|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * ECC cipher suite support in OpenSSL originally developed by | 
|  | * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2005 Nokia. All rights reserved. | 
|  | * | 
|  | * The portions of the attached software ("Contribution") is developed by | 
|  | * Nokia Corporation and is licensed pursuant to the OpenSSL open source | 
|  | * license. | 
|  | * | 
|  | * The Contribution, originally written by Mika Kousa and Pasi Eronen of | 
|  | * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites | 
|  | * support (see RFC 4279) to OpenSSL. | 
|  | * | 
|  | * No patent licenses or other rights except those expressly stated in | 
|  | * the OpenSSL open source license shall be deemed granted or received | 
|  | * expressly, by implication, estoppel, or otherwise. | 
|  | * | 
|  | * No assurances are provided by Nokia that the Contribution does not | 
|  | * infringe the patent or other intellectual property rights of any third | 
|  | * party or that the license provides you with all the necessary rights | 
|  | * to make use of the Contribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN | 
|  | * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA | 
|  | * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY | 
|  | * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR | 
|  | * OTHERWISE. | 
|  | */ | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_SSL_INTERNAL_H | 
|  | #define OPENSSL_HEADER_SSL_INTERNAL_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <limits> | 
|  | #include <new> | 
|  | #include <type_traits> | 
|  | #include <utility> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/lhash.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/ssl.h> | 
|  | #include <openssl/span.h> | 
|  | #include <openssl/stack.h> | 
|  |  | 
|  | #include "../crypto/err/internal.h" | 
|  | #include "../crypto/internal.h" | 
|  |  | 
|  |  | 
|  | #if defined(OPENSSL_WINDOWS) | 
|  | // Windows defines struct timeval in winsock2.h. | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <winsock2.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  | #else | 
|  | #include <sys/time.h> | 
|  | #endif | 
|  |  | 
|  |  | 
|  | namespace bssl { | 
|  |  | 
|  | struct SSL_CONFIG; | 
|  | struct SSL_HANDSHAKE; | 
|  | struct SSL_PROTOCOL_METHOD; | 
|  | struct SSL_X509_METHOD; | 
|  |  | 
|  | // C++ utilities. | 
|  |  | 
|  | // New behaves like |new| but uses |OPENSSL_malloc| for memory allocation. It | 
|  | // returns nullptr on allocation error. It only implements single-object | 
|  | // allocation and not new T[n]. | 
|  | // | 
|  | // Note: unlike |new|, this does not support non-public constructors. | 
|  | template <typename T, typename... Args> | 
|  | T *New(Args &&... args) { | 
|  | void *t = OPENSSL_malloc(sizeof(T)); | 
|  | if (t == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | return nullptr; | 
|  | } | 
|  | return new (t) T(std::forward<Args>(args)...); | 
|  | } | 
|  |  | 
|  | // Delete behaves like |delete| but uses |OPENSSL_free| to release memory. | 
|  | // | 
|  | // Note: unlike |delete| this does not support non-public destructors. | 
|  | template <typename T> | 
|  | void Delete(T *t) { | 
|  | if (t != nullptr) { | 
|  | t->~T(); | 
|  | OPENSSL_free(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | // All types with kAllowUniquePtr set may be used with UniquePtr. Other types | 
|  | // may be C structs which require a |BORINGSSL_MAKE_DELETER| registration. | 
|  | namespace internal { | 
|  | template <typename T> | 
|  | struct DeleterImpl<T, typename std::enable_if<T::kAllowUniquePtr>::type> { | 
|  | static void Free(T *t) { Delete(t); } | 
|  | }; | 
|  | } | 
|  |  | 
|  | // MakeUnique behaves like |std::make_unique| but returns nullptr on allocation | 
|  | // error. | 
|  | template <typename T, typename... Args> | 
|  | UniquePtr<T> MakeUnique(Args &&... args) { | 
|  | return UniquePtr<T>(New<T>(std::forward<Args>(args)...)); | 
|  | } | 
|  |  | 
|  | #if defined(BORINGSSL_ALLOW_CXX_RUNTIME) | 
|  | #define HAS_VIRTUAL_DESTRUCTOR | 
|  | #define PURE_VIRTUAL = 0 | 
|  | #else | 
|  | // HAS_VIRTUAL_DESTRUCTOR should be declared in any base class which defines a | 
|  | // virtual destructor. This avoids a dependency on |_ZdlPv| and prevents the | 
|  | // class from being used with |delete|. | 
|  | #define HAS_VIRTUAL_DESTRUCTOR \ | 
|  | void operator delete(void *) { abort(); } | 
|  |  | 
|  | // PURE_VIRTUAL should be used instead of = 0 when defining pure-virtual | 
|  | // functions. This avoids a dependency on |__cxa_pure_virtual| but loses | 
|  | // compile-time checking. | 
|  | #define PURE_VIRTUAL { abort(); } | 
|  | #endif | 
|  |  | 
|  | // CONSTEXPR_ARRAY works around a VS 2015 bug where ranged for loops don't work | 
|  | // on constexpr arrays. | 
|  | #if defined(_MSC_VER) && !defined(__clang__) && _MSC_VER < 1910 | 
|  | #define CONSTEXPR_ARRAY const | 
|  | #else | 
|  | #define CONSTEXPR_ARRAY constexpr | 
|  | #endif | 
|  |  | 
|  | // Array<T> is an owning array of elements of |T|. | 
|  | template <typename T> | 
|  | class Array { | 
|  | public: | 
|  | // Array's default constructor creates an empty array. | 
|  | Array() {} | 
|  | Array(const Array &) = delete; | 
|  | Array(Array &&other) { *this = std::move(other); } | 
|  |  | 
|  | ~Array() { Reset(); } | 
|  |  | 
|  | Array &operator=(const Array &) = delete; | 
|  | Array &operator=(Array &&other) { | 
|  | Reset(); | 
|  | other.Release(&data_, &size_); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | const T *data() const { return data_; } | 
|  | T *data() { return data_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  |  | 
|  | const T &operator[](size_t i) const { return data_[i]; } | 
|  | T &operator[](size_t i) { return data_[i]; } | 
|  |  | 
|  | T *begin() { return data_; } | 
|  | const T *cbegin() const { return data_; } | 
|  | T *end() { return data_ + size_; } | 
|  | const T *cend() const { return data_ + size_; } | 
|  |  | 
|  | void Reset() { Reset(nullptr, 0); } | 
|  |  | 
|  | // Reset releases the current contents of the array and takes ownership of the | 
|  | // raw pointer supplied by the caller. | 
|  | void Reset(T *new_data, size_t new_size) { | 
|  | for (size_t i = 0; i < size_; i++) { | 
|  | data_[i].~T(); | 
|  | } | 
|  | OPENSSL_free(data_); | 
|  | data_ = new_data; | 
|  | size_ = new_size; | 
|  | } | 
|  |  | 
|  | // Release releases ownership of the array to a raw pointer supplied by the | 
|  | // caller. | 
|  | void Release(T **out, size_t *out_size) { | 
|  | *out = data_; | 
|  | *out_size = size_; | 
|  | data_ = nullptr; | 
|  | size_ = 0; | 
|  | } | 
|  |  | 
|  | // Init replaces the array with a newly-allocated array of |new_size| | 
|  | // default-constructed copies of |T|. It returns true on success and false on | 
|  | // error. | 
|  | // | 
|  | // Note that if |T| is a primitive type like |uint8_t|, it is uninitialized. | 
|  | bool Init(size_t new_size) { | 
|  | Reset(); | 
|  | if (new_size == 0) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (new_size > std::numeric_limits<size_t>::max() / sizeof(T)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  | data_ = reinterpret_cast<T*>(OPENSSL_malloc(new_size * sizeof(T))); | 
|  | if (data_ == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); | 
|  | return false; | 
|  | } | 
|  | size_ = new_size; | 
|  | for (size_t i = 0; i < size_; i++) { | 
|  | new (&data_[i]) T; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // CopyFrom replaces the array with a newly-allocated copy of |in|. It returns | 
|  | // true on success and false on error. | 
|  | bool CopyFrom(Span<const T> in) { | 
|  | if (!Init(in.size())) { | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memcpy(data_, in.data(), sizeof(T) * in.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | T *data_ = nullptr; | 
|  | size_t size_ = 0; | 
|  | }; | 
|  |  | 
|  | // CBBFinishArray behaves like |CBB_finish| but stores the result in an Array. | 
|  | OPENSSL_EXPORT bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out); | 
|  |  | 
|  |  | 
|  | // Protocol versions. | 
|  | // | 
|  | // Due to DTLS's historical wire version differences and to support multiple | 
|  | // variants of the same protocol during development, we maintain two notions of | 
|  | // version. | 
|  | // | 
|  | // The "version" or "wire version" is the actual 16-bit value that appears on | 
|  | // the wire. It uniquely identifies a version and is also used at API | 
|  | // boundaries. The set of supported versions differs between TLS and DTLS. Wire | 
|  | // versions are opaque values and may not be compared numerically. | 
|  | // | 
|  | // The "protocol version" identifies the high-level handshake variant being | 
|  | // used. DTLS versions map to the corresponding TLS versions. Draft TLS 1.3 | 
|  | // variants all map to TLS 1.3. Protocol versions are sequential and may be | 
|  | // compared numerically. | 
|  |  | 
|  | // ssl_protocol_version_from_wire sets |*out| to the protocol version | 
|  | // corresponding to wire version |version| and returns true. If |version| is not | 
|  | // a valid TLS or DTLS version, it returns false. | 
|  | // | 
|  | // Note this simultaneously handles both DTLS and TLS. Use one of the | 
|  | // higher-level functions below for most operations. | 
|  | bool ssl_protocol_version_from_wire(uint16_t *out, uint16_t version); | 
|  |  | 
|  | // ssl_get_version_range sets |*out_min_version| and |*out_max_version| to the | 
|  | // minimum and maximum enabled protocol versions, respectively. | 
|  | bool ssl_get_version_range(const SSL_HANDSHAKE *hs, uint16_t *out_min_version, | 
|  | uint16_t *out_max_version); | 
|  |  | 
|  | // ssl_supports_version returns whether |hs| supports |version|. | 
|  | bool ssl_supports_version(SSL_HANDSHAKE *hs, uint16_t version); | 
|  |  | 
|  | // ssl_method_supports_version returns whether |method| supports |version|. | 
|  | bool ssl_method_supports_version(const SSL_PROTOCOL_METHOD *method, | 
|  | uint16_t version); | 
|  |  | 
|  | // ssl_add_supported_versions writes the supported versions of |hs| to |cbb|, in | 
|  | // decreasing preference order. | 
|  | bool ssl_add_supported_versions(SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // ssl_negotiate_version negotiates a common version based on |hs|'s preferences | 
|  | // and the peer preference list in |peer_versions|. On success, it returns true | 
|  | // and sets |*out_version| to the selected version. Otherwise, it returns false | 
|  | // and sets |*out_alert| to an alert to send. | 
|  | bool ssl_negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | uint16_t *out_version, const CBS *peer_versions); | 
|  |  | 
|  | // ssl_protocol_version returns |ssl|'s protocol version. It is an error to | 
|  | // call this function before the version is determined. | 
|  | uint16_t ssl_protocol_version(const SSL *ssl); | 
|  |  | 
|  | // ssl_is_draft28 returns whether the version corresponds to a draft28 TLS 1.3 | 
|  | // variant. | 
|  | bool ssl_is_draft28(uint16_t version); | 
|  |  | 
|  | // Cipher suites. | 
|  |  | 
|  | }  // namespace bssl | 
|  |  | 
|  | struct ssl_cipher_st { | 
|  | // name is the OpenSSL name for the cipher. | 
|  | const char *name; | 
|  | // standard_name is the IETF name for the cipher. | 
|  | const char *standard_name; | 
|  | // id is the cipher suite value bitwise OR-d with 0x03000000. | 
|  | uint32_t id; | 
|  |  | 
|  | // algorithm_* determine the cipher suite. See constants below for the values. | 
|  | uint32_t algorithm_mkey; | 
|  | uint32_t algorithm_auth; | 
|  | uint32_t algorithm_enc; | 
|  | uint32_t algorithm_mac; | 
|  | uint32_t algorithm_prf; | 
|  | }; | 
|  |  | 
|  | namespace bssl { | 
|  |  | 
|  | // Bits for |algorithm_mkey| (key exchange algorithm). | 
|  | #define SSL_kRSA 0x00000001u | 
|  | #define SSL_kECDHE 0x00000002u | 
|  | // SSL_kPSK is only set for plain PSK, not ECDHE_PSK. | 
|  | #define SSL_kPSK 0x00000004u | 
|  | #define SSL_kGENERIC 0x00000008u | 
|  |  | 
|  | // Bits for |algorithm_auth| (server authentication). | 
|  | #define SSL_aRSA 0x00000001u | 
|  | #define SSL_aECDSA 0x00000002u | 
|  | // SSL_aPSK is set for both PSK and ECDHE_PSK. | 
|  | #define SSL_aPSK 0x00000004u | 
|  | #define SSL_aGENERIC 0x00000008u | 
|  |  | 
|  | #define SSL_aCERT (SSL_aRSA | SSL_aECDSA) | 
|  |  | 
|  | // Bits for |algorithm_enc| (symmetric encryption). | 
|  | #define SSL_3DES                 0x00000001u | 
|  | #define SSL_AES128               0x00000002u | 
|  | #define SSL_AES256               0x00000004u | 
|  | #define SSL_AES128GCM            0x00000008u | 
|  | #define SSL_AES256GCM            0x00000010u | 
|  | #define SSL_eNULL                0x00000020u | 
|  | #define SSL_CHACHA20POLY1305     0x00000040u | 
|  |  | 
|  | #define SSL_AES (SSL_AES128 | SSL_AES256 | SSL_AES128GCM | SSL_AES256GCM) | 
|  |  | 
|  | // Bits for |algorithm_mac| (symmetric authentication). | 
|  | #define SSL_SHA1 0x00000001u | 
|  | // SSL_AEAD is set for all AEADs. | 
|  | #define SSL_AEAD 0x00000002u | 
|  |  | 
|  | // Bits for |algorithm_prf| (handshake digest). | 
|  | #define SSL_HANDSHAKE_MAC_DEFAULT 0x1 | 
|  | #define SSL_HANDSHAKE_MAC_SHA256 0x2 | 
|  | #define SSL_HANDSHAKE_MAC_SHA384 0x4 | 
|  |  | 
|  | // An SSLCipherPreferenceList contains a list of SSL_CIPHERs with equal- | 
|  | // preference groups. For TLS clients, the groups are moot because the server | 
|  | // picks the cipher and groups cannot be expressed on the wire. However, for | 
|  | // servers, the equal-preference groups allow the client's preferences to be | 
|  | // partially respected. (This only has an effect with | 
|  | // SSL_OP_CIPHER_SERVER_PREFERENCE). | 
|  | // | 
|  | // The equal-preference groups are expressed by grouping SSL_CIPHERs together. | 
|  | // All elements of a group have the same priority: no ordering is expressed | 
|  | // within a group. | 
|  | // | 
|  | // The values in |ciphers| are in one-to-one correspondence with | 
|  | // |in_group_flags|. (That is, sk_SSL_CIPHER_num(ciphers) is the number of | 
|  | // bytes in |in_group_flags|.) The bytes in |in_group_flags| are either 1, to | 
|  | // indicate that the corresponding SSL_CIPHER is not the last element of a | 
|  | // group, or 0 to indicate that it is. | 
|  | // | 
|  | // For example, if |in_group_flags| contains all zeros then that indicates a | 
|  | // traditional, fully-ordered preference. Every SSL_CIPHER is the last element | 
|  | // of the group (i.e. they are all in a one-element group). | 
|  | // | 
|  | // For a more complex example, consider: | 
|  | //   ciphers:        A  B  C  D  E  F | 
|  | //   in_group_flags: 1  1  0  0  1  0 | 
|  | // | 
|  | // That would express the following, order: | 
|  | // | 
|  | //    A         E | 
|  | //    B -> D -> F | 
|  | //    C | 
|  | struct SSLCipherPreferenceList { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSLCipherPreferenceList() = default; | 
|  | ~SSLCipherPreferenceList(); | 
|  |  | 
|  | bool Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers, | 
|  | Span<const bool> in_group_flags); | 
|  |  | 
|  | UniquePtr<STACK_OF(SSL_CIPHER)> ciphers; | 
|  | bool *in_group_flags = nullptr; | 
|  | }; | 
|  |  | 
|  | // ssl_cipher_get_evp_aead sets |*out_aead| to point to the correct EVP_AEAD | 
|  | // object for |cipher| protocol version |version|. It sets |*out_mac_secret_len| | 
|  | // and |*out_fixed_iv_len| to the MAC key length and fixed IV length, | 
|  | // respectively. The MAC key length is zero except for legacy block and stream | 
|  | // ciphers. It returns true on success and false on error. | 
|  | bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, | 
|  | size_t *out_mac_secret_len, | 
|  | size_t *out_fixed_iv_len, const SSL_CIPHER *cipher, | 
|  | uint16_t version, int is_dtls); | 
|  |  | 
|  | // ssl_get_handshake_digest returns the |EVP_MD| corresponding to |version| and | 
|  | // |cipher|. | 
|  | const EVP_MD *ssl_get_handshake_digest(uint16_t version, | 
|  | const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_create_cipher_list evaluates |rule_str|. It sets |*out_cipher_list| to a | 
|  | // newly-allocated |SSLCipherPreferenceList| containing the result. It returns | 
|  | // true on success and false on failure. If |strict| is true, nonsense will be | 
|  | // rejected. If false, nonsense will be silently ignored. An empty result is | 
|  | // considered an error regardless of |strict|. | 
|  | bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list, | 
|  | const char *rule_str, bool strict); | 
|  |  | 
|  | // ssl_cipher_get_value returns the cipher suite id of |cipher|. | 
|  | uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_cipher_auth_mask_for_key returns the mask of cipher |algorithm_auth| | 
|  | // values suitable for use with |key| in TLS 1.2 and below. | 
|  | uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key); | 
|  |  | 
|  | // ssl_cipher_uses_certificate_auth returns whether |cipher| authenticates the | 
|  | // server and, optionally, the client with a certificate. | 
|  | bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_cipher_requires_server_key_exchange returns whether |cipher| requires a | 
|  | // ServerKeyExchange message. | 
|  | // | 
|  | // This function may return false while still allowing |cipher| an optional | 
|  | // ServerKeyExchange. This is the case for plain PSK ciphers. | 
|  | bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher); | 
|  |  | 
|  | // ssl_cipher_get_record_split_len, for TLS 1.0 CBC mode ciphers, returns the | 
|  | // length of an encrypted 1-byte record, for use in record-splitting. Otherwise | 
|  | // it returns zero. | 
|  | size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher); | 
