| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
 |  * All rights reserved. | 
 |  * | 
 |  * This package is an SSL implementation written | 
 |  * by Eric Young (eay@cryptsoft.com). | 
 |  * The implementation was written so as to conform with Netscapes SSL. | 
 |  * | 
 |  * This library is free for commercial and non-commercial use as long as | 
 |  * the following conditions are aheared to.  The following conditions | 
 |  * apply to all code found in this distribution, be it the RC4, RSA, | 
 |  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
 |  * included with this distribution is covered by the same copyright terms | 
 |  * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
 |  * | 
 |  * Copyright remains Eric Young's, and as such any Copyright notices in | 
 |  * the code are not to be removed. | 
 |  * If this package is used in a product, Eric Young should be given attribution | 
 |  * as the author of the parts of the library used. | 
 |  * This can be in the form of a textual message at program startup or | 
 |  * in documentation (online or textual) provided with the package. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. All advertising materials mentioning features or use of this software | 
 |  *    must display the following acknowledgement: | 
 |  *    "This product includes cryptographic software written by | 
 |  *     Eric Young (eay@cryptsoft.com)" | 
 |  *    The word 'cryptographic' can be left out if the rouines from the library | 
 |  *    being used are not cryptographic related :-). | 
 |  * 4. If you include any Windows specific code (or a derivative thereof) from | 
 |  *    the apps directory (application code) you must include an acknowledgement: | 
 |  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
 |  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
 |  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
 |  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
 |  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
 |  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
 |  * SUCH DAMAGE. | 
 |  * | 
 |  * The licence and distribution terms for any publically available version or | 
 |  * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
 |  * copied and put under another distribution licence | 
 |  * [including the GNU Public Licence.] */ | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | // This file has two other implementations: x86 assembly language in | 
 | // asm/bn-586.pl and x86_64 inline assembly in asm/x86_64-gcc.c. | 
 | #if defined(OPENSSL_NO_ASM) || \ | 
 |     !(defined(OPENSSL_X86) ||  \ | 
 |       (defined(OPENSSL_X86_64) && (defined(__GNUC__) || defined(__clang__)))) | 
 |  | 
 | #ifdef BN_ULLONG | 
 | #define mul_add(r, a, w, c)               \ | 
 |   do {                                    \ | 
 |     BN_ULLONG t;                          \ | 
 |     t = (BN_ULLONG)(w) * (a) + (r) + (c); \ | 
 |     (r) = Lw(t);                          \ | 
 |     (c) = Hw(t);                          \ | 
 |   } while (0) | 
 |  | 
 | #define mul(r, a, w, c)             \ | 
 |   do {                              \ | 
