|  | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 
|  | * All rights reserved. | 
|  | * | 
|  | * This package is an SSL implementation written | 
|  | * by Eric Young (eay@cryptsoft.com). | 
|  | * The implementation was written so as to conform with Netscapes SSL. | 
|  | * | 
|  | * This library is free for commercial and non-commercial use as long as | 
|  | * the following conditions are aheared to.  The following conditions | 
|  | * apply to all code found in this distribution, be it the RC4, RSA, | 
|  | * lhash, DES, etc., code; not just the SSL code.  The SSL documentation | 
|  | * included with this distribution is covered by the same copyright terms | 
|  | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | * Copyright remains Eric Young's, and as such any Copyright notices in | 
|  | * the code are not to be removed. | 
|  | * If this package is used in a product, Eric Young should be given attribution | 
|  | * as the author of the parts of the library used. | 
|  | * This can be in the form of a textual message at program startup or | 
|  | * in documentation (online or textual) provided with the package. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. All advertising materials mentioning features or use of this software | 
|  | *    must display the following acknowledgement: | 
|  | *    "This product includes cryptographic software written by | 
|  | *     Eric Young (eay@cryptsoft.com)" | 
|  | *    The word 'cryptographic' can be left out if the rouines from the library | 
|  | *    being used are not cryptographic related :-). | 
|  | * 4. If you include any Windows specific code (or a derivative thereof) from | 
|  | *    the apps directory (application code) you must include an acknowledgement: | 
|  | *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | * | 
|  | * The licence and distribution terms for any publically available version or | 
|  | * derivative of this code cannot be changed.  i.e. this code cannot simply be | 
|  | * copied and put under another distribution licence | 
|  | * [including the GNU Public Licence.] */ | 
|  |  | 
|  | #include <openssl/des.h> | 
|  |  | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | static const uint32_t des_skb[8][64] = { | 
|  | {  // for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 | 
|  | 0x00000000L, 0x00000010L, 0x20000000L, 0x20000010L, 0x00010000L, | 
|  | 0x00010010L, 0x20010000L, 0x20010010L, 0x00000800L, 0x00000810L, | 
|  | 0x20000800L, 0x20000810L, 0x00010800L, 0x00010810L, 0x20010800L, | 
|  | 0x20010810L, 0x00000020L, 0x00000030L, 0x20000020L, 0x20000030L, | 
|  | 0x00010020L, 0x00010030L, 0x20010020L, 0x20010030L, 0x00000820L, | 
|  | 0x00000830L, 0x20000820L, 0x20000830L, 0x00010820L, 0x00010830L, | 
|  | 0x20010820L, 0x20010830L, 0x00080000L, 0x00080010L, 0x20080000L, | 