|  |  | 
|  |  | 
|  | // Transcript layer. | 
|  |  | 
|  | // SSLTranscript maintains the handshake transcript as a combination of a | 
|  | // buffer and running hash. | 
|  | class SSLTranscript { | 
|  | public: | 
|  | SSLTranscript(); | 
|  | ~SSLTranscript(); | 
|  |  | 
|  | // Init initializes the handshake transcript. If called on an existing | 
|  | // transcript, it resets the transcript and hash. It returns true on success | 
|  | // and false on failure. | 
|  | bool Init(); | 
|  |  | 
|  | // InitHash initializes the handshake hash based on the PRF and contents of | 
|  | // the handshake transcript. Subsequent calls to |Update| will update the | 
|  | // rolling hash. It returns one on success and zero on failure. It is an error | 
|  | // to call this function after the handshake buffer is released. | 
|  | bool InitHash(uint16_t version, const SSL_CIPHER *cipher); | 
|  |  | 
|  | // UpdateForHelloRetryRequest resets the rolling hash with the | 
|  | // HelloRetryRequest construction. It returns true on success and false on | 
|  | // failure. It is an error to call this function before the handshake buffer | 
|  | // is released. | 
|  | bool UpdateForHelloRetryRequest(); | 
|  |  | 
|  | // CopyHashContext copies the hash context into |ctx| and returns true on | 
|  | // success. | 
|  | bool CopyHashContext(EVP_MD_CTX *ctx); | 
|  |  | 
|  | Span<const uint8_t> buffer() { | 
|  | return MakeConstSpan(reinterpret_cast<const uint8_t *>(buffer_->data), | 
|  | buffer_->length); | 
|  | } | 
|  |  | 
|  | // FreeBuffer releases the handshake buffer. Subsequent calls to | 
|  | // |Update| will not update the handshake buffer. | 
|  | void FreeBuffer(); | 
|  |  | 
|  | // DigestLen returns the length of the PRF hash. | 
|  | size_t DigestLen() const; | 
|  |  | 
|  | // Digest returns the PRF hash. For TLS 1.1 and below, this is | 
|  | // |EVP_md5_sha1|. | 
|  | const EVP_MD *Digest() const; | 
|  |  | 
|  | // Update adds |in| to the handshake buffer and handshake hash, whichever is | 
|  | // enabled. It returns true on success and false on failure. | 
|  | bool Update(Span<const uint8_t> in); | 
|  |  | 
|  | // GetHash writes the handshake hash to |out| which must have room for at | 
|  | // least |DigestLen| bytes. On success, it returns true and sets |*out_len| to | 
|  | // the number of bytes written. Otherwise, it returns false. | 
|  | bool GetHash(uint8_t *out, size_t *out_len); | 
|  |  | 
|  | // GetFinishedMAC computes the MAC for the Finished message into the bytes | 
|  | // pointed by |out| and writes the number of bytes to |*out_len|. |out| must | 
|  | // have room for |EVP_MAX_MD_SIZE| bytes. It returns true on success and false | 
|  | // on failure. | 
|  | bool GetFinishedMAC(uint8_t *out, size_t *out_len, const SSL_SESSION *session, | 
|  | bool from_server); | 
|  |  | 
|  | private: | 
|  | // buffer_, if non-null, contains the handshake transcript. | 
|  | UniquePtr<BUF_MEM> buffer_; | 
|  | // hash, if initialized with an |EVP_MD|, maintains the handshake hash. | 
|  | ScopedEVP_MD_CTX hash_; | 
|  | }; | 
|  |  | 
|  | // tls1_prf computes the PRF function for |ssl|. It fills |out|, using |secret| | 
|  | // as the secret and |label| as the label. |seed1| and |seed2| are concatenated | 
|  | // to form the seed parameter. It returns true on success and false on failure. | 
|  | bool tls1_prf(const EVP_MD *digest, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, Span<const char> label, | 
|  | Span<const uint8_t> seed1, Span<const uint8_t> seed2); | 
|  |  | 
|  |  | 
|  | // Encryption layer. | 
|  |  | 
|  | // SSLAEADContext contains information about an AEAD that is being used to | 
|  | // encrypt an SSL connection. | 
|  | class SSLAEADContext { | 
|  | public: | 
|  | SSLAEADContext(uint16_t version, bool is_dtls, const SSL_CIPHER *cipher); | 
|  | ~SSLAEADContext(); | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSLAEADContext(const SSLAEADContext &&) = delete; | 
|  | SSLAEADContext &operator=(const SSLAEADContext &&) = delete; | 
|  |  | 
|  | // CreateNullCipher creates an |SSLAEADContext| for the null cipher. | 
|  | static UniquePtr<SSLAEADContext> CreateNullCipher(bool is_dtls); | 
|  |  | 
|  | // Create creates an |SSLAEADContext| using the supplied key material. It | 
|  | // returns nullptr on error. Only one of |Open| or |Seal| may be used with the | 
|  | // resulting object, depending on |direction|. |version| is the normalized | 
|  | // protocol version, so DTLS 1.0 is represented as 0x0301, not 0xffef. | 
|  | static UniquePtr<SSLAEADContext> Create(enum evp_aead_direction_t direction, | 
|  | uint16_t version, int is_dtls, | 
|  | const SSL_CIPHER *cipher, | 
|  | Span<const uint8_t> enc_key, | 
|  | Span<const uint8_t> mac_key, | 
|  | Span<const uint8_t> fixed_iv); | 
|  |  | 
|  | // SetVersionIfNullCipher sets the version the SSLAEADContext for the null | 
|  | // cipher, to make version-specific determinations in the record layer prior | 
|  | // to a cipher being selected. | 
|  | void SetVersionIfNullCipher(uint16_t version); | 
|  |  | 
|  | // ProtocolVersion returns the protocol version associated with this | 
|  | // SSLAEADContext. It can only be called once |version_| has been set to a | 
|  | // valid value. | 
|  | uint16_t ProtocolVersion() const; | 
|  |  | 
|  | // RecordVersion returns the record version that should be used with this | 
|  | // SSLAEADContext for record construction and crypto. | 
|  | uint16_t RecordVersion() const; | 
|  |  | 
|  | const SSL_CIPHER *cipher() const { return cipher_; } | 
|  |  | 
|  | // is_null_cipher returns true if this is the null cipher. | 
|  | bool is_null_cipher() const { return !cipher_; } | 
|  |  | 
|  | // ExplicitNonceLen returns the length of the explicit nonce. | 
|  | size_t ExplicitNonceLen() const; | 
|  |  | 
|  | // MaxOverhead returns the maximum overhead of calling |Seal|. | 
|  | size_t MaxOverhead() const; | 
|  |  | 
|  | // SuffixLen calculates the suffix length written by |SealScatter| and writes | 
|  | // it to |*out_suffix_len|. It returns true on success and false on error. | 
|  | // |in_len| and |extra_in_len| should equal the argument of the same names | 
|  | // passed to |SealScatter|. | 
|  | bool SuffixLen(size_t *out_suffix_len, size_t in_len, | 
|  | size_t extra_in_len) const; | 
|  |  | 
|  | // CiphertextLen calculates the total ciphertext length written by | 
|  | // |SealScatter| and writes it to |*out_len|. It returns true on success and | 
|  | // false on error. |in_len| and |extra_in_len| should equal the argument of | 
|  | // the same names passed to |SealScatter|. | 
|  | bool CiphertextLen(size_t *out_len, size_t in_len, size_t extra_in_len) const; | 
|  |  | 
|  | // Open authenticates and decrypts |in| in-place. On success, it sets |*out| | 
|  | // to the plaintext in |in| and returns true.  Otherwise, it returns | 
|  | // false. The output will always be |ExplicitNonceLen| bytes ahead of |in|. | 
|  | bool Open(Span<uint8_t> *out, uint8_t type, uint16_t record_version, | 
|  | const uint8_t seqnum[8], Span<const uint8_t> header, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | // Seal encrypts and authenticates |in_len| bytes from |in| and writes the | 
|  | // result to |out|. It returns true on success and false on error. | 
|  | // | 
|  | // If |in| and |out| alias then |out| + |ExplicitNonceLen| must be == |in|. | 
|  | bool Seal(uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, | 
|  | uint16_t record_version, const uint8_t seqnum[8], | 
|  | Span<const uint8_t> header, const uint8_t *in, size_t in_len); | 
|  |  | 
|  | // SealScatter encrypts and authenticates |in_len| bytes from |in| and splits | 
|  | // the result between |out_prefix|, |out| and |out_suffix|. It returns one on | 
|  | // success and zero on error. | 
|  | // | 
|  | // On successful return, exactly |ExplicitNonceLen| bytes are written to | 
|  | // |out_prefix|, |in_len| bytes to |out|, and |SuffixLen| bytes to | 
|  | // |out_suffix|. | 
|  | // | 
|  | // |extra_in| may point to an additional plaintext buffer. If present, | 
|  | // |extra_in_len| additional bytes are encrypted and authenticated, and the | 
|  | // ciphertext is written to the beginning of |out_suffix|. |SuffixLen| should | 
|  | // be used to size |out_suffix| accordingly. | 
|  | // | 
|  | // If |in| and |out| alias then |out| must be == |in|. Other arguments may not | 
|  | // alias anything. | 
|  | bool SealScatter(uint8_t *out_prefix, uint8_t *out, uint8_t *out_suffix, | 
|  | uint8_t type, uint16_t record_version, | 
|  | const uint8_t seqnum[8], Span<const uint8_t> header, | 
|  | const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
|  | size_t extra_in_len); | 
|  |  | 
|  | bool GetIV(const uint8_t **out_iv, size_t *out_iv_len) const; | 
|  |  | 
|  | private: | 
|  | // GetAdditionalData returns the additional data, writing into |storage| if | 
|  | // necessary. | 
|  | Span<const uint8_t> GetAdditionalData(uint8_t storage[13], uint8_t type, | 
|  | uint16_t record_version, | 
|  | const uint8_t seqnum[8], | 
|  | size_t plaintext_len, | 
|  | Span<const uint8_t> header); | 
|  |  | 
|  | const SSL_CIPHER *cipher_; | 
|  | ScopedEVP_AEAD_CTX ctx_; | 
|  | // fixed_nonce_ contains any bytes of the nonce that are fixed for all | 
|  | // records. | 
|  | uint8_t fixed_nonce_[12]; | 
|  | uint8_t fixed_nonce_len_ = 0, variable_nonce_len_ = 0; | 
|  | // version_ is the wire version that should be used with this AEAD. | 
|  | uint16_t version_; | 
|  | // is_dtls_ is whether DTLS is being used with this AEAD. | 
|  | bool is_dtls_; | 
|  | // variable_nonce_included_in_record_ is true if the variable nonce | 
|  | // for a record is included as a prefix before the ciphertext. | 
|  | bool variable_nonce_included_in_record_ : 1; | 
|  | // random_variable_nonce_ is true if the variable nonce is | 
|  | // randomly generated, rather than derived from the sequence | 
|  | // number. | 
|  | bool random_variable_nonce_ : 1; | 
|  | // xor_fixed_nonce_ is true if the fixed nonce should be XOR'd into the | 
|  | // variable nonce rather than prepended. | 
|  | bool xor_fixed_nonce_ : 1; | 
|  | // omit_length_in_ad_ is true if the length should be omitted in the | 
|  | // AEAD's ad parameter. | 
|  | bool omit_length_in_ad_ : 1; | 
|  | // omit_ad_ is true if the AEAD's ad parameter should be omitted. | 
|  | bool omit_ad_ : 1; | 
|  | // ad_is_header_ is true if the AEAD's ad parameter is the record header. | 
|  | bool ad_is_header_ : 1; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // DTLS replay bitmap. | 
|  |  | 
|  | // DTLS1_BITMAP maintains a sliding window of 64 sequence numbers to detect | 
|  | // replayed packets. It should be initialized by zeroing every field. | 
|  | struct DTLS1_BITMAP { | 
|  | // map is a bit mask of the last 64 sequence numbers. Bit | 
|  | // |1<<i| corresponds to |max_seq_num - i|. | 
|  | uint64_t map = 0; | 
|  | // max_seq_num is the largest sequence number seen so far as a 64-bit | 
|  | // integer. | 
|  | uint64_t max_seq_num = 0; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Record layer. | 
|  |  | 
|  | // ssl_record_sequence_update increments the sequence number in |seq|. It | 
|  | // returns one on success and zero on wraparound. | 
|  | int ssl_record_sequence_update(uint8_t *seq, size_t seq_len); | 
|  |  | 
|  | // ssl_record_prefix_len returns the length of the prefix before the ciphertext | 
|  | // of a record for |ssl|. | 
|  | // | 
|  | // TODO(davidben): Expose this as part of public API once the high-level | 
|  | // buffer-free APIs are available. | 
|  | size_t ssl_record_prefix_len(const SSL *ssl); | 
|  |  | 
|  | enum ssl_open_record_t { | 
|  | ssl_open_record_success, | 
|  | ssl_open_record_discard, | 
|  | ssl_open_record_partial, | 
|  | ssl_open_record_close_notify, | 
|  | ssl_open_record_error, | 
|  | }; | 
|  |  | 
|  | // tls_open_record decrypts a record from |in| in-place. | 
|  | // | 
|  | // If the input did not contain a complete record, it returns | 
|  | // |ssl_open_record_partial|. It sets |*out_consumed| to the total number of | 
|  | // bytes necessary. It is guaranteed that a successful call to |tls_open_record| | 
|  | // will consume at least that many bytes. | 
|  | // | 
|  | // Otherwise, it sets |*out_consumed| to the number of bytes of input | 
|  | // consumed. Note that input may be consumed on all return codes if a record was | 
|  | // decrypted. | 
|  | // | 
|  | // On success, it returns |ssl_open_record_success|. It sets |*out_type| to the | 
|  | // record type and |*out| to the record body in |in|. Note that |*out| may be | 
|  | // empty. | 
|  | // | 
|  | // If a record was successfully processed but should be discarded, it returns | 
|  | // |ssl_open_record_discard|. | 
|  | // | 
|  | // If a record was successfully processed but is a close_notify, it returns | 
|  | // |ssl_open_record_close_notify|. | 
|  | // | 
|  | // On failure or fatal alert, it returns |ssl_open_record_error| and sets | 
|  | // |*out_alert| to an alert to emit, or zero if no alert should be emitted. | 
|  | enum ssl_open_record_t tls_open_record(SSL *ssl, uint8_t *out_type, | 
|  | Span<uint8_t> *out, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // dtls_open_record implements |tls_open_record| for DTLS. It only returns | 
|  | // |ssl_open_record_partial| if |in| was empty and sets |*out_consumed| to | 
|  | // zero. The caller should read one packet and try again. | 
|  | enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, | 
|  | Span<uint8_t> *out, | 
|  | size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // ssl_seal_align_prefix_len returns the length of the prefix before the start | 
|  | // of the bulk of the ciphertext when sealing a record with |ssl|. Callers may | 
|  | // use this to align buffers. | 
|  | // | 
|  | // Note when TLS 1.0 CBC record-splitting is enabled, this includes the one byte | 
|  | // record and is the offset into second record's ciphertext. Thus sealing a | 
|  | // small record may result in a smaller output than this value. | 
|  | // | 
|  | // TODO(davidben): Is this alignment valuable? Record-splitting makes this a | 
|  | // mess. | 
|  | size_t ssl_seal_align_prefix_len(const SSL *ssl); | 
|  |  | 
|  | // tls_seal_record seals a new record of type |type| and body |in| and writes it | 
|  | // to |out|. At most |max_out| bytes will be written. It returns one on success | 
|  | // and zero on error. If enabled, |tls_seal_record| implements TLS 1.0 CBC 1/n-1 | 
|  | // record splitting and may write two records concatenated. | 
|  | // | 
|  | // For a large record, the bulk of the ciphertext will begin | 
|  | // |ssl_seal_align_prefix_len| bytes into out. Aligning |out| appropriately may | 
|  | // improve performance. It writes at most |in_len| + |SSL_max_seal_overhead| | 
|  | // bytes to |out|. | 
|  | // | 
|  | // |in| and |out| may not alias. | 
|  | int tls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint8_t type, const uint8_t *in, size_t in_len); | 
|  |  | 
|  | enum dtls1_use_epoch_t { | 
|  | dtls1_use_previous_epoch, | 
|  | dtls1_use_current_epoch, | 
|  | }; | 
|  |  | 
|  | // dtls_max_seal_overhead returns the maximum overhead, in bytes, of sealing a | 
|  | // record. | 
|  | size_t dtls_max_seal_overhead(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); | 
|  |  | 
|  | // dtls_seal_prefix_len returns the number of bytes of prefix to reserve in | 
|  | // front of the plaintext when sealing a record in-place. | 
|  | size_t dtls_seal_prefix_len(const SSL *ssl, enum dtls1_use_epoch_t use_epoch); | 
|  |  | 
|  | // dtls_seal_record implements |tls_seal_record| for DTLS. |use_epoch| selects | 
|  | // which epoch's cipher state to use. Unlike |tls_seal_record|, |in| and |out| | 
|  | // may alias but, if they do, |in| must be exactly |dtls_seal_prefix_len| bytes | 
|  | // ahead of |out|. | 
|  | int dtls_seal_record(SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint8_t type, const uint8_t *in, size_t in_len, | 
|  | enum dtls1_use_epoch_t use_epoch); | 
|  |  | 
|  | // ssl_process_alert processes |in| as an alert and updates |ssl|'s shutdown | 
|  | // state. It returns one of |ssl_open_record_discard|, |ssl_open_record_error|, | 
|  | // |ssl_open_record_close_notify|, or |ssl_open_record_fatal_alert| as | 
|  | // appropriate. | 
|  | enum ssl_open_record_t ssl_process_alert(SSL *ssl, uint8_t *out_alert, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Private key operations. | 
|  |  | 
|  | // ssl_has_private_key returns one if |cfg| has a private key configured and | 
|  | // zero otherwise. | 
|  | int ssl_has_private_key(const SSL_CONFIG *cfg); | 
|  |  | 
|  | // ssl_private_key_* perform the corresponding operation on | 
|  | // |SSL_PRIVATE_KEY_METHOD|. If there is a custom private key configured, they | 
|  | // call the corresponding function or |complete| depending on whether there is a | 
|  | // pending operation. Otherwise, they implement the operation with | 
|  | // |EVP_PKEY|. | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_sign( | 
|  | SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out, | 
|  | uint16_t sigalg, Span<const uint8_t> in); | 
|  |  | 
|  | enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs, | 
|  | uint8_t *out, | 
|  | size_t *out_len, | 
|  | size_t max_out, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  | // ssl_private_key_supports_signature_algorithm returns whether |hs|'s private | 
|  | // key supports |sigalg|. | 
|  | bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs, | 
|  | uint16_t sigalg); | 
|  |  | 
|  | // ssl_public_key_verify verifies that the |signature| is valid for the public | 
|  | // key |pkey| and input |in|, using the signature algorithm |sigalg|. | 
|  | bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature, | 