 |     BN_ULLONG t;                    \ | 
 |     t = (BN_ULLONG)(w) * (a) + (c); \ | 
 |     (r) = Lw(t);                    \ | 
 |     (c) = Hw(t);                    \ | 
 |   } while (0) | 
 |  | 
 | #define sqr(r0, r1, a)        \ | 
 |   do {                        \ | 
 |     BN_ULLONG t;              \ | 
 |     t = (BN_ULLONG)(a) * (a); \ | 
 |     (r0) = Lw(t);             \ | 
 |     (r1) = Hw(t);             \ | 
 |   } while (0) | 
 |  | 
 | #else | 
 |  | 
 | #define mul_add(r, a, w, c)             \ | 
 |   do {                                  \ | 
 |     BN_ULONG high, low, ret, tmp = (a); \ | 
 |     ret = (r);                          \ | 
 |     BN_UMULT_LOHI(low, high, w, tmp);   \ | 
 |     ret += (c);                         \ | 
 |     (c) = (ret < (c)) ? 1 : 0;          \ | 
 |     (c) += high;                        \ | 
 |     ret += low;                         \ | 
 |     (c) += (ret < low) ? 1 : 0;         \ | 
 |     (r) = ret;                          \ | 
 |   } while (0) | 
 |  | 
 | #define mul(r, a, w, c)                \ | 
 |   do {                                 \ | 
 |     BN_ULONG high, low, ret, ta = (a); \ | 
 |     BN_UMULT_LOHI(low, high, w, ta);   \ | 
 |     ret = low + (c);                   \ | 
 |     (c) = high;                        \ | 
 |     (c) += (ret < low) ? 1 : 0;        \ | 
 |     (r) = ret;                         \ | 
 |   } while (0) | 
 |  | 
 | #define sqr(r0, r1, a)               \ | 
 |   do {                               \ | 
 |     BN_ULONG tmp = (a);              \ | 
 |     BN_UMULT_LOHI(r0, r1, tmp, tmp); \ | 
 |   } while (0) | 
 |  | 
 | #endif  // !BN_ULLONG | 
 |  | 
 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, | 
 |                           BN_ULONG w) { | 
 |   BN_ULONG c1 = 0; | 
 |  | 
 |   if (num == 0) { | 
 |     return c1; | 
 |   } | 
 |  | 
 |   while (num & ~3) { | 
 |     mul_add(rp[0], ap[0], w, c1); | 
 |     mul_add(rp[1], ap[1], w, c1); | 
 |     mul_add(rp[2], ap[2], w, c1); | 
 |     mul_add(rp[3], ap[3], w, c1); | 
 |     ap += 4; | 
 |     rp += 4; | 
 |     num -= 4; | 
 |   } | 
 |  | 
 |   while (num) { | 
 |     mul_add(rp[0], ap[0], w, c1); | 
 |     ap++; | 
 |     rp++; | 
 |     num--; | 
 |   } | 
 |  | 
 |   return c1; | 
 | } | 
 |  | 
 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, size_t num, | 
 |                       BN_ULONG w) { | 
 |   BN_ULONG c1 = 0; | 
 |  | 
 |   if (num == 0) { | 
 |     return c1; | 
 |   } | 
 |  | 
 |   while (num & ~3) { | 
 |     mul(rp[0], ap[0], w, c1); | 
 |     mul(rp[1], ap[1], w, c1); | 
 |     mul(rp[2], ap[2], w, c1); | 
 |     mul(rp[3], ap[3], w, c1); | 
 |     ap += 4; | 
 |     rp += 4; | 
 |     num -= 4; | 
 |   } | 
 |   while (num) { | 
 |     mul(rp[0], ap[0], w, c1); | 
 |     ap++; | 
 |     rp++; | 
 |     num--; | 
 |   } | 
 |   return c1; | 
 | } | 
 |  | 
 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, size_t n) { | 
 |   if (n == 0) { | 
 |     return; | 
 |   } | 
 |  | 
 |   while (n & ~3) { | 
 |     sqr(r[0], r[1], a[0]); | 
 |     sqr(r[2], r[3], a[1]); | 
 |     sqr(r[4], r[5], a[2]); | 
 |     sqr(r[6], r[7], a[3]); | 
 |     a += 4; | 