|  | 0x20080010L, 0x00090000L, 0x00090010L, 0x20090000L, 0x20090010L, | 
|  | 0x00080800L, 0x00080810L, 0x20080800L, 0x20080810L, 0x00090800L, | 
|  | 0x00090810L, 0x20090800L, 0x20090810L, 0x00080020L, 0x00080030L, | 
|  | 0x20080020L, 0x20080030L, 0x00090020L, 0x00090030L, 0x20090020L, | 
|  | 0x20090030L, 0x00080820L, 0x00080830L, 0x20080820L, 0x20080830L, | 
|  | 0x00090820L, 0x00090830L, 0x20090820L, 0x20090830L, }, | 
|  | {  // for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 | 
|  | 0x00000000L, 0x02000000L, 0x00002000L, 0x02002000L, 0x00200000L, | 
|  | 0x02200000L, 0x00202000L, 0x02202000L, 0x00000004L, 0x02000004L, | 
|  | 0x00002004L, 0x02002004L, 0x00200004L, 0x02200004L, 0x00202004L, | 
|  | 0x02202004L, 0x00000400L, 0x02000400L, 0x00002400L, 0x02002400L, | 
|  | 0x00200400L, 0x02200400L, 0x00202400L, 0x02202400L, 0x00000404L, | 
|  | 0x02000404L, 0x00002404L, 0x02002404L, 0x00200404L, 0x02200404L, | 
|  | 0x00202404L, 0x02202404L, 0x10000000L, 0x12000000L, 0x10002000L, | 
|  | 0x12002000L, 0x10200000L, 0x12200000L, 0x10202000L, 0x12202000L, | 
|  | 0x10000004L, 0x12000004L, 0x10002004L, 0x12002004L, 0x10200004L, | 
|  | 0x12200004L, 0x10202004L, 0x12202004L, 0x10000400L, 0x12000400L, | 
|  | 0x10002400L, 0x12002400L, 0x10200400L, 0x12200400L, 0x10202400L, | 
|  | 0x12202400L, 0x10000404L, 0x12000404L, 0x10002404L, 0x12002404L, | 
|  | 0x10200404L, 0x12200404L, 0x10202404L, 0x12202404L, }, | 
|  | {  // for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 | 
|  | 0x00000000L, 0x00000001L, 0x00040000L, 0x00040001L, 0x01000000L, | 
|  | 0x01000001L, 0x01040000L, 0x01040001L, 0x00000002L, 0x00000003L, | 
|  | 0x00040002L, 0x00040003L, 0x01000002L, 0x01000003L, 0x01040002L, | 
|  | 0x01040003L, 0x00000200L, 0x00000201L, 0x00040200L, 0x00040201L, | 
|  | 0x01000200L, 0x01000201L, 0x01040200L, 0x01040201L, 0x00000202L, | 
|  | 0x00000203L, 0x00040202L, 0x00040203L, 0x01000202L, 0x01000203L, | 
|  | 0x01040202L, 0x01040203L, 0x08000000L, 0x08000001L, 0x08040000L, | 
|  | 0x08040001L, 0x09000000L, 0x09000001L, 0x09040000L, 0x09040001L, | 
|  | 0x08000002L, 0x08000003L, 0x08040002L, 0x08040003L, 0x09000002L, | 
|  | 0x09000003L, 0x09040002L, 0x09040003L, 0x08000200L, 0x08000201L, | 
|  | 0x08040200L, 0x08040201L, 0x09000200L, 0x09000201L, 0x09040200L, | 
|  | 0x09040201L, 0x08000202L, 0x08000203L, 0x08040202L, 0x08040203L, | 
|  | 0x09000202L, 0x09000203L, 0x09040202L, 0x09040203L, }, | 
|  | {  // for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 | 
|  | 0x00000000L, 0x00100000L, 0x00000100L, 0x00100100L, 0x00000008L, | 
|  | 0x00100008L, 0x00000108L, 0x00100108L, 0x00001000L, 0x00101000L, | 
|  | 0x00001100L, 0x00101100L, 0x00001008L, 0x00101008L, 0x00001108L, | 
|  | 0x00101108L, 0x04000000L, 0x04100000L, 0x04000100L, 0x04100100L, | 