|  | uint16_t sigalg, EVP_PKEY *pkey, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Key shares. | 
|  |  | 
|  | // SSLKeyShare abstracts over Diffie-Hellman-like key exchanges. | 
|  | class SSLKeyShare { | 
|  | public: | 
|  | virtual ~SSLKeyShare() {} | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  | HAS_VIRTUAL_DESTRUCTOR | 
|  |  | 
|  | // Create returns a SSLKeyShare instance for use with group |group_id| or | 
|  | // nullptr on error. | 
|  | static UniquePtr<SSLKeyShare> Create(uint16_t group_id); | 
|  |  | 
|  | // Create deserializes an SSLKeyShare instance previously serialized by | 
|  | // |Serialize|. | 
|  | static UniquePtr<SSLKeyShare> Create(CBS *in); | 
|  |  | 
|  | // GroupID returns the group ID. | 
|  | virtual uint16_t GroupID() const PURE_VIRTUAL; | 
|  |  | 
|  | // Offer generates a keypair and writes the public value to | 
|  | // |out_public_key|. It returns true on success and false on error. | 
|  | virtual bool Offer(CBB *out_public_key) PURE_VIRTUAL; | 
|  |  | 
|  | // Accept performs a key exchange against the |peer_key| generated by |offer|. | 
|  | // On success, it returns true, writes the public value to |out_public_key|, | 
|  | // and sets |*out_secret| the shared secret. On failure, it returns false and | 
|  | // sets |*out_alert| to an alert to send to the peer. | 
|  | // | 
|  | // The default implementation calls |Offer| and then |Finish|, assuming a key | 
|  | // exchange protocol where the peers are symmetric. | 
|  | virtual bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret, | 
|  | uint8_t *out_alert, Span<const uint8_t> peer_key); | 
|  |  | 
|  | // Finish performs a key exchange against the |peer_key| generated by | 
|  | // |Accept|. On success, it returns true and sets |*out_secret| to the shared | 
|  | // secret. On failure, it returns zero and sets |*out_alert| to an alert to | 
|  | // send to the peer. | 
|  | virtual bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert, | 
|  | Span<const uint8_t> peer_key) PURE_VIRTUAL; | 
|  |  | 
|  | // Serialize writes the state of the key exchange to |out|, returning true if | 
|  | // successful and false otherwise. | 
|  | virtual bool Serialize(CBB *out) { return false; } | 
|  |  | 
|  | // Deserialize initializes the state of the key exchange from |in|, returning | 
|  | // true if successful and false otherwise.  It is called by |Create|. | 
|  | virtual bool Deserialize(CBS *in) { return false; } | 
|  | }; | 
|  |  | 
|  | // ssl_nid_to_group_id looks up the group corresponding to |nid|. On success, it | 
|  | // sets |*out_group_id| to the group ID and returns one. Otherwise, it returns | 
|  | // zero. | 
|  | int ssl_nid_to_group_id(uint16_t *out_group_id, int nid); | 
|  |  | 
|  | // ssl_name_to_group_id looks up the group corresponding to the |name| string | 
|  | // of length |len|. On success, it sets |*out_group_id| to the group ID and | 
|  | // returns one. Otherwise, it returns zero. | 
|  | int ssl_name_to_group_id(uint16_t *out_group_id, const char *name, size_t len); | 
|  |  | 
|  |  | 
|  | // Handshake messages. | 
|  |  | 
|  | struct SSLMessage { | 
|  | bool is_v2_hello; | 
|  | uint8_t type; | 
|  | CBS body; | 
|  | // raw is the entire serialized handshake message, including the TLS or DTLS | 
|  | // message header. | 
|  | CBS raw; | 
|  | }; | 
|  |  | 
|  | // SSL_MAX_HANDSHAKE_FLIGHT is the number of messages, including | 
|  | // ChangeCipherSpec, in the longest handshake flight. Currently this is the | 
|  | // client's second leg in a full handshake when client certificates, NPN, and | 
|  | // Channel ID, are all enabled. | 
|  | #define SSL_MAX_HANDSHAKE_FLIGHT 7 | 
|  |  | 
|  | extern const uint8_t kHelloRetryRequest[SSL3_RANDOM_SIZE]; | 
|  | extern const uint8_t kDraftDowngradeRandom[8]; | 
|  |  | 
|  | // ssl_max_handshake_message_len returns the maximum number of bytes permitted | 
|  | // in a handshake message for |ssl|. | 
|  | size_t ssl_max_handshake_message_len(const SSL *ssl); | 
|  |  | 
|  | // tls_can_accept_handshake_data returns whether |ssl| is able to accept more | 
|  | // data into handshake buffer. | 
|  | bool tls_can_accept_handshake_data(const SSL *ssl, uint8_t *out_alert); | 
|  |  | 
|  | // tls_has_unprocessed_handshake_data returns whether there is buffered | 
|  | // handshake data that has not been consumed by |get_message|. | 
|  | bool tls_has_unprocessed_handshake_data(const SSL *ssl); | 
|  |  | 
|  | // dtls_has_unprocessed_handshake_data behaves like | 
|  | // |tls_has_unprocessed_handshake_data| for DTLS. | 
|  | bool dtls_has_unprocessed_handshake_data(const SSL *ssl); | 
|  |  | 
|  | // tls_flush_pending_hs_data flushes any handshake plaintext data. | 
|  | bool tls_flush_pending_hs_data(SSL *ssl); | 
|  |  | 
|  | struct DTLS_OUTGOING_MESSAGE { | 
|  | DTLS_OUTGOING_MESSAGE() {} | 
|  | DTLS_OUTGOING_MESSAGE(const DTLS_OUTGOING_MESSAGE &) = delete; | 
|  | DTLS_OUTGOING_MESSAGE &operator=(const DTLS_OUTGOING_MESSAGE &) = delete; | 
|  | ~DTLS_OUTGOING_MESSAGE() { Clear(); } | 
|  |  | 
|  | void Clear(); | 
|  |  | 
|  | uint8_t *data = nullptr; | 
|  | uint32_t len = 0; | 
|  | uint16_t epoch = 0; | 
|  | bool is_ccs = false; | 
|  | }; | 
|  |  | 
|  | // dtls_clear_outgoing_messages releases all buffered outgoing messages. | 
|  | void dtls_clear_outgoing_messages(SSL *ssl); | 
|  |  | 
|  |  | 
|  | // Callbacks. | 
|  |  | 
|  | // ssl_do_info_callback calls |ssl|'s info callback, if set. | 
|  | void ssl_do_info_callback(const SSL *ssl, int type, int value); | 
|  |  | 
|  | // ssl_do_msg_callback calls |ssl|'s message callback, if set. | 
|  | void ssl_do_msg_callback(SSL *ssl, int is_write, int content_type, | 
|  | Span<const uint8_t> in); | 
|  |  | 
|  |  | 
|  | // Transport buffers. | 
|  |  | 
|  | class SSLBuffer { | 
|  | public: | 
|  | SSLBuffer() {} | 
|  | ~SSLBuffer() { Clear(); } | 
|  |  | 
|  | SSLBuffer(const SSLBuffer &) = delete; | 
|  | SSLBuffer &operator=(const SSLBuffer &) = delete; | 
|  |  | 
|  | uint8_t *data() { return buf_ + offset_; } | 
|  | size_t size() const { return size_; } | 
|  | bool empty() const { return size_ == 0; } | 
|  | size_t cap() const { return cap_; } | 
|  |  | 
|  | Span<uint8_t> span() { return MakeSpan(data(), size()); } | 
|  |  | 
|  | Span<uint8_t> remaining() { | 
|  | return MakeSpan(data() + size(), cap() - size()); | 
|  | } | 
|  |  | 
|  | // Clear releases the buffer. | 
|  | void Clear(); | 
|  |  | 
|  | // EnsureCap ensures the buffer has capacity at least |new_cap|, aligned such | 
|  | // that data written after |header_len| is aligned to a | 
|  | // |SSL3_ALIGN_PAYLOAD|-byte boundary. It returns true on success and false | 
|  | // on error. | 
|  | bool EnsureCap(size_t header_len, size_t new_cap); | 
|  |  | 
|  | // DidWrite extends the buffer by |len|. The caller must have filled in to | 
|  | // this point. | 
|  | void DidWrite(size_t len); | 
|  |  | 
|  | // Consume consumes |len| bytes from the front of the buffer.  The memory | 
|  | // consumed will remain valid until the next call to |DiscardConsumed| or | 
|  | // |Clear|. | 
|  | void Consume(size_t len); | 
|  |  | 
|  | // DiscardConsumed discards the consumed bytes from the buffer. If the buffer | 
|  | // is now empty, it releases memory used by it. | 
|  | void DiscardConsumed(); | 
|  |  | 
|  | private: | 
|  | // buf_ is the memory allocated for this buffer. | 
|  | uint8_t *buf_ = nullptr; | 
|  | // offset_ is the offset into |buf_| which the buffer contents start at. | 
|  | uint16_t offset_ = 0; | 
|  | // size_ is the size of the buffer contents from |buf_| + |offset_|. | 
|  | uint16_t size_ = 0; | 
|  | // cap_ is how much memory beyond |buf_| + |offset_| is available. | 
|  | uint16_t cap_ = 0; | 
|  | }; | 
|  |  | 
|  | // ssl_read_buffer_extend_to extends the read buffer to the desired length. For | 
|  | // TLS, it reads to the end of the buffer until the buffer is |len| bytes | 
|  | // long. For DTLS, it reads a new packet and ignores |len|. It returns one on | 
|  | // success, zero on EOF, and a negative number on error. | 
|  | // | 
|  | // It is an error to call |ssl_read_buffer_extend_to| in DTLS when the buffer is | 
|  | // non-empty. | 
|  | int ssl_read_buffer_extend_to(SSL *ssl, size_t len); | 
|  |  | 
|  | // ssl_handle_open_record handles the result of passing |ssl->s3->read_buffer| | 
|  | // to a record-processing function. If |ret| is a success or if the caller | 
|  | // should retry, it returns one and sets |*out_retry|. Otherwise, it returns <= | 
|  | // 0. | 
|  | int ssl_handle_open_record(SSL *ssl, bool *out_retry, ssl_open_record_t ret, | 
|  | size_t consumed, uint8_t alert); | 
|  |  | 
|  | // ssl_write_buffer_flush flushes the write buffer to the transport. It returns | 
|  | // one on success and <= 0 on error. For DTLS, whether or not the write | 
|  | // succeeds, the write buffer will be cleared. | 
|  | int ssl_write_buffer_flush(SSL *ssl); | 
|  |  | 
|  |  | 
|  | // Certificate functions. | 
|  |  | 
|  | // ssl_has_certificate returns one if a certificate and private key are | 
|  | // configured and zero otherwise. | 
|  | int ssl_has_certificate(const SSL_CONFIG *cfg); | 
|  |  | 
|  | // ssl_parse_cert_chain parses a certificate list from |cbs| in the format used | 
|  | // by a TLS Certificate message. On success, it advances |cbs| and returns | 
|  | // true. Otherwise, it returns false and sets |*out_alert| to an alert to send | 
|  | // to the peer. | 
|  | // | 
|  | // If the list is non-empty then |*out_chain| and |*out_pubkey| will be set to | 
|  | // the certificate chain and the leaf certificate's public key | 
|  | // respectively. Otherwise, both will be set to nullptr. | 
|  | // | 
|  | // If the list is non-empty and |out_leaf_sha256| is non-NULL, it writes the | 
|  | // SHA-256 hash of the leaf to |out_leaf_sha256|. | 
|  | bool ssl_parse_cert_chain(uint8_t *out_alert, | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> *out_chain, | 
|  | UniquePtr<EVP_PKEY> *out_pubkey, | 
|  | uint8_t *out_leaf_sha256, CBS *cbs, | 
|  | CRYPTO_BUFFER_POOL *pool); | 
|  |  | 
|  | // ssl_add_cert_chain adds |hs->ssl|'s certificate chain to |cbb| in the format | 
|  | // used by a TLS Certificate message. If there is no certificate chain, it emits | 
|  | // an empty certificate list. It returns one on success and zero on error. | 
|  | int ssl_add_cert_chain(SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // ssl_cert_check_digital_signature_key_usage parses the DER-encoded, X.509 | 
|  | // certificate in |in| and returns one if doesn't specify a key usage or, if it | 
|  | // does, if it includes digitalSignature. Otherwise it pushes to the error | 
|  | // queue and returns zero. | 
|  | int ssl_cert_check_digital_signature_key_usage(const CBS *in); | 
|  |  | 
|  | // ssl_cert_parse_pubkey extracts the public key from the DER-encoded, X.509 | 
|  | // certificate in |in|. It returns an allocated |EVP_PKEY| or else returns | 
|  | // nullptr and pushes to the error queue. | 
|  | UniquePtr<EVP_PKEY> ssl_cert_parse_pubkey(const CBS *in); | 
|  |  | 
|  | // ssl_parse_client_CA_list parses a CA list from |cbs| in the format used by a | 
|  | // TLS CertificateRequest message. On success, it returns a newly-allocated | 
|  | // |CRYPTO_BUFFER| list and advances |cbs|. Otherwise, it returns nullptr and | 
|  | // sets |*out_alert| to an alert to send to the peer. | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ssl_parse_client_CA_list(SSL *ssl, | 
|  | uint8_t *out_alert, | 
|  | CBS *cbs); | 
|  |  | 
|  | // ssl_has_client_CAs returns there are configured CAs. | 
|  | bool ssl_has_client_CAs(const SSL_CONFIG *cfg); | 
|  |  | 
|  | // ssl_add_client_CA_list adds the configured CA list to |cbb| in the format | 
|  | // used by a TLS CertificateRequest message. It returns one on success and zero | 
|  | // on error. | 
|  | int ssl_add_client_CA_list(SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // ssl_check_leaf_certificate returns one if |pkey| and |leaf| are suitable as | 
|  | // a server's leaf certificate for |hs|. Otherwise, it returns zero and pushes | 
|  | // an error on the error queue. | 
|  | int ssl_check_leaf_certificate(SSL_HANDSHAKE *hs, EVP_PKEY *pkey, | 
|  | const CRYPTO_BUFFER *leaf); | 
|  |  | 
|  | // ssl_on_certificate_selected is called once the certificate has been selected. | 
|  | // It finalizes the certificate and initializes |hs->local_pubkey|. It returns | 
|  | // one on success and zero on error. | 
|  | int ssl_on_certificate_selected(SSL_HANDSHAKE *hs); | 
|  |  | 
|  |  | 
|  | // TLS 1.3 key derivation. | 
|  |  | 
|  | // tls13_init_key_schedule initializes the handshake hash and key derivation | 
|  | // state, and incorporates the PSK. The cipher suite and PRF hash must have been | 
|  | // selected at this point. It returns one on success and zero on error. | 
|  | int tls13_init_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, | 
|  | size_t psk_len); | 
|  |  | 
|  | // tls13_init_early_key_schedule initializes the handshake hash and key | 
|  | // derivation state from the resumption secret and incorporates the PSK to | 
|  | // derive the early secrets. It returns one on success and zero on error. | 
|  | int tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *psk, | 
|  | size_t psk_len); | 
|  |  | 
|  | // tls13_advance_key_schedule incorporates |in| into the key schedule with | 
|  | // HKDF-Extract. It returns one on success and zero on error. | 
|  | int tls13_advance_key_schedule(SSL_HANDSHAKE *hs, const uint8_t *in, | 
|  | size_t len); | 
|  |  | 
|  | // tls13_set_traffic_key sets the read or write traffic keys to | 
|  | // |traffic_secret|. It returns one on success and zero on error. | 
|  | int tls13_set_traffic_key(SSL *ssl, enum evp_aead_direction_t direction, | 
|  | const uint8_t *traffic_secret, | 
|  | size_t traffic_secret_len); | 
|  |  | 
|  | // tls13_derive_early_secrets derives the early traffic secret. It returns one | 
|  | // on success and zero on error. | 
|  | int tls13_derive_early_secrets(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_derive_handshake_secrets derives the handshake traffic secret. It | 
|  | // returns one on success and zero on error. | 
|  | int tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_rotate_traffic_key derives the next read or write traffic secret. It | 
|  | // returns one on success and zero on error. | 
|  | int tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction); | 
|  |  | 
|  | // tls13_derive_application_secrets derives the initial application data traffic | 
|  | // and exporter secrets based on the handshake transcripts and |master_secret|. | 
|  | // It returns one on success and zero on error. | 
|  | int tls13_derive_application_secrets(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_derive_resumption_secret derives the |resumption_secret|. | 
|  | int tls13_derive_resumption_secret(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_export_keying_material provides an exporter interface to use the | 
|  | // |exporter_secret|. | 
|  | int tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const char> label, | 
|  | Span<const uint8_t> context); | 
|  |  | 
|  | // tls13_finished_mac calculates the MAC of the handshake transcript to verify | 
|  | // the integrity of the Finished message, and stores the result in |out| and | 
|  | // length in |out_len|. |is_server| is 1 if this is for the Server Finished and | 
|  | // 0 for the Client Finished. | 
|  | int tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, | 
|  | size_t *out_len, int is_server); | 
|  |  | 
|  | // tls13_derive_session_psk calculates the PSK for this session based on the | 
|  | // resumption master secret and |nonce|. It returns true on success, and false | 
|  | // on failure. | 
|  | bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce); | 
|  |  | 
|  | // tls13_write_psk_binder calculates the PSK binder value and replaces the last | 
|  | // bytes of |msg| with the resulting value. It returns 1 on success, and 0 on | 
|  | // failure. | 
|  | int tls13_write_psk_binder(SSL_HANDSHAKE *hs, uint8_t *msg, size_t len); | 
|  |  | 
|  | // tls13_verify_psk_binder verifies that the handshake transcript, truncated | 
|  | // up to the binders has a valid signature using the value of |session|'s | 
|  | // resumption secret. It returns 1 on success, and 0 on failure. | 
|  | int tls13_verify_psk_binder(SSL_HANDSHAKE *hs, SSL_SESSION *session, | 
|  | const SSLMessage &msg, CBS *binders); | 
|  |  | 
|  |  | 
|  | // Handshake functions. | 
|  |  | 
|  | enum ssl_hs_wait_t { | 
|  | ssl_hs_error, | 
|  | ssl_hs_ok, | 
|  | ssl_hs_read_server_hello, | 
|  | ssl_hs_read_message, | 
|  | ssl_hs_flush, | 
|  | ssl_hs_certificate_selection_pending, | 
|  | ssl_hs_handoff, | 
|  | ssl_hs_handback, | 
|  | ssl_hs_x509_lookup, | 
|  | ssl_hs_channel_id_lookup, | 
|  | ssl_hs_private_key_operation, | 
|  | ssl_hs_pending_session, | 
|  | ssl_hs_pending_ticket, | 
|  | ssl_hs_early_return, | 
|  | ssl_hs_early_data_rejected, | 
|  | ssl_hs_read_end_of_early_data, | 
|  | ssl_hs_read_change_cipher_spec, | 
|  | ssl_hs_certificate_verify, | 
|  | }; | 
|  |  | 
|  | enum ssl_grease_index_t { | 
|  | ssl_grease_cipher = 0, | 
|  | ssl_grease_group, | 
|  | ssl_grease_extension1, | 
|  | ssl_grease_extension2, | 
|  | ssl_grease_version, | 
|  | ssl_grease_ticket_extension, | 
|  | ssl_grease_last_index = ssl_grease_ticket_extension, | 
|  | }; | 
|  |  | 
|  | enum tls12_server_hs_state_t { | 
|  | state12_start_accept = 0, | 
|  | state12_read_client_hello, | 
|  | state12_select_certificate, | 
|  | state12_tls13, | 
|  | state12_select_parameters, | 
|  | state12_send_server_hello, | 
|  | state12_send_server_certificate, | 
|  | state12_send_server_key_exchange, | 
