|  | } | 
|  | value = 10 * value + (c - '0'); | 
|  | } | 
|  | *out = value; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Read the |key| attribute from |file_test| and convert it to an integer. | 
|  | template <typename T> | 
|  | bool FileTestReadInt(FileTest *file_test, T *out, const std::string &key) { | 
|  | std::string s; | 
|  | return file_test->GetAttribute(&s, key) && ParseIntSafe(out, s); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool HPKETestVector::ReadFromFileTest(FileTest *t) { | 
|  | uint8_t mode = 0; | 
|  | if (!FileTestReadInt(t, &mode, "mode") || | 
|  | mode != 0 /* mode_base */ || | 
|  | !FileTestReadInt(t, &kdf_id_, "kdf_id") || | 
|  | !FileTestReadInt(t, &aead_id_, "aead_id") || | 
|  | !t->GetBytes(&info_, "info") || | 
|  | !t->GetBytes(&secret_key_r_, "skRm") || | 
|  | !t->GetBytes(&public_key_r_, "pkRm") || | 
|  | !t->GetBytes(&secret_key_e_, "skEm") || | 
|  | !t->GetBytes(&public_key_e_, "pkEm")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (int i = 1; t->HasAttribute(BuildAttrName("aad", i)); i++) { | 
|  | Encryption encryption; | 
|  | if (!t->GetBytes(&encryption.aad, BuildAttrName("aad", i)) || | 
|  | !t->GetBytes(&encryption.ciphertext, BuildAttrName("ct", i)) || | 
|  | !t->GetBytes(&encryption.plaintext, BuildAttrName("pt", i))) { | 
|  | return false; | 
|  | } | 
|  | encryptions_.push_back(std::move(encryption)); | 
|  | } | 
|  |  | 
|  | for (int i = 1; t->HasAttribute(BuildAttrName("exporter_context", i)); i++) { | 
|  | Export exp; | 
|  | if (!t->GetBytes(&exp.exporter_context, | 
|  | BuildAttrName("exporter_context", i)) || | 
|  | !FileTestReadInt(t, &exp.export_length, BuildAttrName("L", i)) || | 
|  | !t->GetBytes(&exp.exported_value, BuildAttrName("exported_value", i))) { | 
|  | return false; | 
|  | } | 
|  | exports_.push_back(std::move(exp)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(HPKETest, VerifyTestVectors) { | 
|  | FileTestGTest("crypto/hpke/hpke_test_vectors.txt", [](FileTest *t) { | 
|  | HPKETestVector test_vec; | 
|  | EXPECT_TRUE(test_vec.ReadFromFileTest(t)); | 
|  | test_vec.Verify(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // The test vectors used fixed sender ephemeral keys, while HPKE itself | 
|  | // generates new keys for each context. Test this codepath by checking we can | 
|  | // decrypt our own messages. | 
|  | TEST(HPKETest, RoundTrip) { | 
|  | const uint8_t info_a[] = {1, 1, 2, 3, 5, 8}; | 
|  | const uint8_t info_b[] = {42, 42, 42}; | 
|  | const uint8_t ad_a[] = {1, 2, 4, 8, 16}; | 
|  | const uint8_t ad_b[] = {7}; | 
|  | Span<const uint8_t> info_values[] = {{nullptr, 0}, info_a, info_b}; | 
|  | Span<const uint8_t> ad_values[] = {{nullptr, 0}, ad_a, ad_b}; | 
|  |  | 
|  | // Generate the recipient's keypair. | 
|  | ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  | uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; | 
|  | size_t public_key_r_len; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_public_key(key.get(), public_key_r, | 
|  | &public_key_r_len, sizeof(public_key_r))); | 
|  |  | 
|  | for (const auto kdf : kAllKDFs) { | 
|  | SCOPED_TRACE(EVP_HPKE_KDF_id(kdf())); | 
|  | for (const auto aead : kAllAEADs) { | 
|  | SCOPED_TRACE(EVP_HPKE_AEAD_id(aead())); | 
|  | for (const Span<const uint8_t> &info : info_values) { | 
|  | SCOPED_TRACE(Bytes(info)); | 
|  | for (const Span<const uint8_t> &ad : ad_values) { | 
|  | SCOPED_TRACE(Bytes(ad)); | 
|  | // Set up the sender. | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN]; | 
|  | size_t enc_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), kdf(), aead(), public_key_r, | 
|  | public_key_r_len, info.data(), info.size())); | 
|  |  | 
|  | // Set up the recipient. | 
|  | ScopedEVP_HPKE_CTX recipient_ctx; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient( | 
|  | recipient_ctx.get(), key.get(), kdf(), aead(), enc, enc_len, | 
|  | info.data(), info.size())); | 
|  |  | 
|  | const char kCleartextPayload[] = "foobar"; | 
|  |  | 