|  | 0x04000008L, 0x04100008L, 0x04000108L, 0x04100108L, 0x04001000L, | 
|  | 0x04101000L, 0x04001100L, 0x04101100L, 0x04001008L, 0x04101008L, | 
|  | 0x04001108L, 0x04101108L, 0x00020000L, 0x00120000L, 0x00020100L, | 
|  | 0x00120100L, 0x00020008L, 0x00120008L, 0x00020108L, 0x00120108L, | 
|  | 0x00021000L, 0x00121000L, 0x00021100L, 0x00121100L, 0x00021008L, | 
|  | 0x00121008L, 0x00021108L, 0x00121108L, 0x04020000L, 0x04120000L, | 
|  | 0x04020100L, 0x04120100L, 0x04020008L, 0x04120008L, 0x04020108L, | 
|  | 0x04120108L, 0x04021000L, 0x04121000L, 0x04021100L, 0x04121100L, | 
|  | 0x04021008L, 0x04121008L, 0x04021108L, 0x04121108L, }, | 
|  | {  // for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 | 
|  | 0x00000000L, 0x10000000L, 0x00010000L, 0x10010000L, 0x00000004L, | 
|  | 0x10000004L, 0x00010004L, 0x10010004L, 0x20000000L, 0x30000000L, | 
|  | 0x20010000L, 0x30010000L, 0x20000004L, 0x30000004L, 0x20010004L, | 
|  | 0x30010004L, 0x00100000L, 0x10100000L, 0x00110000L, 0x10110000L, | 
|  | 0x00100004L, 0x10100004L, 0x00110004L, 0x10110004L, 0x20100000L, | 
|  | 0x30100000L, 0x20110000L, 0x30110000L, 0x20100004L, 0x30100004L, | 
|  | 0x20110004L, 0x30110004L, 0x00001000L, 0x10001000L, 0x00011000L, | 
|  | 0x10011000L, 0x00001004L, 0x10001004L, 0x00011004L, 0x10011004L, | 
|  | 0x20001000L, 0x30001000L, 0x20011000L, 0x30011000L, 0x20001004L, | 
|  | 0x30001004L, 0x20011004L, 0x30011004L, 0x00101000L, 0x10101000L, | 
|  | 0x00111000L, 0x10111000L, 0x00101004L, 0x10101004L, 0x00111004L, | 
|  | 0x10111004L, 0x20101000L, 0x30101000L, 0x20111000L, 0x30111000L, | 
|  | 0x20101004L, 0x30101004L, 0x20111004L, 0x30111004L, }, | 
|  | {  // for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 | 
|  | 0x00000000L, 0x08000000L, 0x00000008L, 0x08000008L, 0x00000400L, | 
|  | 0x08000400L, 0x00000408L, 0x08000408L, 0x00020000L, 0x08020000L, | 
|  | 0x00020008L, 0x08020008L, 0x00020400L, 0x08020400L, 0x00020408L, | 
|  | 0x08020408L, 0x00000001L, 0x08000001L, 0x00000009L, 0x08000009L, | 
|  | 0x00000401L, 0x08000401L, 0x00000409L, 0x08000409L, 0x00020001L, | 
|  | 0x08020001L, 0x00020009L, 0x08020009L, 0x00020401L, 0x08020401L, | 
|  | 0x00020409L, 0x08020409L, 0x02000000L, 0x0A000000L, 0x02000008L, | 
|  | 0x0A000008L, 0x02000400L, 0x0A000400L, 0x02000408L, 0x0A000408L, | 
|  | 0x02020000L, 0x0A020000L, 0x02020008L, 0x0A020008L, 0x02020400L, | 
|  | 0x0A020400L, 0x02020408L, 0x0A020408L, 0x02000001L, 0x0A000001L, | 
|  | 0x02000009L, 0x0A000009L, 0x02000401L, 0x0A000401L, 0x02000409L, | 
|  | 0x0A000409L, 0x02020001L, 0x0A020001L, 0x02020009L, 0x0A020009L, | 
|  | 0x02020401L, 0x0A020401L, 0x02020409L, 0x0A020409L, }, | 
|  | {  // for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 | 
|  | 0x00000000L, 0x00000100L, 0x00080000L, 0x00080100L, 0x01000000L, | 