|  | state12_send_server_hello_done, | 
|  | state12_read_client_certificate, | 
|  | state12_verify_client_certificate, | 
|  | state12_read_client_key_exchange, | 
|  | state12_read_client_certificate_verify, | 
|  | state12_read_change_cipher_spec, | 
|  | state12_process_change_cipher_spec, | 
|  | state12_read_next_proto, | 
|  | state12_read_channel_id, | 
|  | state12_read_client_finished, | 
|  | state12_send_server_finished, | 
|  | state12_finish_server_handshake, | 
|  | state12_done, | 
|  | }; | 
|  |  | 
|  | // handback_t lists the points in the state machine where a handback can occur. | 
|  | // These are the different points at which key material is no longer needed. | 
|  | enum handback_t { | 
|  | handback_after_session_resumption, | 
|  | handback_after_ecdhe, | 
|  | handback_after_handshake, | 
|  | }; | 
|  |  | 
|  | struct SSL_HANDSHAKE { | 
|  | explicit SSL_HANDSHAKE(SSL *ssl); | 
|  | ~SSL_HANDSHAKE(); | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | // ssl is a non-owning pointer to the parent |SSL| object. | 
|  | SSL *ssl; | 
|  |  | 
|  | // config is a non-owning pointer to the handshake configuration. | 
|  | SSL_CONFIG *config; | 
|  |  | 
|  | // wait contains the operation the handshake is currently blocking on or | 
|  | // |ssl_hs_ok| if none. | 
|  | enum ssl_hs_wait_t wait = ssl_hs_ok; | 
|  |  | 
|  | // state is the internal state for the TLS 1.2 and below handshake. Its | 
|  | // values depend on |do_handshake| but the starting state is always zero. | 
|  | int state = 0; | 
|  |  | 
|  | // tls13_state is the internal state for the TLS 1.3 handshake. Its values | 
|  | // depend on |do_handshake| but the starting state is always zero. | 
|  | int tls13_state = 0; | 
|  |  | 
|  | // min_version is the minimum accepted protocol version, taking account both | 
|  | // |SSL_OP_NO_*| and |SSL_CTX_set_min_proto_version| APIs. | 
|  | uint16_t min_version = 0; | 
|  |  | 
|  | // max_version is the maximum accepted protocol version, taking account both | 
|  | // |SSL_OP_NO_*| and |SSL_CTX_set_max_proto_version| APIs. | 
|  | uint16_t max_version = 0; | 
|  |  | 
|  | size_t hash_len = 0; | 
|  | uint8_t secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t early_traffic_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t client_handshake_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t server_handshake_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t client_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t server_traffic_secret_0[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t expected_client_finished[EVP_MAX_MD_SIZE] = {0}; | 
|  |  | 
|  | union { | 
|  | // sent is a bitset where the bits correspond to elements of kExtensions | 
|  | // in t1_lib.c. Each bit is set if that extension was sent in a | 
|  | // ClientHello. It's not used by servers. | 
|  | uint32_t sent = 0; | 
|  | // received is a bitset, like |sent|, but is used by servers to record | 
|  | // which extensions were received from a client. | 
|  | uint32_t received; | 
|  | } extensions; | 
|  |  | 
|  | // retry_group is the group ID selected by the server in HelloRetryRequest in | 
|  | // TLS 1.3. | 
|  | uint16_t retry_group = 0; | 
|  |  | 
|  | // error, if |wait| is |ssl_hs_error|, is the error the handshake failed on. | 
|  | UniquePtr<ERR_SAVE_STATE> error; | 
|  |  | 
|  | // key_share is the current key exchange instance. | 
|  | UniquePtr<SSLKeyShare> key_share; | 
|  |  | 
|  | // transcript is the current handshake transcript. | 
|  | SSLTranscript transcript; | 
|  |  | 
|  | // cookie is the value of the cookie received from the server, if any. | 
|  | Array<uint8_t> cookie; | 
|  |  | 
|  | // key_share_bytes is the value of the previously sent KeyShare extension by | 
|  | // the client in TLS 1.3. | 
|  | Array<uint8_t> key_share_bytes; | 
|  |  | 
|  | // ecdh_public_key, for servers, is the key share to be sent to the client in | 
|  | // TLS 1.3. | 
|  | Array<uint8_t> ecdh_public_key; | 
|  |  | 
|  | // peer_sigalgs are the signature algorithms that the peer supports. These are | 
|  | // taken from the contents of the signature algorithms extension for a server | 
|  | // or from the CertificateRequest for a client. | 
|  | Array<uint16_t> peer_sigalgs; | 
|  |  | 
|  | // peer_supported_group_list contains the supported group IDs advertised by | 
|  | // the peer. This is only set on the server's end. The server does not | 
|  | // advertise this extension to the client. | 
|  | Array<uint16_t> peer_supported_group_list; | 
|  |  | 
|  | // peer_key is the peer's ECDH key for a TLS 1.2 client. | 
|  | Array<uint8_t> peer_key; | 
|  |  | 
|  | // negotiated_token_binding_version is used by a server to store the | 
|  | // on-the-wire encoding of the Token Binding protocol version to advertise in | 
|  | // the ServerHello/EncryptedExtensions if the Token Binding extension is to be | 
|  | // sent. | 
|  | uint16_t negotiated_token_binding_version; | 
|  |  | 
|  | // cert_compression_alg_id, for a server, contains the negotiated certificate | 
|  | // compression algorithm for this client. It is only valid if | 
|  | // |cert_compression_negotiated| is true. | 
|  | uint16_t cert_compression_alg_id; | 
|  |  | 
|  | // server_params, in a TLS 1.2 server, stores the ServerKeyExchange | 
|  | // parameters. It has client and server randoms prepended for signing | 
|  | // convenience. | 
|  | Array<uint8_t> server_params; | 
|  |  | 
|  | // peer_psk_identity_hint, on the client, is the psk_identity_hint sent by the | 
|  | // server when using a TLS 1.2 PSK key exchange. | 
|  | UniquePtr<char> peer_psk_identity_hint; | 
|  |  | 
|  | // ca_names, on the client, contains the list of CAs received in a | 
|  | // CertificateRequest message. | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names; | 
|  |  | 
|  | // cached_x509_ca_names contains a cache of parsed versions of the elements of | 
|  | // |ca_names|. This pointer is left non-owning so only | 
|  | // |ssl_crypto_x509_method| needs to link against crypto/x509. | 
|  | STACK_OF(X509_NAME) *cached_x509_ca_names = nullptr; | 
|  |  | 
|  | // certificate_types, on the client, contains the set of certificate types | 
|  | // received in a CertificateRequest message. | 
|  | Array<uint8_t> certificate_types; | 
|  |  | 
|  | // local_pubkey is the public key we are authenticating as. | 
|  | UniquePtr<EVP_PKEY> local_pubkey; | 
|  |  | 
|  | // peer_pubkey is the public key parsed from the peer's leaf certificate. | 
|  | UniquePtr<EVP_PKEY> peer_pubkey; | 
|  |  | 
|  | // new_session is the new mutable session being established by the current | 
|  | // handshake. It should not be cached. | 
|  | UniquePtr<SSL_SESSION> new_session; | 
|  |  | 
|  | // early_session is the session corresponding to the current 0-RTT state on | 
|  | // the client if |in_early_data| is true. | 
|  | UniquePtr<SSL_SESSION> early_session; | 
|  |  | 
|  | // new_cipher is the cipher being negotiated in this handshake. | 
|  | const SSL_CIPHER *new_cipher = nullptr; | 
|  |  | 
|  | // key_block is the record-layer key block for TLS 1.2 and earlier. | 
|  | Array<uint8_t> key_block; | 
|  |  | 
|  | // scts_requested is true if the SCT extension is in the ClientHello. | 
|  | bool scts_requested:1; | 
|  |  | 
|  | // needs_psk_binder is true if the ClientHello has a placeholder PSK binder to | 
|  | // be filled in. | 
|  | bool needs_psk_binder:1; | 
|  |  | 
|  | bool received_hello_retry_request:1; | 
|  | bool sent_hello_retry_request:1; | 
|  |  | 
|  | // handshake_finalized is true once the handshake has completed, at which | 
|  | // point accessors should use the established state. | 
|  | bool handshake_finalized:1; | 
|  |  | 
|  | // accept_psk_mode stores whether the client's PSK mode is compatible with our | 
|  | // preferences. | 
|  | bool accept_psk_mode:1; | 
|  |  | 
|  | // cert_request is true if a client certificate was requested. | 
|  | bool cert_request:1; | 
|  |  | 
|  | // certificate_status_expected is true if OCSP stapling was negotiated and the | 
|  | // server is expected to send a CertificateStatus message. (This is used on | 
|  | // both the client and server sides.) | 
|  | bool certificate_status_expected:1; | 
|  |  | 
|  | // ocsp_stapling_requested is true if a client requested OCSP stapling. | 
|  | bool ocsp_stapling_requested:1; | 
|  |  | 
|  | // should_ack_sni is used by a server and indicates that the SNI extension | 
|  | // should be echoed in the ServerHello. | 
|  | bool should_ack_sni:1; | 
|  |  | 
|  | // in_false_start is true if there is a pending client handshake in False | 
|  | // Start. The client may write data at this point. | 
|  | bool in_false_start:1; | 
|  |  | 
|  | // in_early_data is true if there is a pending handshake that has progressed | 
|  | // enough to send and receive early data. | 
|  | bool in_early_data:1; | 
|  |  | 
|  | // early_data_offered is true if the client sent the early_data extension. | 
|  | bool early_data_offered:1; | 
|  |  | 
|  | // can_early_read is true if application data may be read at this point in the | 
|  | // handshake. | 
|  | bool can_early_read:1; | 
|  |  | 
|  | // can_early_write is true if application data may be written at this point in | 
|  | // the handshake. | 
|  | bool can_early_write:1; | 
|  |  | 
|  | // next_proto_neg_seen is one of NPN was negotiated. | 
|  | bool next_proto_neg_seen:1; | 
|  |  | 
|  | // ticket_expected is true if a TLS 1.2 NewSessionTicket message is to be sent | 
|  | // or received. | 
|  | bool ticket_expected:1; | 
|  |  | 
|  | // extended_master_secret is true if the extended master secret extension is | 
|  | // negotiated in this handshake. | 
|  | bool extended_master_secret:1; | 
|  |  | 
|  | // pending_private_key_op is true if there is a pending private key operation | 
|  | // in progress. | 
|  | bool pending_private_key_op:1; | 
|  |  | 
|  | // grease_seeded is true if |grease_seed| has been initialized. | 
|  | bool grease_seeded:1; | 
|  |  | 
|  | // handback indicates that a server should pause the handshake after | 
|  | // finishing operations that require private key material, in such a way that | 
|  | // |SSL_get_error| returns |SSL_HANDBACK|.  It is set by |SSL_apply_handoff|. | 
|  | bool handback:1; | 
|  |  | 
|  | // cert_compression_negotiated is true iff |cert_compression_alg_id| is valid. | 
|  | bool cert_compression_negotiated:1; | 
|  |  | 
|  | // client_version is the value sent or received in the ClientHello version. | 
|  | uint16_t client_version = 0; | 
|  |  | 
|  | // early_data_read is the amount of early data that has been read by the | 
|  | // record layer. | 
|  | uint16_t early_data_read = 0; | 
|  |  | 
|  | // early_data_written is the amount of early data that has been written by the | 
|  | // record layer. | 
|  | uint16_t early_data_written = 0; | 
|  |  | 
|  | // session_id is the session ID in the ClientHello, used for the experimental | 
|  | // TLS 1.3 variant. | 
|  | uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; | 
|  | uint8_t session_id_len = 0; | 
|  |  | 
|  | // grease_seed is the entropy for GREASE values. It is valid if | 
|  | // |grease_seeded| is true. | 
|  | uint8_t grease_seed[ssl_grease_last_index + 1] = {0}; | 
|  |  | 
|  | // dummy_pq_padding_len, in a server, is the length of the extension that | 
|  | // should be echoed in a ServerHello, or zero if no extension should be | 
|  | // echoed. | 
|  | uint16_t dummy_pq_padding_len = 0; | 
|  | }; | 
|  |  | 
|  | UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl); | 
|  |  | 
|  | // ssl_check_message_type checks if |msg| has type |type|. If so it returns | 
|  | // one. Otherwise, it sends an alert and returns zero. | 
|  | bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type); | 
|  |  | 
|  | // ssl_run_handshake runs the TLS handshake. It returns one on success and <= 0 | 
|  | // on error. It sets |out_early_return| to one if we've completed the handshake | 
|  | // early. | 
|  | int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return); | 
|  |  | 
|  | // The following are implementations of |do_handshake| for the client and | 
|  | // server. | 
|  | enum ssl_hs_wait_t ssl_client_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs); | 
|  | enum ssl_hs_wait_t tls13_server_handshake(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // The following functions return human-readable representations of the TLS | 
|  | // handshake states for debugging. | 
|  | const char *ssl_client_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs); | 
|  | const char *tls13_server_handshake_state(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_post_handshake processes a post-handshake message. It returns one on | 
|  | // success and zero on failure. | 
|  | int tls13_post_handshake(SSL *ssl, const SSLMessage &msg); | 
|  |  | 
|  | int tls13_process_certificate(SSL_HANDSHAKE *hs, const SSLMessage &msg, | 
|  | int allow_anonymous); | 
|  | int tls13_process_certificate_verify(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | // tls13_process_finished processes |msg| as a Finished message from the | 
|  | // peer. If |use_saved_value| is one, the verify_data is compared against | 
|  | // |hs->expected_client_finished| rather than computed fresh. | 
|  | int tls13_process_finished(SSL_HANDSHAKE *hs, const SSLMessage &msg, | 
|  | int use_saved_value); | 
|  |  | 
|  | int tls13_add_certificate(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // tls13_add_certificate_verify adds a TLS 1.3 CertificateVerify message to the | 
|  | // handshake. If it returns |ssl_private_key_retry|, it should be called again | 
|  | // to retry when the signing operation is completed. | 
|  | enum ssl_private_key_result_t tls13_add_certificate_verify(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | int tls13_add_finished(SSL_HANDSHAKE *hs); | 
|  | int tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg); | 
|  |  | 
|  | bool ssl_ext_key_share_parse_serverhello(SSL_HANDSHAKE *hs, | 
|  | Array<uint8_t> *out_secret, | 
|  | uint8_t *out_alert, CBS *contents); | 
|  | bool ssl_ext_key_share_parse_clienthello(SSL_HANDSHAKE *hs, bool *out_found, | 
|  | Array<uint8_t> *out_secret, | 
|  | uint8_t *out_alert, CBS *contents); | 
|  | bool ssl_ext_key_share_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); | 
|  |  | 
|  | bool ssl_ext_pre_shared_key_parse_serverhello(SSL_HANDSHAKE *hs, | 
|  | uint8_t *out_alert, | 
|  | CBS *contents); | 
|  | bool ssl_ext_pre_shared_key_parse_clienthello( | 
|  | SSL_HANDSHAKE *hs, CBS *out_ticket, CBS *out_binders, | 
|  | uint32_t *out_obfuscated_ticket_age, uint8_t *out_alert, CBS *contents); | 
|  | bool ssl_ext_pre_shared_key_add_serverhello(SSL_HANDSHAKE *hs, CBB *out); | 
|  |  | 
|  | // ssl_is_sct_list_valid does a shallow parse of the SCT list in |contents| and | 
|  | // returns one iff it's valid. | 
|  | int ssl_is_sct_list_valid(const CBS *contents); | 
|  |  | 
|  | int ssl_write_client_hello(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | enum ssl_cert_verify_context_t { | 
|  | ssl_cert_verify_server, | 
|  | ssl_cert_verify_client, | 
|  | ssl_cert_verify_channel_id, | 
|  | }; | 
|  |  | 
|  | // tls13_get_cert_verify_signature_input generates the message to be signed for | 
|  | // TLS 1.3's CertificateVerify message. |cert_verify_context| determines the | 
|  | // type of signature. It sets |*out| to a newly allocated buffer containing the | 
|  | // result. This function returns true on success and false on failure. | 
|  | bool tls13_get_cert_verify_signature_input( | 
|  | SSL_HANDSHAKE *hs, Array<uint8_t> *out, | 
|  | enum ssl_cert_verify_context_t cert_verify_context); | 
|  |  | 
|  | // ssl_is_alpn_protocol_allowed returns whether |protocol| is a valid server | 
|  | // selection for |hs->ssl|'s client preferences. | 
|  | bool ssl_is_alpn_protocol_allowed(const SSL_HANDSHAKE *hs, | 
|  | Span<const uint8_t> protocol); | 
|  |  | 
|  | // ssl_negotiate_alpn negotiates the ALPN extension, if applicable. It returns | 
|  | // true on successful negotiation or if nothing was negotiated. It returns false | 
|  | // and sets |*out_alert| to an alert on error. | 
|  | bool ssl_negotiate_alpn(SSL_HANDSHAKE *hs, uint8_t *out_alert, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  |  | 
|  | struct SSL_EXTENSION_TYPE { | 
|  | uint16_t type; | 
|  | bool *out_present; | 
|  | CBS *out_data; | 
|  | }; | 
|  |  | 
|  | // ssl_parse_extensions parses a TLS extensions block out of |cbs| and advances | 
|  | // it. It writes the parsed extensions to pointers denoted by |ext_types|. On | 
|  | // success, it fills in the |out_present| and |out_data| fields and returns one. | 
|  | // Otherwise, it sets |*out_alert| to an alert to send and returns zero. Unknown | 
|  | // extensions are rejected unless |ignore_unknown| is 1. | 
|  | int ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert, | 
|  | const SSL_EXTENSION_TYPE *ext_types, | 
|  | size_t num_ext_types, int ignore_unknown); | 
|  |  | 
|  | // ssl_verify_peer_cert verifies the peer certificate for |hs|. | 
|  | enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs); | 
|  | bool ssl_send_finished(SSL_HANDSHAKE *hs); | 
|  | bool ssl_output_cert_chain(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // SSLKEYLOGFILE functions. | 
|  |  | 
|  | // ssl_log_secret logs |secret| with label |label|, if logging is enabled for | 
|  | // |ssl|. It returns one on success and zero on failure. | 
|  | int ssl_log_secret(const SSL *ssl, const char *label, const uint8_t *secret, | 
|  | size_t secret_len); | 
|  |  | 
|  |  | 
|  | // ClientHello functions. | 
|  |  | 
|  | int ssl_client_hello_init(SSL *ssl, SSL_CLIENT_HELLO *out, | 
|  | const SSLMessage &msg); | 
|  |  | 