 |     r += 8; | 
 |     n -= 4; | 
 |   } | 
 |   while (n) { | 
 |     sqr(r[0], r[1], a[0]); | 
 |     a++; | 
 |     r += 2; | 
 |     n--; | 
 |   } | 
 | } | 
 |  | 
 | #ifdef BN_ULLONG | 
 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
 |                       size_t n) { | 
 |   BN_ULLONG ll = 0; | 
 |  | 
 |   if (n == 0) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   while (n & ~3) { | 
 |     ll += (BN_ULLONG)a[0] + b[0]; | 
 |     r[0] = (BN_ULONG)ll; | 
 |     ll >>= BN_BITS2; | 
 |     ll += (BN_ULLONG)a[1] + b[1]; | 
 |     r[1] = (BN_ULONG)ll; | 
 |     ll >>= BN_BITS2; | 
 |     ll += (BN_ULLONG)a[2] + b[2]; | 
 |     r[2] = (BN_ULONG)ll; | 
 |     ll >>= BN_BITS2; | 
 |     ll += (BN_ULLONG)a[3] + b[3]; | 
 |     r[3] = (BN_ULONG)ll; | 
 |     ll >>= BN_BITS2; | 
 |     a += 4; | 
 |     b += 4; | 
 |     r += 4; | 
 |     n -= 4; | 
 |   } | 
 |   while (n) { | 
 |     ll += (BN_ULLONG)a[0] + b[0]; | 
 |     r[0] = (BN_ULONG)ll; | 
 |     ll >>= BN_BITS2; | 
 |     a++; | 
 |     b++; | 
 |     r++; | 
 |     n--; | 
 |   } | 
 |   return (BN_ULONG)ll; | 
 | } | 
 |  | 
 | #else  // !BN_ULLONG | 
 |  | 
 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
 |                       size_t n) { | 
 |   BN_ULONG c, l, t; | 
 |  | 
 |   if (n == 0) { | 
 |     return (BN_ULONG)0; | 
 |   } | 
 |  | 
 |   c = 0; | 
 |   while (n & ~3) { | 
 |     t = a[0]; | 
 |     t += c; | 
 |     c = (t < c); | 
 |     l = t + b[0]; | 
 |     c += (l < t); | 
 |     r[0] = l; | 
 |     t = a[1]; | 
 |     t += c; | 
 |     c = (t < c); | 
 |     l = t + b[1]; | 
 |     c += (l < t); | 
 |     r[1] = l; | 
 |     t = a[2]; | 
 |     t += c; | 
 |     c = (t < c); | 
 |     l = t + b[2]; | 
 |     c += (l < t); | 
 |     r[2] = l; | 
 |     t = a[3]; | 
 |     t += c; | 
 |     c = (t < c); | 
 |     l = t + b[3]; | 
 |     c += (l < t); | 
 |     r[3] = l; | 
 |     a += 4; | 
 |     b += 4; | 
 |     r += 4; | 
 |     n -= 4; | 
 |   } | 
 |   while (n) { | 
 |     t = a[0]; | 
 |     t += c; | 
 |     c = (t < c); | 
 |     l = t + b[0]; | 
 |     c += (l < t); | 
 |     r[0] = l; | 
 |     a++; | 
 |     b++; | 
 |     r++; | 
 |     n--; | 
 |   } | 
 |   return (BN_ULONG)c; | 
 | } | 
 |  | 
 | #endif  // !BN_ULLONG | 
 |  | 
 | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, | 
 |                       size_t n) { | 
 |   BN_ULONG t1, t2; | 
 |   int c = 0; | 
 |  | 
 |   if (n == 0) { | 
 |     return (BN_ULONG)0; | 
 |   } | 
 |  | 
 |   while (n & ~3) { | 
 |     t1 = a[0]; | 
 |     t2 = b[0]; | 
 |     r[0] = t1 - t2 - c; | 
 |     if (t1 != t2) { | 
 |       c = (t1 < t2); | 
 |     } | 
 |     t1 = a[1]; | 
 |     t2 = b[1]; | 
 |     r[1] = t1 - t2 - c; | 
 |     if (t1 != t2) { | 
 |       c = (t1 < t2); | 
 |     } | 
 |     t1 = a[2]; | 
 |     t2 = b[2]; | 
 |     r[2] = t1 - t2 - c; | 
 |     if (t1 != t2) { | 
 |       c = (t1 < t2); | 
 |     } | 
 |     t1 = a[3]; | 
 |     t2 = b[3]; | 
 |     r[3] = t1 - t2 - c; | 
 |     if (t1 != t2) { | 
 |       c = (t1 < t2); | 
 |     } | 
 |     a += 4; | 
 |     b += 4; | 
 |     r += 4; | 
 |     n -= 4; | 
 |   } | 
 |   while (n) { | 