|  | 0x01000100L, 0x01080000L, 0x01080100L, 0x00000010L, 0x00000110L, | 
|  | 0x00080010L, 0x00080110L, 0x01000010L, 0x01000110L, 0x01080010L, | 
|  | 0x01080110L, 0x00200000L, 0x00200100L, 0x00280000L, 0x00280100L, | 
|  | 0x01200000L, 0x01200100L, 0x01280000L, 0x01280100L, 0x00200010L, | 
|  | 0x00200110L, 0x00280010L, 0x00280110L, 0x01200010L, 0x01200110L, | 
|  | 0x01280010L, 0x01280110L, 0x00000200L, 0x00000300L, 0x00080200L, | 
|  | 0x00080300L, 0x01000200L, 0x01000300L, 0x01080200L, 0x01080300L, | 
|  | 0x00000210L, 0x00000310L, 0x00080210L, 0x00080310L, 0x01000210L, | 
|  | 0x01000310L, 0x01080210L, 0x01080310L, 0x00200200L, 0x00200300L, | 
|  | 0x00280200L, 0x00280300L, 0x01200200L, 0x01200300L, 0x01280200L, | 
|  | 0x01280300L, 0x00200210L, 0x00200310L, 0x00280210L, 0x00280310L, | 
|  | 0x01200210L, 0x01200310L, 0x01280210L, 0x01280310L, }, | 
|  | {  // for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 | 
|  | 0x00000000L, 0x04000000L, 0x00040000L, 0x04040000L, 0x00000002L, | 
|  | 0x04000002L, 0x00040002L, 0x04040002L, 0x00002000L, 0x04002000L, | 
|  | 0x00042000L, 0x04042000L, 0x00002002L, 0x04002002L, 0x00042002L, | 
|  | 0x04042002L, 0x00000020L, 0x04000020L, 0x00040020L, 0x04040020L, | 
|  | 0x00000022L, 0x04000022L, 0x00040022L, 0x04040022L, 0x00002020L, | 
|  | 0x04002020L, 0x00042020L, 0x04042020L, 0x00002022L, 0x04002022L, | 
|  | 0x00042022L, 0x04042022L, 0x00000800L, 0x04000800L, 0x00040800L, | 
|  | 0x04040800L, 0x00000802L, 0x04000802L, 0x00040802L, 0x04040802L, | 
|  | 0x00002800L, 0x04002800L, 0x00042800L, 0x04042800L, 0x00002802L, | 
|  | 0x04002802L, 0x00042802L, 0x04042802L, 0x00000820L, 0x04000820L, | 
|  | 0x00040820L, 0x04040820L, 0x00000822L, 0x04000822L, 0x00040822L, | 
|  | 0x04040822L, 0x00002820L, 0x04002820L, 0x00042820L, 0x04042820L, | 
|  | 0x00002822L, 0x04002822L, 0x00042822L, 0x04042822L, }}; | 
|  |  | 
|  | static const uint32_t DES_SPtrans[8][64] = { | 
|  | {  // nibble 0 | 
|  | 0x02080800L, 0x00080000L, 0x02000002L, 0x02080802L, 0x02000000L, | 
|  | 0x00080802L, 0x00080002L, 0x02000002L, 0x00080802L, 0x02080800L, | 
|  | 0x02080000L, 0x00000802L, 0x02000802L, 0x02000000L, 0x00000000L, | 
|  | 0x00080002L, 0x00080000L, 0x00000002L, 0x02000800L, 0x00080800L, | 
|  | 0x02080802L, 0x02080000L, 0x00000802L, 0x02000800L, 0x00000002L, | 
|  | 0x00000800L, 0x00080800L, 0x02080002L, 0x00000800L, 0x02000802L, | 
|  | 0x02080002L, 0x00000000L, 0x00000000L, 0x02080802L, 0x02000800L, | 
|  | 0x00080002L, 0x02080800L, 0x00080000L, 0x00000802L, 0x02000800L, | 
|  | 0x02080002L, 0x00000800L, 0x00080800L, 0x02000002L, 0x00080802L, | 
|  | 0x00000002L, 0x02000002L, 0x02080000L, 0x02080802L, 0x00080800L, | 
|  | 0x02080000L, 0x02000802L, 0x02000000L, 0x00000802L, 0x00080002L, | 
|  | 0x00000000L, 0x00080000L, 0x02000000L, 0x02000802L, 0x02080800L, | 