|  | int ssl_client_hello_get_extension(const SSL_CLIENT_HELLO *client_hello, | 
|  | CBS *out, uint16_t extension_type); | 
|  |  | 
|  | int ssl_client_cipher_list_contains_cipher(const SSL_CLIENT_HELLO *client_hello, | 
|  | uint16_t id); | 
|  |  | 
|  |  | 
|  | // GREASE. | 
|  |  | 
|  | // ssl_get_grease_value returns a GREASE value for |hs|. For a given | 
|  | // connection, the values for each index will be deterministic. This allows the | 
|  | // same ClientHello be sent twice for a HelloRetryRequest or the same group be | 
|  | // advertised in both supported_groups and key_shares. | 
|  | uint16_t ssl_get_grease_value(SSL_HANDSHAKE *hs, enum ssl_grease_index_t index); | 
|  |  | 
|  |  | 
|  | // Signature algorithms. | 
|  |  | 
|  | // tls1_parse_peer_sigalgs parses |sigalgs| as the list of peer signature | 
|  | // algorithms and saves them on |hs|. It returns true on success and false on | 
|  | // error. | 
|  | bool tls1_parse_peer_sigalgs(SSL_HANDSHAKE *hs, const CBS *sigalgs); | 
|  |  | 
|  | // tls1_get_legacy_signature_algorithm sets |*out| to the signature algorithm | 
|  | // that should be used with |pkey| in TLS 1.1 and earlier. It returns true on | 
|  | // success and false if |pkey| may not be used at those versions. | 
|  | bool tls1_get_legacy_signature_algorithm(uint16_t *out, const EVP_PKEY *pkey); | 
|  |  | 
|  | // tls1_choose_signature_algorithm sets |*out| to a signature algorithm for use | 
|  | // with |hs|'s private key based on the peer's preferences and the algorithms | 
|  | // supported. It returns true on success and false on error. | 
|  | bool tls1_choose_signature_algorithm(SSL_HANDSHAKE *hs, uint16_t *out); | 
|  |  | 
|  | // tls12_add_verify_sigalgs adds the signature algorithms acceptable for the | 
|  | // peer signature to |out|. It returns true on success and false on error. If | 
|  | // |for_certs| is true, the potentially more restrictive list of algorithms for | 
|  | // certificates is used. Otherwise, the online signature one is used. | 
|  | bool tls12_add_verify_sigalgs(const SSL *ssl, CBB *out, bool for_certs); | 
|  |  | 
|  | // tls12_check_peer_sigalg checks if |sigalg| is acceptable for the peer | 
|  | // signature. It returns true on success and false on error, setting | 
|  | // |*out_alert| to an alert to send. | 
|  | bool tls12_check_peer_sigalg(const SSL *ssl, uint8_t *out_alert, | 
|  | uint16_t sigalg); | 
|  |  | 
|  | // tls12_has_different_verify_sigalgs_for_certs returns whether |ssl| has a | 
|  | // different, more restrictive, list of signature algorithms acceptable for the | 
|  | // certificate than the online signature. | 
|  | bool tls12_has_different_verify_sigalgs_for_certs(const SSL *ssl); | 
|  |  | 
|  |  | 
|  | // Underdocumented functions. | 
|  | // | 
|  | // Functions below here haven't been touched up and may be underdocumented. | 
|  |  | 
|  | #define TLSEXT_CHANNEL_ID_SIZE 128 | 
|  |  | 
|  | // From RFC4492, used in encoding the curve type in ECParameters | 
|  | #define NAMED_CURVE_TYPE 3 | 
|  |  | 
|  | struct CERT { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | explicit CERT(const SSL_X509_METHOD *x509_method); | 
|  | ~CERT(); | 
|  |  | 
|  | UniquePtr<EVP_PKEY> privatekey; | 
|  |  | 
|  | // chain contains the certificate chain, with the leaf at the beginning. The | 
|  | // first element of |chain| may be NULL to indicate that the leaf certificate | 
|  | // has not yet been set. | 
|  | //   If |chain| != NULL -> len(chain) >= 1 | 
|  | //   If |chain[0]| == NULL -> len(chain) >= 2. | 
|  | //   |chain[1..]| != NULL | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> chain; | 
|  |  | 
|  | // x509_chain may contain a parsed copy of |chain[1..]|. This is only used as | 
|  | // a cache in order to implement “get0” functions that return a non-owning | 
|  | // pointer to the certificate chain. | 
|  | STACK_OF(X509) *x509_chain = nullptr; | 
|  |  | 
|  | // x509_leaf may contain a parsed copy of the first element of |chain|. This | 
|  | // is only used as a cache in order to implement “get0” functions that return | 
|  | // a non-owning pointer to the certificate chain. | 
|  | X509 *x509_leaf = nullptr; | 
|  |  | 
|  | // x509_stash contains the last |X509| object append to the chain. This is a | 
|  | // workaround for some third-party code that continue to use an |X509| object | 
|  | // even after passing ownership with an “add0” function. | 
|  | X509 *x509_stash = nullptr; | 
|  |  | 
|  | // key_method, if non-NULL, is a set of callbacks to call for private key | 
|  | // operations. | 
|  | const SSL_PRIVATE_KEY_METHOD *key_method = nullptr; | 
|  |  | 
|  | // x509_method contains pointers to functions that might deal with |X509| | 
|  | // compatibility, or might be a no-op, depending on the application. | 
|  | const SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // sigalgs, if non-empty, is the set of signature algorithms supported by | 
|  | // |privatekey| in decreasing order of preference. | 
|  | Array<uint16_t> sigalgs; | 
|  |  | 
|  | // Certificate setup callback: if set is called whenever a | 
|  | // certificate may be required (client or server). the callback | 
|  | // can then examine any appropriate parameters and setup any | 
|  | // certificates required. This allows advanced applications | 
|  | // to select certificates on the fly: for example based on | 
|  | // supported signature algorithms or curves. | 
|  | int (*cert_cb)(SSL *ssl, void *arg) = nullptr; | 
|  | void *cert_cb_arg = nullptr; | 
|  |  | 
|  | // Optional X509_STORE for certificate validation. If NULL the parent SSL_CTX | 
|  | // store is used instead. | 
|  | X509_STORE *verify_store = nullptr; | 
|  |  | 
|  | // Signed certificate timestamp list to be sent to the client, if requested | 
|  | UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; | 
|  |  | 
|  | // OCSP response to be sent to the client, if requested. | 
|  | UniquePtr<CRYPTO_BUFFER> ocsp_response; | 
|  |  | 
|  | // sid_ctx partitions the session space within a shared session cache or | 
|  | // ticket key. Only sessions with a matching value will be accepted. | 
|  | uint8_t sid_ctx_length = 0; | 
|  | uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; | 
|  | }; | 
|  |  | 
|  | // |SSL_PROTOCOL_METHOD| abstracts between TLS and DTLS. | 
|  | struct SSL_PROTOCOL_METHOD { | 
|  | bool is_dtls; | 
|  | bool (*ssl_new)(SSL *ssl); | 
|  | void (*ssl_free)(SSL *ssl); | 
|  | // get_message sets |*out| to the current handshake message and returns true | 
|  | // if one has been received. It returns false if more input is needed. | 
|  | bool (*get_message)(SSL *ssl, SSLMessage *out); | 
|  | // next_message is called to release the current handshake message. | 
|  | void (*next_message)(SSL *ssl); | 
|  | // Use the |ssl_open_handshake| wrapper. | 
|  | ssl_open_record_t (*open_handshake)(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | // Use the |ssl_open_change_cipher_spec| wrapper. | 
|  | ssl_open_record_t (*open_change_cipher_spec)(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | // Use the |ssl_open_app_data| wrapper. | 
|  | ssl_open_record_t (*open_app_data)(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | int (*write_app_data)(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, | 
|  | int len); | 
|  | int (*dispatch_alert)(SSL *ssl); | 
|  | // init_message begins a new handshake message of type |type|. |cbb| is the | 
|  | // root CBB to be passed into |finish_message|. |*body| is set to a child CBB | 
|  | // the caller should write to. It returns true on success and false on error. | 
|  | bool (*init_message)(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | // finish_message finishes a handshake message. It sets |*out_msg| to the | 
|  | // serialized message. It returns true on success and false on error. | 
|  | bool (*finish_message)(SSL *ssl, CBB *cbb, bssl::Array<uint8_t> *out_msg); | 
|  | // add_message adds a handshake message to the pending flight. It returns | 
|  | // true on success and false on error. | 
|  | bool (*add_message)(SSL *ssl, bssl::Array<uint8_t> msg); | 
|  | // add_change_cipher_spec adds a ChangeCipherSpec record to the pending | 
|  | // flight. It returns true on success and false on error. | 
|  | bool (*add_change_cipher_spec)(SSL *ssl); | 
|  | // add_alert adds an alert to the pending flight. It returns true on success | 
|  | // and false on error. | 
|  | bool (*add_alert)(SSL *ssl, uint8_t level, uint8_t desc); | 
|  | // flush_flight flushes the pending flight to the transport. It returns one on | 
|  | // success and <= 0 on error. | 
|  | int (*flush_flight)(SSL *ssl); | 
|  | // on_handshake_complete is called when the handshake is complete. | 
|  | void (*on_handshake_complete)(SSL *ssl); | 
|  | // set_read_state sets |ssl|'s read cipher state to |aead_ctx|. It returns | 
|  | // true on success and false if changing the read state is forbidden at this | 
|  | // point. | 
|  | bool (*set_read_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); | 
|  | // set_write_state sets |ssl|'s write cipher state to |aead_ctx|. It returns | 
|  | // true on success and false if changing the write state is forbidden at this | 
|  | // point. | 
|  | bool (*set_write_state)(SSL *ssl, UniquePtr<SSLAEADContext> aead_ctx); | 
|  | }; | 
|  |  | 
|  | // The following wrappers call |open_*| but handle |read_shutdown| correctly. | 
|  |  | 
|  | // ssl_open_handshake processes a record from |in| for reading a handshake | 
|  | // message. | 
|  | ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  |  | 
|  | // ssl_open_change_cipher_spec processes a record from |in| for reading a | 
|  | // ChangeCipherSpec. | 
|  | ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | // ssl_open_app_data processes a record from |in| for reading application data. | 
|  | // On success, it returns |ssl_open_record_success| and sets |*out| to the | 
|  | // input. If it encounters a post-handshake message, it returns | 
|  | // |ssl_open_record_discard|. The caller should then retry, after processing any | 
|  | // messages received with |get_message|. | 
|  | ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | struct SSL_X509_METHOD { | 
|  | // check_client_CA_list returns one if |names| is a good list of X.509 | 
|  | // distinguished names and zero otherwise. This is used to ensure that we can | 
|  | // reject unparsable values at handshake time when using crypto/x509. | 
|  | int (*check_client_CA_list)(STACK_OF(CRYPTO_BUFFER) *names); | 
|  |  | 
|  | // cert_clear frees and NULLs all X509 certificate-related state. | 
|  | void (*cert_clear)(CERT *cert); | 
|  | // cert_free frees all X509-related state. | 
|  | void (*cert_free)(CERT *cert); | 
|  | // cert_flush_cached_chain drops any cached |X509|-based certificate chain | 
|  | // from |cert|. | 
|  | // cert_dup duplicates any needed fields from |cert| to |new_cert|. | 
|  | void (*cert_dup)(CERT *new_cert, const CERT *cert); | 
|  | void (*cert_flush_cached_chain)(CERT *cert); | 
|  | // cert_flush_cached_chain drops any cached |X509|-based leaf certificate | 
|  | // from |cert|. | 
|  | void (*cert_flush_cached_leaf)(CERT *cert); | 
|  |  | 
|  | // session_cache_objects fills out |sess->x509_peer| and |sess->x509_chain| | 
|  | // from |sess->certs| and erases |sess->x509_chain_without_leaf|. It returns | 
|  | // one on success or zero on error. | 
|  | int (*session_cache_objects)(SSL_SESSION *session); | 
|  | // session_dup duplicates any needed fields from |session| to |new_session|. | 
|  | // It returns one on success or zero on error. | 
|  | int (*session_dup)(SSL_SESSION *new_session, const SSL_SESSION *session); | 
|  | // session_clear frees any X509-related state from |session|. | 
|  | void (*session_clear)(SSL_SESSION *session); | 
|  | // session_verify_cert_chain verifies the certificate chain in |session|, | 
|  | // sets |session->verify_result| and returns one on success or zero on | 
|  | // error. | 
|  | int (*session_verify_cert_chain)(SSL_SESSION *session, SSL_HANDSHAKE *ssl, | 
|  | uint8_t *out_alert); | 
|  |  | 
|  | // hs_flush_cached_ca_names drops any cached |X509_NAME|s from |hs|. | 
|  | void (*hs_flush_cached_ca_names)(SSL_HANDSHAKE *hs); | 
|  | // ssl_new does any neccessary initialisation of |hs|. It returns one on | 
|  | // success or zero on error. | 
|  | int (*ssl_new)(SSL_HANDSHAKE *hs); | 
|  | // ssl_free frees anything created by |ssl_new|. | 
|  | void (*ssl_config_free)(SSL_CONFIG *cfg); | 
|  | // ssl_flush_cached_client_CA drops any cached |X509_NAME|s from |ssl|. | 
|  | void (*ssl_flush_cached_client_CA)(SSL_CONFIG *cfg); | 
|  | // ssl_auto_chain_if_needed runs the deprecated auto-chaining logic if | 
|  | // necessary. On success, it updates |ssl|'s certificate configuration as | 
|  | // needed and returns one. Otherwise, it returns zero. | 
|  | int (*ssl_auto_chain_if_needed)(SSL_HANDSHAKE *hs); | 
|  | // ssl_ctx_new does any neccessary initialisation of |ctx|. It returns one on | 
|  | // success or zero on error. | 
|  | int (*ssl_ctx_new)(SSL_CTX *ctx); | 
|  | // ssl_ctx_free frees anything created by |ssl_ctx_new|. | 
|  | void (*ssl_ctx_free)(SSL_CTX *ctx); | 
|  | // ssl_ctx_flush_cached_client_CA drops any cached |X509_NAME|s from |ctx|. | 
|  | void (*ssl_ctx_flush_cached_client_CA)(SSL_CTX *ssl); | 
|  | }; | 
|  |  | 
|  | // ssl_crypto_x509_method provides the |SSL_X509_METHOD| functions using | 
|  | // crypto/x509. | 
|  | extern const SSL_X509_METHOD ssl_crypto_x509_method; | 
|  |  | 
|  | // ssl_noop_x509_method provides the |SSL_X509_METHOD| functions that avoid | 
|  | // crypto/x509. | 
|  | extern const SSL_X509_METHOD ssl_noop_x509_method; | 
|  |  | 
|  | struct TicketKey { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | uint8_t name[SSL_TICKET_KEY_NAME_LEN] = {0}; | 
|  | uint8_t hmac_key[16] = {0}; | 
|  | uint8_t aes_key[16] = {0}; | 
|  | // next_rotation_tv_sec is the time (in seconds from the epoch) when the | 
|  | // current key should be superseded by a new key, or the time when a previous | 
|  | // key should be dropped. If zero, then the key should not be automatically | 
|  | // rotated. | 
|  | uint64_t next_rotation_tv_sec = 0; | 
|  | }; | 
|  |  | 
|  | struct CertCompressionAlg { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | ssl_cert_compression_func_t compress = nullptr; | 
|  | ssl_cert_decompression_func_t decompress = nullptr; | 
|  | uint16_t alg_id = 0; | 
|  | }; | 
|  |  | 
|  | }  // namespace bssl | 
|  |  | 
|  | DECLARE_LHASH_OF(SSL_SESSION) | 
|  |  | 
|  | DEFINE_NAMED_STACK_OF(CertCompressionAlg, bssl::CertCompressionAlg); | 
|  |  | 
|  | namespace bssl { | 
|  |  | 
|  | // An ssl_shutdown_t describes the shutdown state of one end of the connection, | 
|  | // whether it is alive or has been shutdown via close_notify or fatal alert. | 
|  | enum ssl_shutdown_t { | 
|  | ssl_shutdown_none = 0, | 
|  | ssl_shutdown_close_notify = 1, | 
|  | ssl_shutdown_error = 2, | 
|  | }; | 
|  |  | 
|  | struct SSL3_STATE { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | SSL3_STATE(); | 
|  | ~SSL3_STATE(); | 
|  |  | 
|  | uint8_t read_sequence[8] = {0}; | 
|  | uint8_t write_sequence[8] = {0}; | 
|  |  | 
|  | uint8_t server_random[SSL3_RANDOM_SIZE] = {0}; | 
|  | uint8_t client_random[SSL3_RANDOM_SIZE] = {0}; | 
|  |  | 
|  | // read_buffer holds data from the transport to be processed. | 
|  | SSLBuffer read_buffer; | 
|  | // write_buffer holds data to be written to the transport. | 
|  | SSLBuffer write_buffer; | 
|  |  | 
|  | // pending_app_data is the unconsumed application data. It points into | 
|  | // |read_buffer|. | 
|  | Span<uint8_t> pending_app_data; | 
|  |  | 
|  | // partial write - check the numbers match | 
|  | unsigned int wnum = 0;  // number of bytes sent so far | 
|  | int wpend_tot = 0;      // number bytes written | 
|  | int wpend_type = 0; | 
|  | int wpend_ret = 0;  // number of bytes submitted | 
|  | const uint8_t *wpend_buf = nullptr; | 
|  |  | 
|  | // read_shutdown is the shutdown state for the read half of the connection. | 
|  | enum ssl_shutdown_t read_shutdown = ssl_shutdown_none; | 
|  |  | 
|  | // write_shutdown is the shutdown state for the write half of the connection. | 
|  | enum ssl_shutdown_t write_shutdown = ssl_shutdown_none; | 
|  |  | 
|  | // read_error, if |read_shutdown| is |ssl_shutdown_error|, is the error for | 
|  | // the receive half of the connection. | 
|  | UniquePtr<ERR_SAVE_STATE> read_error; | 
|  |  | 
|  | int alert_dispatch = 0; | 
|  |  | 
|  | int total_renegotiations = 0; | 
|  |  | 
|  | // This holds a variable that indicates what we were doing when a 0 or -1 is | 
|  | // returned.  This is needed for non-blocking IO so we know what request | 
|  | // needs re-doing when in SSL_accept or SSL_connect | 
|  | int rwstate = SSL_NOTHING; | 
|  |  | 
|  | // early_data_skipped is the amount of early data that has been skipped by the | 
|  | // record layer. | 
|  | uint16_t early_data_skipped = 0; | 
|  |  | 
|  | // empty_record_count is the number of consecutive empty records received. | 
|  | uint8_t empty_record_count = 0; | 
|  |  | 
|  | // warning_alert_count is the number of consecutive warning alerts | 
|  | // received. | 
|  | uint8_t warning_alert_count = 0; | 
|  |  | 
|  | // key_update_count is the number of consecutive KeyUpdates received. | 
|  | uint8_t key_update_count = 0; | 
|  |  | 
|  | // The negotiated Token Binding key parameter. Only valid if | 
|  | // |token_binding_negotiated| is set. | 
|  | uint8_t negotiated_token_binding_param = 0; | 
|  |  | 
|  | // skip_early_data instructs the record layer to skip unexpected early data | 
|  | // messages when 0RTT is rejected. | 
|  | bool skip_early_data:1; | 
|  |  | 
|  | // have_version is true if the connection's final version is known. Otherwise | 