 |     t1 = a[0]; | 
 |     t2 = b[0]; | 
 |     r[0] = t1 - t2 - c; | 
 |     if (t1 != t2) { | 
 |       c = (t1 < t2); | 
 |     } | 
 |     a++; | 
 |     b++; | 
 |     r++; | 
 |     n--; | 
 |   } | 
 |   return c; | 
 | } | 
 |  | 
 | // mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) | 
 | // mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) | 
 | // sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) | 
 | // sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) | 
 |  | 
 | #ifdef BN_ULLONG | 
 |  | 
 | // Keep in mind that additions to multiplication result can not overflow, | 
 | // because its high half cannot be all-ones. | 
 | #define mul_add_c(a, b, c0, c1, c2)     \ | 
 |   do {                                  \ | 
 |     BN_ULONG hi;                        \ | 
 |     BN_ULLONG t = (BN_ULLONG)(a) * (b); \ | 
 |     t += (c0); /* no carry */           \ | 
 |     (c0) = (BN_ULONG)Lw(t);             \ | 
 |     hi = (BN_ULONG)Hw(t);               \ | 
 |     (c1) += (hi);                       \ | 
 |     if ((c1) < hi) {                    \ | 
 |       (c2)++;                           \ | 
 |     }                                   \ | 
 |   } while (0) | 
 |  | 
 | #define mul_add_c2(a, b, c0, c1, c2)        \ | 
 |   do {                                      \ | 
 |     BN_ULONG hi;                            \ | 
 |     BN_ULLONG t = (BN_ULLONG)(a) * (b);     \ | 
 |     BN_ULLONG tt = t + (c0); /* no carry */ \ | 
 |     (c0) = (BN_ULONG)Lw(tt);                \ | 
 |     hi = (BN_ULONG)Hw(tt);                  \ | 
 |     (c1) += hi;                             \ | 
 |     if ((c1) < hi) {                        \ | 
 |       (c2)++;                               \ | 
 |     }                                       \ | 
 |     t += (c0); /* no carry */               \ | 
 |     (c0) = (BN_ULONG)Lw(t);                 \ | 
 |     hi = (BN_ULONG)Hw(t);                   \ | 
 |     (c1) += hi;                             \ | 
 |     if ((c1) < hi) {                        \ | 
 |       (c2)++;                               \ | 
 |     }                                       \ | 
 |   } while (0) | 
 |  | 
 | #define sqr_add_c(a, i, c0, c1, c2)           \ | 
 |   do {                                        \ | 
 |     BN_ULONG hi;                              \ | 
 |     BN_ULLONG t = (BN_ULLONG)(a)[i] * (a)[i]; \ | 
 |     t += (c0); /* no carry */                 \ | 
 |     (c0) = (BN_ULONG)Lw(t);                   \ | 
 |     hi = (BN_ULONG)Hw(t);                     \ | 
 |     (c1) += hi;                               \ | 
 |     if ((c1) < hi) {                          \ | 
 |       (c2)++;                                 \ | 
 |     }                                         \ | 
 |   } while (0) | 
 |  | 
 | #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) | 
 |  | 
 | #else | 
 |  | 
 | // Keep in mind that additions to hi can not overflow, because the high word of | 
 | // a multiplication result cannot be all-ones. | 
 | #define mul_add_c(a, b, c0, c1, c2) \ | 
 |   do {                              \ | 
 |     BN_ULONG ta = (a), tb = (b);    \ | 
 |     BN_ULONG lo, hi;                \ | 