|  | 0x00000002L, 0x02080002L, 0x00000800L, 0x00080802L, }, | 
|  | {  // nibble 1 | 
|  | 0x40108010L, 0x00000000L, 0x00108000L, 0x40100000L, 0x40000010L, | 
|  | 0x00008010L, 0x40008000L, 0x00108000L, 0x00008000L, 0x40100010L, | 
|  | 0x00000010L, 0x40008000L, 0x00100010L, 0x40108000L, 0x40100000L, | 
|  | 0x00000010L, 0x00100000L, 0x40008010L, 0x40100010L, 0x00008000L, | 
|  | 0x00108010L, 0x40000000L, 0x00000000L, 0x00100010L, 0x40008010L, | 
|  | 0x00108010L, 0x40108000L, 0x40000010L, 0x40000000L, 0x00100000L, | 
|  | 0x00008010L, 0x40108010L, 0x00100010L, 0x40108000L, 0x40008000L, | 
|  | 0x00108010L, 0x40108010L, 0x00100010L, 0x40000010L, 0x00000000L, | 
|  | 0x40000000L, 0x00008010L, 0x00100000L, 0x40100010L, 0x00008000L, | 
|  | 0x40000000L, 0x00108010L, 0x40008010L, 0x40108000L, 0x00008000L, | 
|  | 0x00000000L, 0x40000010L, 0x00000010L, 0x40108010L, 0x00108000L, | 
|  | 0x40100000L, 0x40100010L, 0x00100000L, 0x00008010L, 0x40008000L, | 
|  | 0x40008010L, 0x00000010L, 0x40100000L, 0x00108000L, }, | 
|  | {  // nibble 2 | 
|  | 0x04000001L, 0x04040100L, 0x00000100L, 0x04000101L, 0x00040001L, | 
|  | 0x04000000L, 0x04000101L, 0x00040100L, 0x04000100L, 0x00040000L, | 
|  | 0x04040000L, 0x00000001L, 0x04040101L, 0x00000101L, 0x00000001L, | 
|  | 0x04040001L, 0x00000000L, 0x00040001L, 0x04040100L, 0x00000100L, | 
|  | 0x00000101L, 0x04040101L, 0x00040000L, 0x04000001L, 0x04040001L, | 
|  | 0x04000100L, 0x00040101L, 0x04040000L, 0x00040100L, 0x00000000L, | 
|  | 0x04000000L, 0x00040101L, 0x04040100L, 0x00000100L, 0x00000001L, | 
|  | 0x00040000L, 0x00000101L, 0x00040001L, 0x04040000L, 0x04000101L, | 
|  | 0x00000000L, 0x04040100L, 0x00040100L, 0x04040001L, 0x00040001L, | 
|  | 0x04000000L, 0x04040101L, 0x00000001L, 0x00040101L, 0x04000001L, | 
|  | 0x04000000L, 0x04040101L, 0x00040000L, 0x04000100L, 0x04000101L, | 
|  | 0x00040100L, 0x04000100L, 0x00000000L, 0x04040001L, 0x00000101L, | 
|  | 0x04000001L, 0x00040101L, 0x00000100L, 0x04040000L, }, | 
|  | {  // nibble 3 | 
|  | 0x00401008L, 0x10001000L, 0x00000008L, 0x10401008L, 0x00000000L, | 
|  | 0x10400000L, 0x10001008L, 0x00400008L, 0x10401000L, 0x10000008L, | 
|  | 0x10000000L, 0x00001008L, 0x10000008L, 0x00401008L, 0x00400000L, | 
|  | 0x10000000L, 0x10400008L, 0x00401000L, 0x00001000L, 0x00000008L, | 
|  | 0x00401000L, 0x10001008L, 0x10400000L, 0x00001000L, 0x00001008L, | 
|  | 0x00000000L, 0x00400008L, 0x10401000L, 0x10001000L, 0x10400008L, | 
|  | 0x10401008L, 0x00400000L, 0x10400008L, 0x00001008L, 0x00400000L, | 
|  | 0x10000008L, 0x00401000L, 0x10001000L, 0x00000008L, 0x10400000L, | 
|  | 0x10001008L, 0x00000000L, 0x00001000L, 0x00400008L, 0x00000000L, | 
|  | 0x10400008L, 0x10401000L, 0x00001000L, 0x10000000L, 0x10401008L, | 
|  | 0x00401008L, 0x00400000L, 0x10401008L, 0x00000008L, 0x10001000L, | 