|  | // the version has not been negotiated yet. | 
|  | bool have_version:1; | 
|  |  | 
|  | // v2_hello_done is true if the peer's V2ClientHello, if any, has been handled | 
|  | // and future messages should use the record layer. | 
|  | bool v2_hello_done:1; | 
|  |  | 
|  | // is_v2_hello is true if the current handshake message was derived from a | 
|  | // V2ClientHello rather than received from the peer directly. | 
|  | bool is_v2_hello:1; | 
|  |  | 
|  | // has_message is true if the current handshake message has been returned | 
|  | // at least once by |get_message| and false otherwise. | 
|  | bool has_message:1; | 
|  |  | 
|  | // initial_handshake_complete is true if the initial handshake has | 
|  | // completed. | 
|  | bool initial_handshake_complete:1; | 
|  |  | 
|  | // session_reused indicates whether a session was resumed. | 
|  | bool session_reused:1; | 
|  |  | 
|  | bool send_connection_binding:1; | 
|  |  | 
|  | // In a client, this means that the server supported Channel ID and that a | 
|  | // Channel ID was sent. In a server it means that we echoed support for | 
|  | // Channel IDs and that |channel_id| will be valid after the handshake. | 
|  | bool channel_id_valid:1; | 
|  |  | 
|  | // key_update_pending is true if we have a KeyUpdate acknowledgment | 
|  | // outstanding. | 
|  | bool key_update_pending:1; | 
|  |  | 
|  | // wpend_pending is true if we have a pending write outstanding. | 
|  | bool wpend_pending:1; | 
|  |  | 
|  | // early_data_accepted is true if early data was accepted by the server. | 
|  | bool early_data_accepted:1; | 
|  |  | 
|  | // draft_downgrade is whether the TLS 1.3 anti-downgrade logic would have | 
|  | // fired, were it not a draft. | 
|  | bool draft_downgrade:1; | 
|  |  | 
|  | // token_binding_negotiated is set if Token Binding was negotiated. | 
|  | bool token_binding_negotiated:1; | 
|  |  | 
|  | // hs_buf is the buffer of handshake data to process. | 
|  | UniquePtr<BUF_MEM> hs_buf; | 
|  |  | 
|  | // pending_hs_data contains the pending handshake data that has not yet | 
|  | // been encrypted to |pending_flight|. This allows packing the handshake into | 
|  | // fewer records. | 
|  | UniquePtr<BUF_MEM> pending_hs_data; | 
|  |  | 
|  | // pending_flight is the pending outgoing flight. This is used to flush each | 
|  | // handshake flight in a single write. |write_buffer| must be written out | 
|  | // before this data. | 
|  | UniquePtr<BUF_MEM> pending_flight; | 
|  |  | 
|  | // pending_flight_offset is the number of bytes of |pending_flight| which have | 
|  | // been successfully written. | 
|  | uint32_t pending_flight_offset = 0; | 
|  |  | 
|  | // ticket_age_skew is the difference, in seconds, between the client-sent | 
|  | // ticket age and the server-computed value in TLS 1.3 server connections | 
|  | // which resumed a session. | 
|  | int32_t ticket_age_skew = 0; | 
|  |  | 
|  | // aead_read_ctx is the current read cipher state. | 
|  | UniquePtr<SSLAEADContext> aead_read_ctx; | 
|  |  | 
|  | // aead_write_ctx is the current write cipher state. | 
|  | UniquePtr<SSLAEADContext> aead_write_ctx; | 
|  |  | 
|  | // hs is the handshake state for the current handshake or NULL if there isn't | 
|  | // one. | 
|  | UniquePtr<SSL_HANDSHAKE> hs; | 
|  |  | 
|  | uint8_t write_traffic_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t read_traffic_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t exporter_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t early_exporter_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t write_traffic_secret_len = 0; | 
|  | uint8_t read_traffic_secret_len = 0; | 
|  | uint8_t exporter_secret_len = 0; | 
|  | uint8_t early_exporter_secret_len = 0; | 
|  |  | 
|  | // Connection binding to prevent renegotiation attacks | 
|  | uint8_t previous_client_finished[12] = {0}; | 
|  | uint8_t previous_client_finished_len = 0; | 
|  | uint8_t previous_server_finished_len = 0; | 
|  | uint8_t previous_server_finished[12] = {0}; | 
|  |  | 
|  | uint8_t send_alert[2] = {0}; | 
|  |  | 
|  | // established_session is the session established by the connection. This | 
|  | // session is only filled upon the completion of the handshake and is | 
|  | // immutable. | 
|  | UniquePtr<SSL_SESSION> established_session; | 
|  |  | 
|  | // Next protocol negotiation. For the client, this is the protocol that we | 
|  | // sent in NextProtocol and is set when handling ServerHello extensions. | 
|  | // | 
|  | // For a server, this is the client's selected_protocol from NextProtocol and | 
|  | // is set when handling the NextProtocol message, before the Finished | 
|  | // message. | 
|  | Array<uint8_t> next_proto_negotiated; | 
|  |  | 
|  | // ALPN information | 
|  | // (we are in the process of transitioning from NPN to ALPN.) | 
|  |  | 
|  | // In a server these point to the selected ALPN protocol after the | 
|  | // ClientHello has been processed. In a client these contain the protocol | 
|  | // that the server selected once the ServerHello has been processed. | 
|  | Array<uint8_t> alpn_selected; | 
|  |  | 
|  | // hostname, on the server, is the value of the SNI extension. | 
|  | UniquePtr<char> hostname; | 
|  |  | 
|  | // For a server: | 
|  | //     If |channel_id_valid| is true, then this contains the | 
|  | //     verified Channel ID from the client: a P256 point, (x,y), where | 
|  | //     each are big-endian values. | 
|  | uint8_t channel_id[64] = {0}; | 
|  |  | 
|  | // Contains the QUIC transport params received by the peer. | 
|  | Array<uint8_t> peer_quic_transport_params; | 
|  |  | 
|  | // srtp_profile is the selected SRTP protection profile for | 
|  | // DTLS-SRTP. | 
|  | const SRTP_PROTECTION_PROFILE *srtp_profile = nullptr; | 
|  | }; | 
|  |  | 
|  | // lengths of messages | 
|  | #define DTLS1_COOKIE_LENGTH 256 | 
|  |  | 
|  | #define DTLS1_RT_HEADER_LENGTH 13 | 
|  |  | 
|  | #define DTLS1_HM_HEADER_LENGTH 12 | 
|  |  | 
|  | #define DTLS1_CCS_HEADER_LENGTH 1 | 
|  |  | 
|  | #define DTLS1_AL_HEADER_LENGTH 2 | 
|  |  | 
|  | struct hm_header_st { | 
|  | uint8_t type; | 
|  | uint32_t msg_len; | 
|  | uint16_t seq; | 
|  | uint32_t frag_off; | 
|  | uint32_t frag_len; | 
|  | }; | 
|  |  | 
|  | // An hm_fragment is an incoming DTLS message, possibly not yet assembled. | 
|  | struct hm_fragment { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | hm_fragment() {} | 
|  | hm_fragment(const hm_fragment &) = delete; | 
|  | hm_fragment &operator=(const hm_fragment &) = delete; | 
|  |  | 
|  | ~hm_fragment(); | 
|  |  | 
|  | // type is the type of the message. | 
|  | uint8_t type = 0; | 
|  | // seq is the sequence number of this message. | 
|  | uint16_t seq = 0; | 
|  | // msg_len is the length of the message body. | 
|  | uint32_t msg_len = 0; | 
|  | // data is a pointer to the message, including message header. It has length | 
|  | // |DTLS1_HM_HEADER_LENGTH| + |msg_len|. | 
|  | uint8_t *data = nullptr; | 
|  | // reassembly is a bitmask of |msg_len| bits corresponding to which parts of | 
|  | // the message have been received. It is NULL if the message is complete. | 
|  | uint8_t *reassembly = nullptr; | 
|  | }; | 
|  |  | 
|  | struct OPENSSL_timeval { | 
|  | uint64_t tv_sec; | 
|  | uint32_t tv_usec; | 
|  | }; | 
|  |  | 
|  | struct DTLS1_STATE { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | DTLS1_STATE(); | 
|  | ~DTLS1_STATE(); | 
|  |  | 
|  | // has_change_cipher_spec is true if we have received a ChangeCipherSpec from | 
|  | // the peer in this epoch. | 
|  | bool has_change_cipher_spec:1; | 
|  |  | 
|  | // outgoing_messages_complete is true if |outgoing_messages| has been | 
|  | // completed by an attempt to flush it. Future calls to |add_message| and | 
|  | // |add_change_cipher_spec| will start a new flight. | 
|  | bool outgoing_messages_complete:1; | 
|  |  | 
|  | // flight_has_reply is true if the current outgoing flight is complete and has | 
|  | // processed at least one message. This is used to detect whether we or the | 
|  | // peer sent the final flight. | 
|  | bool flight_has_reply:1; | 
|  |  | 
|  | uint8_t cookie[DTLS1_COOKIE_LENGTH] = {0}; | 
|  | size_t cookie_len = 0; | 
|  |  | 
|  | // The current data and handshake epoch.  This is initially undefined, and | 
|  | // starts at zero once the initial handshake is completed. | 
|  | uint16_t r_epoch = 0; | 
|  | uint16_t w_epoch = 0; | 
|  |  | 
|  | // records being received in the current epoch | 
|  | DTLS1_BITMAP bitmap; | 
|  |  | 
|  | uint16_t handshake_write_seq = 0; | 
|  | uint16_t handshake_read_seq = 0; | 
|  |  | 
|  | // save last sequence number for retransmissions | 
|  | uint8_t last_write_sequence[8] = {0}; | 
|  | UniquePtr<SSLAEADContext> last_aead_write_ctx; | 
|  |  | 
|  | // incoming_messages is a ring buffer of incoming handshake messages that have | 
|  | // yet to be processed. The front of the ring buffer is message number | 
|  | // |handshake_read_seq|, at position |handshake_read_seq| % | 
|  | // |SSL_MAX_HANDSHAKE_FLIGHT|. | 
|  | UniquePtr<hm_fragment> incoming_messages[SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  |  | 
|  | // outgoing_messages is the queue of outgoing messages from the last handshake | 
|  | // flight. | 
|  | DTLS_OUTGOING_MESSAGE outgoing_messages[SSL_MAX_HANDSHAKE_FLIGHT]; | 
|  | uint8_t outgoing_messages_len = 0; | 
|  |  | 
|  | // outgoing_written is the number of outgoing messages that have been | 
|  | // written. | 
|  | uint8_t outgoing_written = 0; | 
|  | // outgoing_offset is the number of bytes of the next outgoing message have | 
|  | // been written. | 
|  | uint32_t outgoing_offset = 0; | 
|  |  | 
|  | unsigned mtu = 0;  // max DTLS packet size | 
|  |  | 
|  | // num_timeouts is the number of times the retransmit timer has fired since | 
|  | // the last time it was reset. | 
|  | unsigned num_timeouts = 0; | 
|  |  | 
|  | // Indicates when the last handshake msg or heartbeat sent will | 
|  | // timeout. | 
|  | struct OPENSSL_timeval next_timeout = {0, 0}; | 
|  |  | 
|  | // timeout_duration_ms is the timeout duration in milliseconds. | 
|  | unsigned timeout_duration_ms = 0; | 
|  | }; | 
|  |  | 
|  | // SSL_CONFIG contains configuration bits that can be shed after the handshake | 
|  | // completes.  Objects of this type are not shared; they are unique to a | 
|  | // particular |SSL|. | 
|  | // | 
|  | // See SSL_shed_handshake_config() for more about the conditions under which | 
|  | // configuration can be shed. | 
|  | struct SSL_CONFIG { | 
|  | static constexpr bool kAllowUniquePtr = true; | 
|  |  | 
|  | explicit SSL_CONFIG(SSL *ssl_arg); | 
|  | ~SSL_CONFIG(); | 
|  |  | 
|  | // ssl is a non-owning pointer to the parent |SSL| object. | 
|  | SSL *const ssl = nullptr; | 
|  |  | 
|  | // conf_max_version is the maximum acceptable protocol version configured by | 
|  | // |SSL_set_max_proto_version|. Note this version is normalized in DTLS and is | 
|  | // further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_max_version = 0; | 
|  |  | 
|  | // conf_min_version is the minimum acceptable protocol version configured by | 
|  | // |SSL_set_min_proto_version|. Note this version is normalized in DTLS and is | 
|  | // further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_min_version = 0; | 
|  |  | 
|  | X509_VERIFY_PARAM *param = nullptr; | 
|  |  | 
|  | // crypto | 
|  | UniquePtr<SSLCipherPreferenceList> cipher_list; | 
|  |  | 
|  | // This is used to hold the local certificate used (i.e. the server | 
|  | // certificate for a server or the client certificate for a client). | 
|  | UniquePtr<CERT> cert; | 
|  |  | 
|  | int (*verify_callback)(int ok, | 
|  | X509_STORE_CTX *ctx) = | 
|  | nullptr;  // fail if callback returns 0 | 
|  |  | 
|  | enum ssl_verify_result_t (*custom_verify_callback)( | 
|  | SSL *ssl, uint8_t *out_alert) = nullptr; | 
|  | // Server-only: psk_identity_hint is the identity hint to send in | 
|  | // PSK-based key exchanges. | 
|  | UniquePtr<char> psk_identity_hint; | 
|  |  | 
|  | unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  | unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  |  | 
|  | // for server side, keep the list of CA_dn we can use | 
|  | UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; | 
|  |  | 
|  | // cached_x509_client_CA is a cache of parsed versions of the elements of | 
|  | // |client_CA|. | 
|  | STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; | 
|  |  | 
|  | uint16_t dummy_pq_padding_len = 0; | 
|  | Array<uint16_t> supported_group_list;  // our list | 
|  |  | 
|  | // The client's Channel ID private key. | 
|  | UniquePtr<EVP_PKEY> channel_id_private; | 
|  |  | 
|  | // For a client, this contains the list of supported protocols in wire | 
|  | // format. | 
|  | Array<uint8_t> alpn_client_proto_list; | 
|  |  | 
|  | // Contains a list of supported Token Binding key parameters. | 
|  | Array<uint8_t> token_binding_params; | 
|  |  | 
|  | // Contains the QUIC transport params that this endpoint will send. | 
|  | Array<uint8_t> quic_transport_params; | 
|  |  | 
|  | // srtp_profiles is the list of configured SRTP protection profiles for | 
|  | // DTLS-SRTP. | 
|  | UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; | 
|  |  | 
|  | // verify_mode is a bitmask of |SSL_VERIFY_*| values. | 
|  | uint8_t verify_mode = SSL_VERIFY_NONE; | 
|  |  | 
|  | // Enable signed certificate time stamps. Currently client only. | 
|  | bool signed_cert_timestamps_enabled:1; | 
|  |  | 
|  | // ocsp_stapling_enabled is only used by client connections and indicates | 
|  | // whether OCSP stapling will be requested. | 
|  | bool ocsp_stapling_enabled:1; | 
|  |  | 
|  | // channel_id_enabled is copied from the |SSL_CTX|. For a server, means that | 
|  | // we'll accept Channel IDs from clients. For a client, means that we'll | 
|  | // advertise support. | 
|  | bool channel_id_enabled:1; | 
|  |  | 
|  | // retain_only_sha256_of_client_certs is true if we should compute the SHA256 | 
|  | // hash of the peer's certificate and then discard it to save memory and | 
|  | // session space. Only effective on the server side. | 
|  | bool retain_only_sha256_of_client_certs:1; | 
|  |  | 
|  | // handoff indicates that a server should stop after receiving the | 
|  | // ClientHello and pause the handshake in such a way that |SSL_get_error| | 
|  | // returns |SSL_HANDOFF|. This is copied in |SSL_new| from the |SSL_CTX| | 
|  | // element of the same name and may be cleared if the handoff is declined. | 
|  | bool handoff:1; | 
|  |  | 
|  | // shed_handshake_config indicates that the handshake config (this object!) | 
|  | // should be freed after the handshake completes. | 
|  | bool shed_handshake_config : 1; | 
|  | }; | 
|  |  | 
|  | // From draft-ietf-tls-tls13-18, used in determining PSK modes. | 
|  | #define SSL_PSK_DHE_KE 0x1 | 
|  |  | 
|  | // From draft-ietf-tls-tls13-16, used in determining whether to respond with a | 
|  | // KeyUpdate. | 
|  | #define SSL_KEY_UPDATE_NOT_REQUESTED 0 | 
|  | #define SSL_KEY_UPDATE_REQUESTED 1 | 
|  |  | 
|  | // kMaxEarlyDataAccepted is the advertised number of plaintext bytes of early | 
|  | // data that will be accepted. This value should be slightly below | 
|  | // kMaxEarlyDataSkipped in tls_record.c, which is measured in ciphertext. | 
|  | static const size_t kMaxEarlyDataAccepted = 14336; | 
|  |  | 
|  | UniquePtr<CERT> ssl_cert_dup(CERT *cert); | 
|  | void ssl_cert_clear_certs(CERT *cert); | 
|  | int ssl_set_cert(CERT *cert, UniquePtr<CRYPTO_BUFFER> buffer); | 
|  | int ssl_is_key_type_supported(int key_type); | 
|  | // ssl_compare_public_and_private_key returns one if |pubkey| is the public | 
|  | // counterpart to |privkey|. Otherwise it returns zero and pushes a helpful | 
|  | // message on the error queue. | 
|  | int ssl_compare_public_and_private_key(const EVP_PKEY *pubkey, | 
|  | const EVP_PKEY *privkey); | 
|  | int ssl_cert_check_private_key(const CERT *cert, const EVP_PKEY *privkey); | 
|  | int ssl_get_new_session(SSL_HANDSHAKE *hs, int is_server); | 
|  | int ssl_encrypt_ticket(SSL_HANDSHAKE *hs, CBB *out, const SSL_SESSION *session); | 
|  | int ssl_ctx_rotate_ticket_encryption_key(SSL_CTX *ctx); | 
|  |  | 
|  | // ssl_session_new returns a newly-allocated blank |SSL_SESSION| or nullptr on | 
|  | // error. | 
|  | UniquePtr<SSL_SESSION> ssl_session_new(const SSL_X509_METHOD *x509_method); | 
|  |  | 
|  | // ssl_hash_session_id returns a hash of |session_id|, suitable for a hash table | 
|  | // keyed on session IDs. | 
|  | uint32_t ssl_hash_session_id(Span<const uint8_t> session_id); | 
|  |  | 
|  | // SSL_SESSION_parse parses an |SSL_SESSION| from |cbs| and advances |cbs| over | 
|  | // the parsed data. | 
|  | UniquePtr<SSL_SESSION> SSL_SESSION_parse(CBS *cbs, | 
|  | const SSL_X509_METHOD *x509_method, | 
|  | CRYPTO_BUFFER_POOL *pool); | 
|  |  | 
|  | // ssl_session_serialize writes |in| to |cbb| as if it were serialising a | 
|  | // session for Session-ID resumption. It returns one on success and zero on | 
|  | // error. | 
|  | int ssl_session_serialize(const SSL_SESSION *in, CBB *cbb); | 
|  |  | 
|  | // ssl_session_is_context_valid returns one if |session|'s session ID context | 
|  | // matches the one set on |hs| and zero otherwise. | 
|  | int ssl_session_is_context_valid(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_is_time_valid returns one if |session| is still valid and zero if | 
|  | // it has expired. | 
|  | int ssl_session_is_time_valid(const SSL *ssl, const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_is_resumable returns one if |session| is resumable for |hs| and | 
|  | // zero otherwise. | 
|  | int ssl_session_is_resumable(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_protocol_version returns the protocol version associated with | 