 |     BN_UMULT_LOHI(lo, hi, ta, tb);  \ | 
 |     (c0) += lo;                     \ | 
 |     hi += ((c0) < lo) ? 1 : 0;      \ | 
 |     (c1) += hi;                     \ | 
 |     (c2) += ((c1) < hi) ? 1 : 0;    \ | 
 |   } while (0) | 
 |  | 
 | #define mul_add_c2(a, b, c0, c1, c2) \ | 
 |   do {                               \ | 
 |     BN_ULONG ta = (a), tb = (b);     \ | 
 |     BN_ULONG lo, hi, tt;             \ | 
 |     BN_UMULT_LOHI(lo, hi, ta, tb);   \ | 
 |     (c0) += lo;                      \ | 
 |     tt = hi + (((c0) < lo) ? 1 : 0); \ | 
 |     (c1) += tt;                      \ | 
 |     (c2) += ((c1) < tt) ? 1 : 0;     \ | 
 |     (c0) += lo;                      \ | 
 |     hi += (c0 < lo) ? 1 : 0;         \ | 
 |     (c1) += hi;                      \ | 
 |     (c2) += ((c1) < hi) ? 1 : 0;     \ | 
 |   } while (0) | 
 |  | 
 | #define sqr_add_c(a, i, c0, c1, c2) \ | 
 |   do {                              \ | 
 |     BN_ULONG ta = (a)[i];           \ | 
 |     BN_ULONG lo, hi;                \ | 
 |     BN_UMULT_LOHI(lo, hi, ta, ta);  \ | 
 |     (c0) += lo;                     \ | 
 |     hi += (c0 < lo) ? 1 : 0;        \ | 
 |     (c1) += hi;                     \ | 
 |     (c2) += ((c1) < hi) ? 1 : 0;    \ | 
 |   } while (0) | 
 |  | 
 | #define sqr_add_c2(a, i, j, c0, c1, c2) mul_add_c2((a)[i], (a)[j], c0, c1, c2) | 
 |  | 
 | #endif  // !BN_ULLONG | 
 |  | 
 | void bn_mul_comba8(BN_ULONG r[16], const BN_ULONG a[8], const BN_ULONG b[8]) { | 
 |   BN_ULONG c1, c2, c3; | 
 |  | 
 |   c1 = 0; | 
 |   c2 = 0; | 
 |   c3 = 0; | 
 |   mul_add_c(a[0], b[0], c1, c2, c3); | 
 |   r[0] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[0], b[1], c2, c3, c1); | 
 |   mul_add_c(a[1], b[0], c2, c3, c1); | 
 |   r[1] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[2], b[0], c3, c1, c2); | 
 |   mul_add_c(a[1], b[1], c3, c1, c2); | 
 |   mul_add_c(a[0], b[2], c3, c1, c2); | 
 |   r[2] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[0], b[3], c1, c2, c3); | 
 |   mul_add_c(a[1], b[2], c1, c2, c3); | 
 |   mul_add_c(a[2], b[1], c1, c2, c3); | 
 |   mul_add_c(a[3], b[0], c1, c2, c3); | 
 |   r[3] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[4], b[0], c2, c3, c1); | 
 |   mul_add_c(a[3], b[1], c2, c3, c1); | 
 |   mul_add_c(a[2], b[2], c2, c3, c1); | 
 |   mul_add_c(a[1], b[3], c2, c3, c1); | 
 |   mul_add_c(a[0], b[4], c2, c3, c1); | 
 |   r[4] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[0], b[5], c3, c1, c2); | 
 |   mul_add_c(a[1], b[4], c3, c1, c2); | 
 |   mul_add_c(a[2], b[3], c3, c1, c2); | 
 |   mul_add_c(a[3], b[2], c3, c1, c2); | 
 |   mul_add_c(a[4], b[1], c3, c1, c2); | 
 |   mul_add_c(a[5], b[0], c3, c1, c2); | 
 |   r[5] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[6], b[0], c1, c2, c3); | 
 |   mul_add_c(a[5], b[1], c1, c2, c3); | 
 |   mul_add_c(a[4], b[2], c1, c2, c3); | 
 |   mul_add_c(a[3], b[3], c1, c2, c3); | 
 |   mul_add_c(a[2], b[4], c1, c2, c3); | 
 |   mul_add_c(a[1], b[5], c1, c2, c3); | 
 |   mul_add_c(a[0], b[6], c1, c2, c3); | 
 |   r[6] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[0], b[7], c2, c3, c1); | 