|  | 0x00401008L, 0x00400008L, 0x00401000L, 0x10400000L, 0x10001008L, | 
|  | 0x00001008L, 0x10000000L, 0x10000008L, 0x10401000L, }, | 
|  | {  // nibble 4 | 
|  | 0x08000000L, 0x00010000L, 0x00000400L, 0x08010420L, 0x08010020L, | 
|  | 0x08000400L, 0x00010420L, 0x08010000L, 0x00010000L, 0x00000020L, | 
|  | 0x08000020L, 0x00010400L, 0x08000420L, 0x08010020L, 0x08010400L, | 
|  | 0x00000000L, 0x00010400L, 0x08000000L, 0x00010020L, 0x00000420L, | 
|  | 0x08000400L, 0x00010420L, 0x00000000L, 0x08000020L, 0x00000020L, | 
|  | 0x08000420L, 0x08010420L, 0x00010020L, 0x08010000L, 0x00000400L, | 
|  | 0x00000420L, 0x08010400L, 0x08010400L, 0x08000420L, 0x00010020L, | 
|  | 0x08010000L, 0x00010000L, 0x00000020L, 0x08000020L, 0x08000400L, | 
|  | 0x08000000L, 0x00010400L, 0x08010420L, 0x00000000L, 0x00010420L, | 
|  | 0x08000000L, 0x00000400L, 0x00010020L, 0x08000420L, 0x00000400L, | 
|  | 0x00000000L, 0x08010420L, 0x08010020L, 0x08010400L, 0x00000420L, | 
|  | 0x00010000L, 0x00010400L, 0x08010020L, 0x08000400L, 0x00000420L, | 
|  | 0x00000020L, 0x00010420L, 0x08010000L, 0x08000020L, }, | 
|  | {  // nibble 5 | 
|  | 0x80000040L, 0x00200040L, 0x00000000L, 0x80202000L, 0x00200040L, | 
|  | 0x00002000L, 0x80002040L, 0x00200000L, 0x00002040L, 0x80202040L, | 
|  | 0x00202000L, 0x80000000L, 0x80002000L, 0x80000040L, 0x80200000L, | 
|  | 0x00202040L, 0x00200000L, 0x80002040L, 0x80200040L, 0x00000000L, | 
|  | 0x00002000L, 0x00000040L, 0x80202000L, 0x80200040L, 0x80202040L, | 
|  | 0x80200000L, 0x80000000L, 0x00002040L, 0x00000040L, 0x00202000L, | 
|  | 0x00202040L, 0x80002000L, 0x00002040L, 0x80000000L, 0x80002000L, | 
|  | 0x00202040L, 0x80202000L, 0x00200040L, 0x00000000L, 0x80002000L, | 
|  | 0x80000000L, 0x00002000L, 0x80200040L, 0x00200000L, 0x00200040L, | 
|  | 0x80202040L, 0x00202000L, 0x00000040L, 0x80202040L, 0x00202000L, | 
|  | 0x00200000L, 0x80002040L, 0x80000040L, 0x80200000L, 0x00202040L, | 
|  | 0x00000000L, 0x00002000L, 0x80000040L, 0x80002040L, 0x80202000L, | 
|  | 0x80200000L, 0x00002040L, 0x00000040L, 0x80200040L, }, | 
|  | {  // nibble 6 | 
|  | 0x00004000L, 0x00000200L, 0x01000200L, 0x01000004L, 0x01004204L, | 
|  | 0x00004004L, 0x00004200L, 0x00000000L, 0x01000000L, 0x01000204L, | 
|  | 0x00000204L, 0x01004000L, 0x00000004L, 0x01004200L, 0x01004000L, | 
|  | 0x00000204L, 0x01000204L, 0x00004000L, 0x00004004L, 0x01004204L, | 
|  | 0x00000000L, 0x01000200L, 0x01000004L, 0x00004200L, 0x01004004L, | 
|  | 0x00004204L, 0x01004200L, 0x00000004L, 0x00004204L, 0x01004004L, | 
|  | 0x00000200L, 0x01000000L, 0x00004204L, 0x01004000L, 0x01004004L, | 
|  | 0x00000204L, 0x00004000L, 0x00000200L, 0x01000000L, 0x01004004L, | 
|  | 0x01000204L, 0x00004204L, 0x00004200L, 0x00000000L, 0x00000200L, | 
|  | 0x01000004L, 0x00000004L, 0x01000200L, 0x00000000L, 0x01000204L, | 