|  | // Have sender encrypt message for the recipient. | 
|  | std::vector<uint8_t> ciphertext( | 
|  | sizeof(kCleartextPayload) + | 
|  | EVP_HPKE_CTX_max_overhead(sender_ctx.get())); | 
|  | size_t ciphertext_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_seal( | 
|  | sender_ctx.get(), ciphertext.data(), &ciphertext_len, | 
|  | ciphertext.size(), | 
|  | reinterpret_cast<const uint8_t *>(kCleartextPayload), | 
|  | sizeof(kCleartextPayload), ad.data(), ad.size())); | 
|  |  | 
|  | // Have recipient decrypt the message. | 
|  | std::vector<uint8_t> cleartext(ciphertext.size()); | 
|  | size_t cleartext_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_open(recipient_ctx.get(), cleartext.data(), | 
|  | &cleartext_len, cleartext.size(), | 
|  | ciphertext.data(), ciphertext_len, | 
|  | ad.data(), ad.size())); | 
|  |  | 
|  | // Verify that decrypted message matches the original. | 
|  | ASSERT_EQ(Bytes(cleartext.data(), cleartext_len), | 
|  | Bytes(kCleartextPayload, sizeof(kCleartextPayload))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that the DH operations inside Encap() and Decap() both fail when the | 
|  | // public key is on a small-order point in the curve. | 
|  | TEST(HPKETest, X25519EncapSmallOrderPoint) { | 
|  | // Borrowed from X25519Test.SmallOrder. | 
|  | static const uint8_t kSmallOrderPoint[32] = { | 
|  | 0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae, 0x16, 0x56, 0xe3, | 
|  | 0xfa, 0xf1, 0x9f, 0xc4, 0x6a, 0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, | 
|  | 0xb1, 0xfd, 0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, | 
|  | }; | 
|  |  | 
|  | ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  |  | 
|  | for (const auto kdf : kAllKDFs) { | 
|  | SCOPED_TRACE(EVP_HPKE_KDF_id(kdf())); | 
|  | for (const auto aead : kAllAEADs) { | 
|  | SCOPED_TRACE(EVP_HPKE_AEAD_id(aead())); | 
|  | // Set up the sender, passing in kSmallOrderPoint as |peer_public_key|. | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN]; | 
|  | size_t enc_len; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), kdf(), aead(), kSmallOrderPoint, | 
|  | sizeof(kSmallOrderPoint), nullptr, 0)); | 
|  |  | 
|  | // Set up the recipient, passing in kSmallOrderPoint as |enc|. | 
|  | ScopedEVP_HPKE_CTX recipient_ctx; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_setup_recipient( | 
|  | recipient_ctx.get(), key.get(), kdf(), aead(), kSmallOrderPoint, | 
|  | sizeof(kSmallOrderPoint), nullptr, 0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that Seal() fails when the context has been initialized as a recipient. | 
|  | TEST(HPKETest, RecipientInvalidSeal) { | 
|  | const uint8_t kMockEnc[X25519_PUBLIC_VALUE_LEN] = {0xff}; | 
|  | const char kCleartextPayload[] = "foobar"; | 
|  |  | 
|  | ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  |  | 
|  | // Set up the recipient. | 
|  | ScopedEVP_HPKE_CTX recipient_ctx; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_recipient( | 
|  | recipient_ctx.get(), key.get(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), kMockEnc, sizeof(kMockEnc), nullptr, 0)); | 
|  |  | 
|  | // Call Seal() on the recipient. | 
|  | size_t ciphertext_len; | 
|  | uint8_t ciphertext[100]; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_seal( | 
|  | recipient_ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), | 
|  | reinterpret_cast<const uint8_t *>(kCleartextPayload), | 
|  | sizeof(kCleartextPayload), nullptr, 0)); | 
|  | } | 
|  |  | 
|  | // Test that Open() fails when the context has been initialized as a sender. | 
|  | TEST(HPKETest, SenderInvalidOpen) { | 
|  | const uint8_t kMockCiphertext[100] = {0xff}; | 
|  | const size_t kMockCiphertextLen = 80; | 
|  |  | 
|  | // Generate the recipient's keypair. | 
|  | uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; | 
|  | uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; | 
|  | X25519_keypair(public_key_r, secret_key_r); | 
|  |  | 
|  | // Set up the sender. | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN]; | 