 |   mul_add_c(a[1], b[6], c2, c3, c1); | 
 |   mul_add_c(a[2], b[5], c2, c3, c1); | 
 |   mul_add_c(a[3], b[4], c2, c3, c1); | 
 |   mul_add_c(a[4], b[3], c2, c3, c1); | 
 |   mul_add_c(a[5], b[2], c2, c3, c1); | 
 |   mul_add_c(a[6], b[1], c2, c3, c1); | 
 |   mul_add_c(a[7], b[0], c2, c3, c1); | 
 |   r[7] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[7], b[1], c3, c1, c2); | 
 |   mul_add_c(a[6], b[2], c3, c1, c2); | 
 |   mul_add_c(a[5], b[3], c3, c1, c2); | 
 |   mul_add_c(a[4], b[4], c3, c1, c2); | 
 |   mul_add_c(a[3], b[5], c3, c1, c2); | 
 |   mul_add_c(a[2], b[6], c3, c1, c2); | 
 |   mul_add_c(a[1], b[7], c3, c1, c2); | 
 |   r[8] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[2], b[7], c1, c2, c3); | 
 |   mul_add_c(a[3], b[6], c1, c2, c3); | 
 |   mul_add_c(a[4], b[5], c1, c2, c3); | 
 |   mul_add_c(a[5], b[4], c1, c2, c3); | 
 |   mul_add_c(a[6], b[3], c1, c2, c3); | 
 |   mul_add_c(a[7], b[2], c1, c2, c3); | 
 |   r[9] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[7], b[3], c2, c3, c1); | 
 |   mul_add_c(a[6], b[4], c2, c3, c1); | 
 |   mul_add_c(a[5], b[5], c2, c3, c1); | 
 |   mul_add_c(a[4], b[6], c2, c3, c1); | 
 |   mul_add_c(a[3], b[7], c2, c3, c1); | 
 |   r[10] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[4], b[7], c3, c1, c2); | 
 |   mul_add_c(a[5], b[6], c3, c1, c2); | 
 |   mul_add_c(a[6], b[5], c3, c1, c2); | 
 |   mul_add_c(a[7], b[4], c3, c1, c2); | 
 |   r[11] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[7], b[5], c1, c2, c3); | 
 |   mul_add_c(a[6], b[6], c1, c2, c3); | 
 |   mul_add_c(a[5], b[7], c1, c2, c3); | 
 |   r[12] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[6], b[7], c2, c3, c1); | 
 |   mul_add_c(a[7], b[6], c2, c3, c1); | 
 |   r[13] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[7], b[7], c3, c1, c2); | 
 |   r[14] = c3; | 
 |   r[15] = c1; | 
 | } | 
 |  | 
 | void bn_mul_comba4(BN_ULONG r[8], const BN_ULONG a[4], const BN_ULONG b[4]) { | 
 |   BN_ULONG c1, c2, c3; | 
 |  | 
 |   c1 = 0; | 
 |   c2 = 0; | 
 |   c3 = 0; | 
 |   mul_add_c(a[0], b[0], c1, c2, c3); | 
 |   r[0] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[0], b[1], c2, c3, c1); | 
 |   mul_add_c(a[1], b[0], c2, c3, c1); | 
 |   r[1] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[2], b[0], c3, c1, c2); | 
 |   mul_add_c(a[1], b[1], c3, c1, c2); | 
 |   mul_add_c(a[0], b[2], c3, c1, c2); | 
 |   r[2] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[0], b[3], c1, c2, c3); | 
 |   mul_add_c(a[1], b[2], c1, c2, c3); | 
 |   mul_add_c(a[2], b[1], c1, c2, c3); | 
 |   mul_add_c(a[3], b[0], c1, c2, c3); | 
 |   r[3] = c1; | 
 |   c1 = 0; | 
 |   mul_add_c(a[3], b[1], c2, c3, c1); | 
 |   mul_add_c(a[2], b[2], c2, c3, c1); | 
 |   mul_add_c(a[1], b[3], c2, c3, c1); | 
 |   r[4] = c2; | 
 |   c2 = 0; | 
 |   mul_add_c(a[2], b[3], c3, c1, c2); | 
 |   mul_add_c(a[3], b[2], c3, c1, c2); | 
 |   r[5] = c3; | 
 |   c3 = 0; | 
 |   mul_add_c(a[3], b[3], c1, c2, c3); | 
 |   r[6] = c1; | 
 |   r[7] = c2; | 
 | } | 
 |  | 
 | void bn_sqr_comba8(BN_ULONG r[16], const BN_ULONG a[8]) { | 
 |   BN_ULONG c1, c2, c3; | 
 |  | 
 |   c1 = 0; | 
 |   c2 = 0; | 
 |   c3 = 0; | 