|  | // |session|. Note that despite the name, this is not the same as | 
|  | // |SSL_SESSION_get_protocol_version|. The latter is based on upstream's name. | 
|  | uint16_t ssl_session_protocol_version(const SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_get_digest returns the digest used in |session|. | 
|  | const EVP_MD *ssl_session_get_digest(const SSL_SESSION *session); | 
|  |  | 
|  | void ssl_set_session(SSL *ssl, SSL_SESSION *session); | 
|  |  | 
|  | // ssl_get_prev_session looks up the previous session based on |client_hello|. | 
|  | // On success, it sets |*out_session| to the session or nullptr if none was | 
|  | // found. If the session could not be looked up synchronously, it returns | 
|  | // |ssl_hs_pending_session| and should be called again. If a ticket could not be | 
|  | // decrypted immediately it returns |ssl_hs_pending_ticket| and should also | 
|  | // be called again. Otherwise, it returns |ssl_hs_error|. | 
|  | enum ssl_hs_wait_t ssl_get_prev_session(SSL_HANDSHAKE *hs, | 
|  | UniquePtr<SSL_SESSION> *out_session, | 
|  | bool *out_tickets_supported, | 
|  | bool *out_renew_ticket, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  |  | 
|  | // The following flags determine which parts of the session are duplicated. | 
|  | #define SSL_SESSION_DUP_AUTH_ONLY 0x0 | 
|  | #define SSL_SESSION_INCLUDE_TICKET 0x1 | 
|  | #define SSL_SESSION_INCLUDE_NONAUTH 0x2 | 
|  | #define SSL_SESSION_DUP_ALL \ | 
|  | (SSL_SESSION_INCLUDE_TICKET | SSL_SESSION_INCLUDE_NONAUTH) | 
|  |  | 
|  | // SSL_SESSION_dup returns a newly-allocated |SSL_SESSION| with a copy of the | 
|  | // fields in |session| or nullptr on error. The new session is non-resumable and | 
|  | // must be explicitly marked resumable once it has been filled in. | 
|  | OPENSSL_EXPORT UniquePtr<SSL_SESSION> SSL_SESSION_dup(SSL_SESSION *session, | 
|  | int dup_flags); | 
|  |  | 
|  | // ssl_session_rebase_time updates |session|'s start time to the current time, | 
|  | // adjusting the timeout so the expiration time is unchanged. | 
|  | void ssl_session_rebase_time(SSL *ssl, SSL_SESSION *session); | 
|  |  | 
|  | // ssl_session_renew_timeout calls |ssl_session_rebase_time| and renews | 
|  | // |session|'s timeout to |timeout| (measured from the current time). The | 
|  | // renewal is clamped to the session's auth_timeout. | 
|  | void ssl_session_renew_timeout(SSL *ssl, SSL_SESSION *session, | 
|  | uint32_t timeout); | 
|  |  | 
|  | void ssl_update_cache(SSL_HANDSHAKE *hs, int mode); | 
|  |  | 
|  | int ssl_send_alert(SSL *ssl, int level, int desc); | 
|  | bool ssl3_get_message(SSL *ssl, SSLMessage *out); | 
|  | ssl_open_record_t ssl3_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | void ssl3_next_message(SSL *ssl); | 
|  |  | 
|  | int ssl3_dispatch_alert(SSL *ssl); | 
|  | ssl_open_record_t ssl3_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | ssl_open_record_t ssl3_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | int ssl3_write_app_data(SSL *ssl, bool *out_needs_handshake, const uint8_t *buf, | 
|  | int len); | 
|  |  | 
|  | bool ssl3_new(SSL *ssl); | 
|  | void ssl3_free(SSL *ssl); | 
|  |  | 
|  | bool ssl3_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | bool ssl3_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); | 
|  | bool ssl3_add_message(SSL *ssl, Array<uint8_t> msg); | 
|  | bool ssl3_add_change_cipher_spec(SSL *ssl); | 
|  | bool ssl3_add_alert(SSL *ssl, uint8_t level, uint8_t desc); | 
|  | int ssl3_flush_flight(SSL *ssl); | 
|  |  | 
|  | bool dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type); | 
|  | bool dtls1_finish_message(SSL *ssl, CBB *cbb, Array<uint8_t> *out_msg); | 
|  | bool dtls1_add_message(SSL *ssl, Array<uint8_t> msg); | 
|  | bool dtls1_add_change_cipher_spec(SSL *ssl); | 
|  | bool dtls1_add_alert(SSL *ssl, uint8_t level, uint8_t desc); | 
|  | int dtls1_flush_flight(SSL *ssl); | 
|  |  | 
|  | // ssl_add_message_cbb finishes the handshake message in |cbb| and adds it to | 
|  | // the pending flight. It returns true on success and false on error. | 
|  | bool ssl_add_message_cbb(SSL *ssl, CBB *cbb); | 
|  |  | 
|  | // ssl_hash_message incorporates |msg| into the handshake hash. It returns true | 
|  | // on success and false on allocation failure. | 
|  | bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | ssl_open_record_t dtls1_open_app_data(SSL *ssl, Span<uint8_t> *out, | 
|  | size_t *out_consumed, uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  | ssl_open_record_t dtls1_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, | 
|  | Span<uint8_t> in); | 
|  |  | 
|  | int dtls1_write_app_data(SSL *ssl, bool *out_needs_handshake, | 
|  | const uint8_t *buf, int len); | 
|  |  | 
|  | // dtls1_write_record sends a record. It returns one on success and <= 0 on | 
|  | // error. | 
|  | int dtls1_write_record(SSL *ssl, int type, const uint8_t *buf, size_t len, | 
|  | enum dtls1_use_epoch_t use_epoch); | 
|  |  | 
|  | int dtls1_retransmit_outgoing_messages(SSL *ssl); | 
|  | bool dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, | 
|  | CBS *out_body); | 
|  | bool dtls1_check_timeout_num(SSL *ssl); | 
|  |  | 
|  | void dtls1_start_timer(SSL *ssl); | 
|  | void dtls1_stop_timer(SSL *ssl); | 
|  | bool dtls1_is_timer_expired(SSL *ssl); | 
|  | unsigned int dtls1_min_mtu(void); | 
|  |  | 
|  | bool dtls1_new(SSL *ssl); | 
|  | void dtls1_free(SSL *ssl); | 
|  |  | 
|  | bool dtls1_get_message(SSL *ssl, SSLMessage *out); | 
|  | ssl_open_record_t dtls1_open_handshake(SSL *ssl, size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in); | 
|  | void dtls1_next_message(SSL *ssl); | 
|  | int dtls1_dispatch_alert(SSL *ssl); | 
|  |  | 
|  | // tls1_configure_aead configures either the read or write direction AEAD (as | 
|  | // determined by |direction|) using the keys generated by the TLS KDF. The | 
|  | // |key_block_cache| argument is used to store the generated key block, if | 
|  | // empty. Otherwise it's assumed that the key block is already contained within | 
|  | // it. Returns one on success or zero on error. | 
|  | int tls1_configure_aead(SSL *ssl, evp_aead_direction_t direction, | 
|  | Array<uint8_t> *key_block_cache, | 
|  | const SSL_CIPHER *cipher, | 
|  | Span<const uint8_t> iv_override); | 
|  |  | 
|  | int tls1_change_cipher_state(SSL_HANDSHAKE *hs, evp_aead_direction_t direction); | 
|  | int tls1_generate_master_secret(SSL_HANDSHAKE *hs, uint8_t *out, | 
|  | Span<const uint8_t> premaster); | 
|  |  | 
|  | // tls1_get_grouplist returns the locally-configured group preference list. | 
|  | Span<const uint16_t> tls1_get_grouplist(const SSL_HANDSHAKE *ssl); | 
|  |  | 
|  | // tls1_check_group_id returns one if |group_id| is consistent with | 
|  | // locally-configured group preferences. | 
|  | int tls1_check_group_id(const SSL_HANDSHAKE *ssl, uint16_t group_id); | 
|  |  | 
|  | // tls1_get_shared_group sets |*out_group_id| to the first preferred shared | 
|  | // group between client and server preferences and returns one. If none may be | 
|  | // found, it returns zero. | 
|  | int tls1_get_shared_group(SSL_HANDSHAKE *hs, uint16_t *out_group_id); | 
|  |  | 
|  | // tls1_set_curves converts the array of NIDs in |curves| into a newly allocated | 
|  | // array of TLS group IDs. On success, the function returns true and writes the | 
|  | // array to |*out_group_ids|. Otherwise, it returns false. | 
|  | bool tls1_set_curves(Array<uint16_t> *out_group_ids, Span<const int> curves); | 
|  |  | 
|  | // tls1_set_curves_list converts the string of curves pointed to by |curves| | 
|  | // into a newly allocated array of TLS group IDs. On success, the function | 
|  | // returns true and writes the array to |*out_group_ids|. Otherwise, it returns | 
|  | // false. | 
|  | bool tls1_set_curves_list(Array<uint16_t> *out_group_ids, const char *curves); | 
|  |  | 
|  | // ssl_add_clienthello_tlsext writes ClientHello extensions to |out|. It | 
|  | // returns one on success and zero on failure. The |header_len| argument is the | 
|  | // length of the ClientHello written so far and is used to compute the padding | 
|  | // length. (It does not include the record header.) | 
|  | int ssl_add_clienthello_tlsext(SSL_HANDSHAKE *hs, CBB *out, size_t header_len); | 
|  |  | 
|  | int ssl_add_serverhello_tlsext(SSL_HANDSHAKE *hs, CBB *out); | 
|  | int ssl_parse_clienthello_tlsext(SSL_HANDSHAKE *hs, | 
|  | const SSL_CLIENT_HELLO *client_hello); | 
|  | int ssl_parse_serverhello_tlsext(SSL_HANDSHAKE *hs, CBS *cbs); | 
|  |  | 
|  | #define tlsext_tick_md EVP_sha256 | 
|  |  | 
|  | // ssl_process_ticket processes a session ticket from the client. It returns | 
|  | // one of: | 
|  | //   |ssl_ticket_aead_success|: |*out_session| is set to the parsed session and | 
|  | //       |*out_renew_ticket| is set to whether the ticket should be renewed. | 
|  | //   |ssl_ticket_aead_ignore_ticket|: |*out_renew_ticket| is set to whether a | 
|  | //       fresh ticket should be sent, but the given ticket cannot be used. | 
|  | //   |ssl_ticket_aead_retry|: the ticket could not be immediately decrypted. | 
|  | //       Retry later. | 
|  | //   |ssl_ticket_aead_error|: an error occured that is fatal to the connection. | 
|  | enum ssl_ticket_aead_result_t ssl_process_ticket( | 
|  | SSL_HANDSHAKE *hs, UniquePtr<SSL_SESSION> *out_session, | 
|  | bool *out_renew_ticket, const uint8_t *ticket, size_t ticket_len, | 
|  | const uint8_t *session_id, size_t session_id_len); | 
|  |  | 
|  | // tls1_verify_channel_id processes |msg| as a Channel ID message, and verifies | 
|  | // the signature. If the key is valid, it saves the Channel ID and returns | 
|  | // one. Otherwise, it returns zero. | 
|  | int tls1_verify_channel_id(SSL_HANDSHAKE *hs, const SSLMessage &msg); | 
|  |  | 
|  | // tls1_write_channel_id generates a Channel ID message and puts the output in | 
|  | // |cbb|. |ssl->channel_id_private| must already be set before calling.  This | 
|  | // function returns true on success and false on error. | 
|  | bool tls1_write_channel_id(SSL_HANDSHAKE *hs, CBB *cbb); | 
|  |  | 
|  | // tls1_channel_id_hash computes the hash to be signed by Channel ID and writes | 
|  | // it to |out|, which must contain at least |EVP_MAX_MD_SIZE| bytes. It returns | 
|  | // one on success and zero on failure. | 
|  | int tls1_channel_id_hash(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len); | 
|  |  | 
|  | int tls1_record_handshake_hashes_for_channel_id(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_do_channel_id_callback checks runs |hs->ssl->ctx->channel_id_cb| if | 
|  | // necessary. It returns one on success and zero on fatal error. Note that, on | 
|  | // success, |hs->ssl->channel_id_private| may be unset, in which case the | 
|  | // operation should be retried later. | 
|  | int ssl_do_channel_id_callback(SSL_HANDSHAKE *hs); | 
|  |  | 
|  | // ssl_can_write returns one if |ssl| is allowed to write and zero otherwise. | 
|  | int ssl_can_write(const SSL *ssl); | 
|  |  | 
|  | // ssl_can_read returns one if |ssl| is allowed to read and zero otherwise. | 
|  | int ssl_can_read(const SSL *ssl); | 
|  |  | 
|  | void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock); | 
|  | void ssl_ctx_get_current_time(const SSL_CTX *ctx, | 
|  | struct OPENSSL_timeval *out_clock); | 
|  |  | 
|  | // ssl_reset_error_state resets state for |SSL_get_error|. | 
|  | void ssl_reset_error_state(SSL *ssl); | 
|  |  | 
|  | // ssl_set_read_error sets |ssl|'s read half into an error state, saving the | 
|  | // current state of the error queue. | 
|  | void ssl_set_read_error(SSL* ssl); | 
|  |  | 
|  | }  // namespace bssl | 
|  |  | 
|  |  | 
|  | // Opaque C types. | 
|  | // | 
|  | // The following types are exported to C code as public typedefs, so they must | 
|  | // be defined outside of the namespace. | 
|  |  | 
|  | // ssl_method_st backs the public |SSL_METHOD| type. It is a compatibility | 
|  | // structure to support the legacy version-locked methods. | 
|  | struct ssl_method_st { | 
|  | // version, if non-zero, is the only protocol version acceptable to an | 
|  | // SSL_CTX initialized from this method. | 
|  | uint16_t version; | 
|  | // method is the underlying SSL_PROTOCOL_METHOD that initializes the | 
|  | // SSL_CTX. | 
|  | const bssl::SSL_PROTOCOL_METHOD *method; | 
|  | // x509_method contains pointers to functions that might deal with |X509| | 
|  | // compatibility, or might be a no-op, depending on the application. | 
|  | const bssl::SSL_X509_METHOD *x509_method; | 
|  | }; | 
|  |  | 
|  | struct ssl_ctx_st { | 
|  | explicit ssl_ctx_st(const SSL_METHOD *ssl_method); | 
|  | ssl_ctx_st(const ssl_ctx_st &) = delete; | 
|  | ssl_ctx_st &operator=(const ssl_ctx_st &) = delete; | 
|  |  | 
|  | const bssl::SSL_PROTOCOL_METHOD *method = nullptr; | 
|  | const bssl::SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // lock is used to protect various operations on this object. | 
|  | CRYPTO_MUTEX lock; | 
|  |  | 
|  | // conf_max_version is the maximum acceptable protocol version configured by | 
|  | // |SSL_CTX_set_max_proto_version|. Note this version is normalized in DTLS | 
|  | // and is further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_max_version = 0; | 
|  |  | 
|  | // conf_min_version is the minimum acceptable protocol version configured by | 
|  | // |SSL_CTX_set_min_proto_version|. Note this version is normalized in DTLS | 
|  | // and is further constrainted by |SSL_OP_NO_*|. | 
|  | uint16_t conf_min_version = 0; | 
|  |  | 
|  | // tls13_variant is the variant of TLS 1.3 we are using for this | 
|  | // configuration. | 
|  | tls13_variant_t tls13_variant = tls13_default; | 
|  |  | 
|  | bssl::UniquePtr<bssl::SSLCipherPreferenceList> cipher_list; | 
|  |  | 
|  | X509_STORE *cert_store = nullptr; | 
|  | LHASH_OF(SSL_SESSION) *sessions = nullptr; | 
|  | // Most session-ids that will be cached, default is | 
|  | // SSL_SESSION_CACHE_MAX_SIZE_DEFAULT. 0 is unlimited. | 
|  | unsigned long session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; | 
|  | SSL_SESSION *session_cache_head = nullptr; | 
|  | SSL_SESSION *session_cache_tail = nullptr; | 
|  |  | 
|  | // handshakes_since_cache_flush is the number of successful handshakes since | 
|  | // the last cache flush. | 
|  | int handshakes_since_cache_flush = 0; | 
|  |  | 
|  | // This can have one of 2 values, ored together, | 
|  | // SSL_SESS_CACHE_CLIENT, | 
|  | // SSL_SESS_CACHE_SERVER, | 
|  | // Default is SSL_SESSION_CACHE_SERVER, which means only | 
|  | // SSL_accept which cache SSL_SESSIONS. | 
|  | int session_cache_mode = SSL_SESS_CACHE_SERVER; | 
|  |  | 
|  | // session_timeout is the default lifetime for new sessions in TLS 1.2 and | 
|  | // earlier, in seconds. | 
|  | uint32_t session_timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // session_psk_dhe_timeout is the default lifetime for new sessions in TLS | 
|  | // 1.3, in seconds. | 
|  | uint32_t session_psk_dhe_timeout = SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT; | 
|  |  | 
|  | // If this callback is not null, it will be called each time a session id is | 
|  | // added to the cache.  If this function returns 1, it means that the | 
|  | // callback will do a SSL_SESSION_free() when it has finished using it. | 
|  | // Otherwise, on 0, it means the callback has finished with it. If | 
|  | // remove_session_cb is not null, it will be called when a session-id is | 
|  | // removed from the cache.  After the call, OpenSSL will SSL_SESSION_free() | 
|  | // it. | 
|  | int (*new_session_cb)(SSL *ssl, SSL_SESSION *sess) = nullptr; | 
|  | void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *sess) = nullptr; | 
|  | SSL_SESSION *(*get_session_cb)(SSL *ssl, const uint8_t *data, int len, | 
|  | int *copy) = nullptr; | 
|  |  | 
|  | CRYPTO_refcount_t references = 1; | 
|  |  | 
|  | // if defined, these override the X509_verify_cert() calls | 
|  | int (*app_verify_callback)(X509_STORE_CTX *store_ctx, void *arg) = nullptr; | 
|  | void *app_verify_arg = nullptr; | 
|  |  | 
|  | ssl_verify_result_t (*custom_verify_callback)(SSL *ssl, | 
|  | uint8_t *out_alert) = nullptr; | 
|  |  | 
|  | // Default password callback. | 
|  | pem_password_cb *default_passwd_callback = nullptr; | 
|  |  | 
|  | // Default password callback user data. | 
|  | void *default_passwd_callback_userdata = nullptr; | 
|  |  | 
|  | // get client cert callback | 
|  | int (*client_cert_cb)(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) = nullptr; | 
|  |  | 
|  | // get channel id callback | 
|  | void (*channel_id_cb)(SSL *ssl, EVP_PKEY **out_pkey) = nullptr; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data; | 
|  |  | 
|  | // Default values used when no per-SSL value is defined follow | 
|  |  | 
|  | void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; | 
|  |  | 
|  | // what we put in client cert requests | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> client_CA; | 
|  |  | 
|  | // cached_x509_client_CA is a cache of parsed versions of the elements of | 
|  | // |client_CA|. | 
|  | STACK_OF(X509_NAME) *cached_x509_client_CA = nullptr; | 
|  |  | 
|  |  | 
|  | // Default values to use in SSL structures follow (these are copied by | 
|  | // SSL_new) | 
|  |  | 
|  | uint32_t options = 0; | 
|  | // Disable the auto-chaining feature by default. wpa_supplicant relies on this | 
|  | // feature, but require callers opt into it. | 
|  | uint32_t mode = SSL_MODE_NO_AUTO_CHAIN; | 
|  | uint32_t max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; | 
|  |  | 
|  | bssl::UniquePtr<bssl::CERT> cert; | 
|  |  | 
|  | // callback that allows applications to peek at protocol messages | 
|  | void (*msg_callback)(int write_p, int version, int content_type, | 
|  | const void *buf, size_t len, SSL *ssl, void *arg) = nullptr; | 
|  | void *msg_callback_arg = nullptr; | 
|  |  | 