|  | size_t enc_len; | 
|  | ASSERT_TRUE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); | 
|  |  | 
|  | // Call Open() on the sender. | 
|  | uint8_t cleartext[128]; | 
|  | size_t cleartext_len; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_open(sender_ctx.get(), cleartext, &cleartext_len, | 
|  | sizeof(cleartext), kMockCiphertext, | 
|  | kMockCiphertextLen, nullptr, 0)); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, SetupSenderBufferTooSmall) { | 
|  | uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; | 
|  | uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; | 
|  | X25519_keypair(public_key_r, secret_key_r); | 
|  |  | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN - 1]; | 
|  | size_t enc_len; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); | 
|  | uint32_t err = ERR_get_error(); | 
|  | EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); | 
|  | EXPECT_EQ(EVP_R_INVALID_BUFFER_SIZE, ERR_GET_REASON(err)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, SetupSenderBufferTooLarge) { | 
|  | uint8_t secret_key_r[X25519_PRIVATE_KEY_LEN]; | 
|  | uint8_t public_key_r[X25519_PUBLIC_VALUE_LEN]; | 
|  | X25519_keypair(public_key_r, secret_key_r); | 
|  |  | 
|  | // Too large of an output buffer is fine because the function reports the | 
|  | // actual length. | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN + 1]; | 
|  | size_t enc_len; | 
|  | EXPECT_TRUE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), public_key_r, sizeof(public_key_r), nullptr, 0)); | 
|  | EXPECT_EQ(size_t{X25519_PUBLIC_VALUE_LEN}, enc_len); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, SetupRecipientWrongLengthEnc) { | 
|  | ScopedEVP_HPKE_KEY key; | 
|  | ASSERT_TRUE(EVP_HPKE_KEY_generate(key.get(), EVP_hpke_x25519_hkdf_sha256())); | 
|  |  | 
|  | const uint8_t bogus_enc[X25519_PUBLIC_VALUE_LEN + 5] = {0xff}; | 
|  |  | 
|  | ScopedEVP_HPKE_CTX recipient_ctx; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_setup_recipient( | 
|  | recipient_ctx.get(), key.get(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), bogus_enc, sizeof(bogus_enc), nullptr, 0)); | 
|  | uint32_t err = ERR_get_error(); | 
|  | EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); | 
|  | EXPECT_EQ(EVP_R_INVALID_PEER_KEY, ERR_GET_REASON(err)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, SetupSenderWrongLengthPeerPublicValue) { | 
|  | const uint8_t bogus_public_key_r[X25519_PRIVATE_KEY_LEN + 5] = {0xff}; | 
|  | ScopedEVP_HPKE_CTX sender_ctx; | 
|  | uint8_t enc[X25519_PUBLIC_VALUE_LEN]; | 
|  | size_t enc_len; | 
|  | ASSERT_FALSE(EVP_HPKE_CTX_setup_sender( | 
|  | sender_ctx.get(), enc, &enc_len, sizeof(enc), | 
|  | EVP_hpke_x25519_hkdf_sha256(), EVP_hpke_hkdf_sha256(), | 
|  | EVP_hpke_aes_128_gcm(), bogus_public_key_r, sizeof(bogus_public_key_r), | 
|  | nullptr, 0)); | 
|  | uint32_t err = ERR_get_error(); | 
|  | EXPECT_EQ(ERR_LIB_EVP, ERR_GET_LIB(err)); | 
|  | EXPECT_EQ(EVP_R_INVALID_PEER_KEY, ERR_GET_REASON(err)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, InvalidRecipientKey) { | 
|  | const uint8_t private_key[X25519_PUBLIC_VALUE_LEN + 5] = {0xff}; | 
|  | ScopedEVP_HPKE_KEY key; | 
|  | EXPECT_FALSE(EVP_HPKE_KEY_init(key.get(), EVP_hpke_x25519_hkdf_sha256(), | 
|  | private_key, sizeof(private_key))); | 
|  | } | 
|  |  | 
|  | TEST(HPKETest, InternalParseIntSafe) { | 
|  | uint8_t u8 = 0xff; | 
|  | ASSERT_FALSE(ParseIntSafe(&u8, "-1")); | 
|  |  | 
|  | ASSERT_TRUE(ParseIntSafe(&u8, "0")); | 
|  | ASSERT_EQ(u8, 0); | 
|  |  | 
|  | ASSERT_TRUE(ParseIntSafe(&u8, "255")); | 
|  | ASSERT_EQ(u8, 255); | 
|  |  | 
|  | ASSERT_FALSE(ParseIntSafe(&u8, "256")); | 
|  |  | 
|  | uint16_t u16 = 0xffff; | 
|  | ASSERT_TRUE(ParseIntSafe(&u16, "257")); | 
|  | ASSERT_EQ(u16, 257); | 
|  |  | 
|  | ASSERT_TRUE(ParseIntSafe(&u16, "65535")); | 
|  | ASSERT_EQ(u16, 65535); | 
|  |  | 
|  | ASSERT_FALSE(ParseIntSafe(&u16, "65536")); | 
|  | } | 
|  |  | 
|  |  | 
|  | }  // namespace bssl |