 |   sqr_add_c(a, 0, c1, c2, c3); | 
 |   r[0] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c2(a, 1, 0, c2, c3, c1); | 
 |   r[1] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c(a, 1, c3, c1, c2); | 
 |   sqr_add_c2(a, 2, 0, c3, c1, c2); | 
 |   r[2] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c2(a, 3, 0, c1, c2, c3); | 
 |   sqr_add_c2(a, 2, 1, c1, c2, c3); | 
 |   r[3] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c(a, 2, c2, c3, c1); | 
 |   sqr_add_c2(a, 3, 1, c2, c3, c1); | 
 |   sqr_add_c2(a, 4, 0, c2, c3, c1); | 
 |   r[4] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c2(a, 5, 0, c3, c1, c2); | 
 |   sqr_add_c2(a, 4, 1, c3, c1, c2); | 
 |   sqr_add_c2(a, 3, 2, c3, c1, c2); | 
 |   r[5] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c(a, 3, c1, c2, c3); | 
 |   sqr_add_c2(a, 4, 2, c1, c2, c3); | 
 |   sqr_add_c2(a, 5, 1, c1, c2, c3); | 
 |   sqr_add_c2(a, 6, 0, c1, c2, c3); | 
 |   r[6] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c2(a, 7, 0, c2, c3, c1); | 
 |   sqr_add_c2(a, 6, 1, c2, c3, c1); | 
 |   sqr_add_c2(a, 5, 2, c2, c3, c1); | 
 |   sqr_add_c2(a, 4, 3, c2, c3, c1); | 
 |   r[7] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c(a, 4, c3, c1, c2); | 
 |   sqr_add_c2(a, 5, 3, c3, c1, c2); | 
 |   sqr_add_c2(a, 6, 2, c3, c1, c2); | 
 |   sqr_add_c2(a, 7, 1, c3, c1, c2); | 
 |   r[8] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c2(a, 7, 2, c1, c2, c3); | 
 |   sqr_add_c2(a, 6, 3, c1, c2, c3); | 
 |   sqr_add_c2(a, 5, 4, c1, c2, c3); | 
 |   r[9] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c(a, 5, c2, c3, c1); | 
 |   sqr_add_c2(a, 6, 4, c2, c3, c1); | 
 |   sqr_add_c2(a, 7, 3, c2, c3, c1); | 
 |   r[10] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c2(a, 7, 4, c3, c1, c2); | 
 |   sqr_add_c2(a, 6, 5, c3, c1, c2); | 
 |   r[11] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c(a, 6, c1, c2, c3); | 
 |   sqr_add_c2(a, 7, 5, c1, c2, c3); | 
 |   r[12] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c2(a, 7, 6, c2, c3, c1); | 
 |   r[13] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c(a, 7, c3, c1, c2); | 
 |   r[14] = c3; | 
 |   r[15] = c1; | 
 | } | 
 |  | 
 | void bn_sqr_comba4(BN_ULONG r[8], const BN_ULONG a[4]) { | 
 |   BN_ULONG c1, c2, c3; | 
 |  | 
 |   c1 = 0; | 
 |   c2 = 0; | 
 |   c3 = 0; | 
 |   sqr_add_c(a, 0, c1, c2, c3); | 
 |   r[0] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c2(a, 1, 0, c2, c3, c1); | 
 |   r[1] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c(a, 1, c3, c1, c2); | 
 |   sqr_add_c2(a, 2, 0, c3, c1, c2); | 
 |   r[2] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c2(a, 3, 0, c1, c2, c3); | 
 |   sqr_add_c2(a, 2, 1, c1, c2, c3); | 
 |   r[3] = c1; | 
 |   c1 = 0; | 
 |   sqr_add_c(a, 2, c2, c3, c1); | 
 |   sqr_add_c2(a, 3, 1, c2, c3, c1); | 
 |   r[4] = c2; | 
 |   c2 = 0; | 
 |   sqr_add_c2(a, 3, 2, c3, c1, c2); | 
 |   r[5] = c3; | 
 |   c3 = 0; | 
 |   sqr_add_c(a, 3, c1, c2, c3); | 
 |   r[6] = c1; | 
 |   r[7] = c2; | 
 | } | 
 |  | 
 | #undef mul_add | 
 | #undef mul | 
 | #undef sqr | 
 | #undef mul_add_c | 
 | #undef mul_add_c2 | 
 | #undef sqr_add_c | 
 | #undef sqr_add_c2 | 
 |  | 
 | #endif |