|  | int verify_mode = SSL_VERIFY_NONE; | 
|  | int (*default_verify_callback)(int ok, X509_STORE_CTX *ctx) = | 
|  | nullptr;  // called 'verify_callback' in the SSL | 
|  |  | 
|  | X509_VERIFY_PARAM *param = nullptr; | 
|  |  | 
|  | // select_certificate_cb is called before most ClientHello processing and | 
|  | // before the decision whether to resume a session is made. See | 
|  | // |ssl_select_cert_result_t| for details of the return values. | 
|  | ssl_select_cert_result_t (*select_certificate_cb)(const SSL_CLIENT_HELLO *) = | 
|  | nullptr; | 
|  |  | 
|  | // dos_protection_cb is called once the resumption decision for a ClientHello | 
|  | // has been made. It returns one to continue the handshake or zero to | 
|  | // abort. | 
|  | int (*dos_protection_cb) (const SSL_CLIENT_HELLO *) = nullptr; | 
|  |  | 
|  | // Maximum amount of data to send in one fragment. actual record size can be | 
|  | // more than this due to padding and MAC overheads. | 
|  | uint16_t max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; | 
|  |  | 
|  | // TLS extensions servername callback | 
|  | int (*servername_callback)(SSL *, int *, void *) = nullptr; | 
|  | void *servername_arg = nullptr; | 
|  |  | 
|  | // RFC 4507 session ticket keys. |ticket_key_current| may be NULL before the | 
|  | // first handshake and |ticket_key_prev| may be NULL at any time. | 
|  | // Automatically generated ticket keys are rotated as needed at handshake | 
|  | // time. Hence, all access must be synchronized through |lock|. | 
|  | bssl::UniquePtr<bssl::TicketKey> ticket_key_current; | 
|  | bssl::UniquePtr<bssl::TicketKey> ticket_key_prev; | 
|  |  | 
|  | // Callback to support customisation of ticket key setting | 
|  | int (*ticket_key_cb)(SSL *ssl, uint8_t *name, uint8_t *iv, | 
|  | EVP_CIPHER_CTX *ectx, HMAC_CTX *hctx, int enc) = nullptr; | 
|  |  | 
|  | // Server-only: psk_identity_hint is the default identity hint to send in | 
|  | // PSK-based key exchanges. | 
|  | bssl::UniquePtr<char> psk_identity_hint; | 
|  |  | 
|  | unsigned (*psk_client_callback)(SSL *ssl, const char *hint, char *identity, | 
|  | unsigned max_identity_len, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  | unsigned (*psk_server_callback)(SSL *ssl, const char *identity, uint8_t *psk, | 
|  | unsigned max_psk_len) = nullptr; | 
|  |  | 
|  |  | 
|  | // Next protocol negotiation information | 
|  | // (for experimental NPN extension). | 
|  |  | 
|  | // For a server, this contains a callback function by which the set of | 
|  | // advertised protocols can be provided. | 
|  | int (*next_protos_advertised_cb)(SSL *ssl, const uint8_t **out, | 
|  | unsigned *out_len, void *arg) = nullptr; | 
|  | void *next_protos_advertised_cb_arg = nullptr; | 
|  | // For a client, this contains a callback function that selects the | 
|  | // next protocol from the list provided by the server. | 
|  | int (*next_proto_select_cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, | 
|  | const uint8_t *in, unsigned in_len, | 
|  | void *arg) = nullptr; | 
|  | void *next_proto_select_cb_arg = nullptr; | 
|  |  | 
|  | // ALPN information | 
|  | // (we are in the process of transitioning from NPN to ALPN.) | 
|  |  | 
|  | // For a server, this contains a callback function that allows the | 
|  | // server to select the protocol for the connection. | 
|  | //   out: on successful return, this must point to the raw protocol | 
|  | //        name (without the length prefix). | 
|  | //   outlen: on successful return, this contains the length of |*out|. | 
|  | //   in: points to the client's list of supported protocols in | 
|  | //       wire-format. | 
|  | //   inlen: the length of |in|. | 
|  | int (*alpn_select_cb)(SSL *ssl, const uint8_t **out, uint8_t *out_len, | 
|  | const uint8_t *in, unsigned in_len, | 
|  | void *arg) = nullptr; | 
|  | void *alpn_select_cb_arg = nullptr; | 
|  |  | 
|  | // For a client, this contains the list of supported protocols in wire | 
|  | // format. | 
|  | bssl::Array<uint8_t> alpn_client_proto_list; | 
|  |  | 
|  | // SRTP profiles we are willing to do from RFC 5764 | 
|  | bssl::UniquePtr<STACK_OF(SRTP_PROTECTION_PROFILE)> srtp_profiles; | 
|  |  | 
|  | // Defined compression algorithms for certificates. | 
|  | bssl::UniquePtr<STACK_OF(CertCompressionAlg)> cert_compression_algs; | 
|  |  | 
|  | // Supported group values inherited by SSL structure | 
|  | bssl::Array<uint16_t> supported_group_list; | 
|  |  | 
|  | // The client's Channel ID private key. | 
|  | bssl::UniquePtr<EVP_PKEY> channel_id_private; | 
|  |  | 
|  | // keylog_callback, if not NULL, is the key logging callback. See | 
|  | // |SSL_CTX_set_keylog_callback|. | 
|  | void (*keylog_callback)(const SSL *ssl, const char *line) = nullptr; | 
|  |  | 
|  | // current_time_cb, if not NULL, is the function to use to get the current | 
|  | // time. It sets |*out_clock| to the current time. The |ssl| argument is | 
|  | // always NULL. See |SSL_CTX_set_current_time_cb|. | 
|  | void (*current_time_cb)(const SSL *ssl, struct timeval *out_clock) = nullptr; | 
|  |  | 
|  | // pool is used for all |CRYPTO_BUFFER|s in case we wish to share certificate | 
|  | // memory. | 
|  | CRYPTO_BUFFER_POOL *pool = nullptr; | 
|  |  | 
|  | // ticket_aead_method contains function pointers for opening and sealing | 
|  | // session tickets. | 
|  | const SSL_TICKET_AEAD_METHOD *ticket_aead_method = nullptr; | 
|  |  | 
|  | // legacy_ocsp_callback implements an OCSP-related callback for OpenSSL | 
|  | // compatibility. | 
|  | int (*legacy_ocsp_callback)(SSL *ssl, void *arg) = nullptr; | 
|  | void *legacy_ocsp_callback_arg = nullptr; | 
|  |  | 
|  | // verify_sigalgs, if not empty, is the set of signature algorithms | 
|  | // accepted from the peer in decreasing order of preference. | 
|  | bssl::Array<uint16_t> verify_sigalgs; | 
|  |  | 
|  | // retain_only_sha256_of_client_certs is true if we should compute the SHA256 | 
|  | // hash of the peer's certificate and then discard it to save memory and | 
|  | // session space. Only effective on the server side. | 
|  | bool retain_only_sha256_of_client_certs:1; | 
|  |  | 
|  | // quiet_shutdown is true if the connection should not send a close_notify on | 
|  | // shutdown. | 
|  | bool quiet_shutdown:1; | 
|  |  | 
|  | // ocsp_stapling_enabled is only used by client connections and indicates | 
|  | // whether OCSP stapling will be requested. | 
|  | bool ocsp_stapling_enabled:1; | 
|  |  | 
|  | // If true, a client will request certificate timestamps. | 
|  | bool signed_cert_timestamps_enabled:1; | 
|  |  | 
|  | // channel_id_enabled is whether Channel ID is enabled. For a server, means | 
|  | // that we'll accept Channel IDs from clients.  For a client, means that we'll | 
|  | // advertise support. | 
|  | bool channel_id_enabled:1; | 
|  |  | 
|  | // grease_enabled is whether draft-davidben-tls-grease-01 is enabled. | 
|  | bool grease_enabled:1; | 
|  |  | 
|  | // allow_unknown_alpn_protos is whether the client allows unsolicited ALPN | 
|  | // protocols from the peer. | 
|  | bool allow_unknown_alpn_protos:1; | 
|  |  | 
|  | // ed25519_enabled is whether Ed25519 is advertised in the handshake. | 
|  | bool ed25519_enabled:1; | 
|  |  | 
|  | // rsa_pss_rsae_certs_enabled is whether rsa_pss_rsae_* are supported by the | 
|  | // certificate verifier. | 
|  | bool rsa_pss_rsae_certs_enabled:1; | 
|  |  | 
|  | // false_start_allowed_without_alpn is whether False Start (if | 
|  | // |SSL_MODE_ENABLE_FALSE_START| is enabled) is allowed without ALPN. | 
|  | bool false_start_allowed_without_alpn:1; | 
|  |  | 
|  | // handoff indicates that a server should stop after receiving the | 
|  | // ClientHello and pause the handshake in such a way that |SSL_get_error| | 
|  | // returns |SSL_HANDOFF|. | 
|  | bool handoff:1; | 
|  |  | 
|  | // If enable_early_data is true, early data can be sent and accepted. | 
|  | bool enable_early_data : 1; | 
|  |  | 
|  | private: | 
|  | ~ssl_ctx_st(); | 
|  | friend void SSL_CTX_free(SSL_CTX *); | 
|  | }; | 
|  |  | 
|  | struct ssl_st { | 
|  | explicit ssl_st(SSL_CTX *ctx_arg); | 
|  | ssl_st(const ssl_st &) = delete; | 
|  | ssl_st &operator=(const ssl_st &) = delete; | 
|  | ~ssl_st(); | 
|  |  | 
|  | // method is the method table corresponding to the current protocol (DTLS or | 
|  | // TLS). | 
|  | const bssl::SSL_PROTOCOL_METHOD *method = nullptr; | 
|  |  | 
|  | // config is a container for handshake configuration.  Accesses to this field | 
|  | // should check for nullptr, since configuration may be shed after the | 
|  | // handshake completes.  (If you have the |SSL_HANDSHAKE| object at hand, use | 
|  | // that instead, and skip the null check.) | 
|  | bssl::UniquePtr<bssl::SSL_CONFIG> config; | 
|  |  | 
|  | // version is the protocol version. | 
|  | uint16_t version = 0; | 
|  |  | 
|  | uint16_t max_send_fragment = 0; | 
|  |  | 
|  | // There are 2 BIO's even though they are normally both the same. This is so | 
|  | // data can be read and written to different handlers | 
|  |  | 
|  | bssl::UniquePtr<BIO> rbio;  // used by SSL_read | 
|  | bssl::UniquePtr<BIO> wbio;  // used by SSL_write | 
|  |  | 
|  | // do_handshake runs the handshake. On completion, it returns |ssl_hs_ok|. | 
|  | // Otherwise, it returns a value corresponding to what operation is needed to | 
|  | // progress. | 
|  | bssl::ssl_hs_wait_t (*do_handshake)(bssl::SSL_HANDSHAKE *hs) = nullptr; | 
|  |  | 
|  | bssl::SSL3_STATE *s3 = nullptr;   // SSLv3 variables | 
|  | bssl::DTLS1_STATE *d1 = nullptr;  // DTLSv1 variables | 
|  |  | 
|  | // callback that allows applications to peek at protocol messages | 
|  | void (*msg_callback)(int write_p, int version, int content_type, | 
|  | const void *buf, size_t len, SSL *ssl, | 
|  | void *arg) = nullptr; | 
|  | void *msg_callback_arg = nullptr; | 
|  |  | 
|  | // session info | 
|  |  | 
|  | // initial_timeout_duration_ms is the default DTLS timeout duration in | 
|  | // milliseconds. It's used to initialize the timer any time it's restarted. | 
|  | // | 
|  | // RFC 6347 states that implementations SHOULD use an initial timer value of 1 | 
|  | // second. | 
|  | unsigned initial_timeout_duration_ms = 1000; | 
|  |  | 
|  | // tls13_variant is the variant of TLS 1.3 we are using for this | 
|  | // configuration. | 
|  | tls13_variant_t tls13_variant = tls13_default; | 
|  |  | 
|  | // session is the configured session to be offered by the client. This session | 
|  | // is immutable. | 
|  | bssl::UniquePtr<SSL_SESSION> session; | 
|  |  | 
|  | void (*info_callback)(const SSL *ssl, int type, int value) = nullptr; | 
|  |  | 
|  | bssl::UniquePtr<SSL_CTX> ctx; | 
|  |  | 
|  | // session_ctx is the |SSL_CTX| used for the session cache and related | 
|  | // settings. | 
|  | bssl::UniquePtr<SSL_CTX> session_ctx; | 
|  |  | 
|  | // extra application data | 
|  | CRYPTO_EX_DATA ex_data; | 
|  |  | 
|  | uint32_t options = 0;  // protocol behaviour | 
|  | uint32_t mode = 0;     // API behaviour | 
|  | uint32_t max_cert_list = 0; | 
|  | bssl::UniquePtr<char> hostname; | 
|  |  | 
|  | // renegotiate_mode controls how peer renegotiation attempts are handled. | 
|  | ssl_renegotiate_mode_t renegotiate_mode = ssl_renegotiate_never; | 
|  |  | 
|  | // server is true iff the this SSL* is the server half. Note: before the SSL* | 
|  | // is initialized by either SSL_set_accept_state or SSL_set_connect_state, | 
|  | // the side is not determined. In this state, server is always false. | 
|  | bool server : 1; | 
|  |  | 
|  | // quiet_shutdown is true if the connection should not send a close_notify on | 
|  | // shutdown. | 
|  | bool quiet_shutdown : 1; | 
|  |  | 
|  | // did_dummy_pq_padding is only valid for a client. In that context, it is | 
|  | // true iff the client observed the server echoing a dummy PQ padding | 
|  | // extension. | 
|  | bool did_dummy_pq_padding:1; | 
|  |  | 
|  | // If enable_early_data is true, early data can be sent and accepted. | 
|  | bool enable_early_data : 1; | 
|  | }; | 
|  |  | 
|  | struct ssl_session_st { | 
|  | explicit ssl_session_st(const bssl::SSL_X509_METHOD *method); | 
|  | ssl_session_st(const ssl_session_st &) = delete; | 
|  | ssl_session_st &operator=(const ssl_session_st &) = delete; | 
|  |  | 
|  | CRYPTO_refcount_t references = 1; | 
|  | uint16_t ssl_version = 0;  // what ssl version session info is being kept in here? | 
|  |  | 
|  | // group_id is the ID of the ECDH group used to establish this session or zero | 
|  | // if not applicable or unknown. | 
|  | uint16_t group_id = 0; | 
|  |  | 
|  | // peer_signature_algorithm is the signature algorithm used to authenticate | 
|  | // the peer, or zero if not applicable or unknown. | 
|  | uint16_t peer_signature_algorithm = 0; | 
|  |  | 
|  | // master_key, in TLS 1.2 and below, is the master secret associated with the | 
|  | // session. In TLS 1.3 and up, it is the resumption secret. | 
|  | int master_key_length = 0; | 
|  | uint8_t master_key[SSL_MAX_MASTER_KEY_LENGTH] = {0}; | 
|  |  | 
|  | // session_id - valid? | 
|  | unsigned session_id_length = 0; | 
|  | uint8_t session_id[SSL_MAX_SSL_SESSION_ID_LENGTH] = {0}; | 
|  | // this is used to determine whether the session is being reused in | 
|  | // the appropriate context. It is up to the application to set this, | 
|  | // via SSL_new | 
|  | uint8_t sid_ctx_length = 0; | 
|  | uint8_t sid_ctx[SSL_MAX_SID_CTX_LENGTH] = {0}; | 
|  |  | 
|  | bssl::UniquePtr<char> psk_identity; | 
|  |  | 
|  | // certs contains the certificate chain from the peer, starting with the leaf | 
|  | // certificate. | 
|  | bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> certs; | 
|  |  | 
|  | const bssl::SSL_X509_METHOD *x509_method = nullptr; | 
|  |  | 
|  | // x509_peer is the peer's certificate. | 
|  | X509 *x509_peer = nullptr; | 
|  |  | 
|  | // x509_chain is the certificate chain sent by the peer. NOTE: for historical | 
|  | // reasons, when a client (so the peer is a server), the chain includes | 
|  | // |peer|, but when a server it does not. | 
|  | STACK_OF(X509) *x509_chain = nullptr; | 
|  |  | 
|  | // x509_chain_without_leaf is a lazily constructed copy of |x509_chain| that | 
|  | // omits the leaf certificate. This exists because OpenSSL, historically, | 
|  | // didn't include the leaf certificate in the chain for a server, but did for | 
|  | // a client. The |x509_chain| always includes it and, if an API call requires | 
|  | // a chain without, it is stored here. | 
|  | STACK_OF(X509) *x509_chain_without_leaf = nullptr; | 
|  |  | 
|  | // verify_result is the result of certificate verification in the case of | 
|  | // non-fatal certificate errors. | 
|  | long verify_result = X509_V_ERR_INVALID_CALL; | 
|  |  | 
|  | // timeout is the lifetime of the session in seconds, measured from |time|. | 
|  | // This is renewable up to |auth_timeout|. | 
|  | uint32_t timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // auth_timeout is the non-renewable lifetime of the session in seconds, | 
|  | // measured from |time|. | 
|  | uint32_t auth_timeout = SSL_DEFAULT_SESSION_TIMEOUT; | 
|  |  | 
|  | // time is the time the session was issued, measured in seconds from the UNIX | 
|  | // epoch. | 
|  | uint64_t time = 0; | 
|  |  | 
|  | const SSL_CIPHER *cipher = nullptr; | 
|  |  | 
|  | CRYPTO_EX_DATA ex_data;  // application specific data | 
|  |  | 
|  | // These are used to make removal of session-ids more efficient and to | 
|  | // implement a maximum cache size. | 
|  | SSL_SESSION *prev = nullptr, *next = nullptr; | 
|  |  | 
|  | bssl::Array<uint8_t> ticket; | 
|  |  | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> signed_cert_timestamp_list; | 
|  |  | 
|  | // The OCSP response that came with the session. | 
|  | bssl::UniquePtr<CRYPTO_BUFFER> ocsp_response; | 
|  |  | 
|  | // peer_sha256 contains the SHA-256 hash of the peer's certificate if | 
|  | // |peer_sha256_valid| is true. | 
|  | uint8_t peer_sha256[SHA256_DIGEST_LENGTH] = {0}; | 
|  |  | 
|  | // original_handshake_hash contains the handshake hash (either SHA-1+MD5 or | 
|  | // SHA-2, depending on TLS version) for the original, full handshake that | 
|  | // created a session. This is used by Channel IDs during resumption. | 
|  | uint8_t original_handshake_hash[EVP_MAX_MD_SIZE] = {0}; | 
|  | uint8_t original_handshake_hash_len = 0; | 
|  |  | 
|  | uint32_t ticket_lifetime_hint = 0;  // Session lifetime hint in seconds | 
|  |  | 
|  | uint32_t ticket_age_add = 0; | 
|  |  | 
|  | // ticket_max_early_data is the maximum amount of data allowed to be sent as | 
|  | // early data. If zero, 0-RTT is disallowed. | 
|  | uint32_t ticket_max_early_data = 0; | 
|  |  | 
|  | // early_alpn is the ALPN protocol from the initial handshake. This is only | 
|  | // stored for TLS 1.3 and above in order to enforce ALPN matching for 0-RTT | 
|  | // resumptions. | 
|  | bssl::Array<uint8_t> early_alpn; | 
|  |  | 
|  | // extended_master_secret is whether the master secret in this session was | 
|  | // generated using EMS and thus isn't vulnerable to the Triple Handshake | 
|  | // attack. | 
|  | bool extended_master_secret:1; | 
|  |  | 
|  | // peer_sha256_valid is whether |peer_sha256| is valid. | 
|  | bool peer_sha256_valid:1;  // Non-zero if peer_sha256 is valid | 
|  |  | 
|  | // not_resumable is used to indicate that session resumption is disallowed. | 
|  | bool not_resumable:1; | 
|  |  | 
|  | // ticket_age_add_valid is whether |ticket_age_add| is valid. | 
|  | bool ticket_age_add_valid:1; | 
|  |  | 
|  | // is_server is whether this session was created by a server. | 
|  | bool is_server:1; | 
|  |  | 
|  | private: | 
|  | ~ssl_session_st(); | 
|  | friend void SSL_SESSION_free(SSL_SESSION *); | 
|  | }; | 
|  |  | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_SSL_INTERNAL_H |