|  | 0x01000200L, 0x00004200L, 0x00000204L, 0x00004000L, 0x01004204L, | 
|  | 0x01000000L, 0x01004200L, 0x00000004L, 0x00004004L, 0x01004204L, | 
|  | 0x01000004L, 0x01004200L, 0x01004000L, 0x00004004L, }, | 
|  | {  // nibble 7 | 
|  | 0x20800080L, 0x20820000L, 0x00020080L, 0x00000000L, 0x20020000L, | 
|  | 0x00800080L, 0x20800000L, 0x20820080L, 0x00000080L, 0x20000000L, | 
|  | 0x00820000L, 0x00020080L, 0x00820080L, 0x20020080L, 0x20000080L, | 
|  | 0x20800000L, 0x00020000L, 0x00820080L, 0x00800080L, 0x20020000L, | 
|  | 0x20820080L, 0x20000080L, 0x00000000L, 0x00820000L, 0x20000000L, | 
|  | 0x00800000L, 0x20020080L, 0x20800080L, 0x00800000L, 0x00020000L, | 
|  | 0x20820000L, 0x00000080L, 0x00800000L, 0x00020000L, 0x20000080L, | 
|  | 0x20820080L, 0x00020080L, 0x20000000L, 0x00000000L, 0x00820000L, | 
|  | 0x20800080L, 0x20020080L, 0x20020000L, 0x00800080L, 0x20820000L, | 
|  | 0x00000080L, 0x00800080L, 0x20020000L, 0x20820080L, 0x00800000L, | 
|  | 0x20800000L, 0x20000080L, 0x00820000L, 0x00020080L, 0x20020080L, | 
|  | 0x20800000L, 0x00000080L, 0x20820000L, 0x00820080L, 0x00000000L, | 
|  | 0x20000000L, 0x20800080L, 0x00020000L, 0x00820080L, }}; | 
|  |  | 
|  | #define HPERM_OP(a, t, n, m)                  \ | 
|  | ((t) = ((((a) << (16 - (n))) ^ (a)) & (m)), \ | 
|  | (a) = (a) ^ (t) ^ ((t) >> (16 - (n)))) | 
|  |  | 
|  | void DES_set_key(const DES_cblock *key, DES_key_schedule *schedule) { | 
|  | static const int shifts2[16] = {0, 0, 1, 1, 1, 1, 1, 1, | 
|  | 0, 1, 1, 1, 1, 1, 1, 0}; | 
|  | uint32_t c, d, t, s, t2; | 
|  | const uint8_t *in; | 
|  | int i; | 
|  |  | 
|  | in = key->bytes; | 
|  |  | 
|  | c2l(in, c); | 
|  | c2l(in, d); | 
|  |  | 
|  | // do PC1 in 47 simple operations :-) | 
|  | // Thanks to John Fletcher (john_fletcher@lccmail.ocf.llnl.gov) | 
|  | // for the inspiration. :-) | 
|  | PERM_OP(d, c, t, 4, 0x0f0f0f0fL); | 
|  | HPERM_OP(c, t, -2, 0xcccc0000L); | 
|  | HPERM_OP(d, t, -2, 0xcccc0000L); | 
|  | PERM_OP(d, c, t, 1, 0x55555555L); | 
|  | PERM_OP(c, d, t, 8, 0x00ff00ffL); | 
|  | PERM_OP(d, c, t, 1, 0x55555555L); | 
|  | d = (((d & 0x000000ffL) << 16L) | (d & 0x0000ff00L) | | 
|  | ((d & 0x00ff0000L) >> 16L) | ((c & 0xf0000000L) >> 4L)); | 
|  | c &= 0x0fffffffL; | 
|  |  | 
|  | for (i = 0; i < ITERATIONS; i++) { | 
|  | if (shifts2[i]) { | 
|  | c = ((c >> 2L) | (c << 26L)); | 
|  | d = ((d >> 2L) | (d << 26L)); | 
|  | } else { | 
|  | c = ((c >> 1L) | (c << 27L)); | 
|  | d = ((d >> 1L) | (d << 27L)); | 
|  | } | 
|  | c &= 0x0fffffffL; | 
|  | d &= 0x0fffffffL; | 
|  | // could be a few less shifts but I am to lazy at this | 
|  | // point in time to investigate | 
|  | s = des_skb[0][(c) & 0x3f] | | 
|  | des_skb[1][((c >> 6L) & 0x03) | ((c >> 7L) & 0x3c)] | | 
|  | des_skb[2][((c >> 13L) & 0x0f) | ((c >> 14L) & 0x30)] | | 
|  | des_skb[3][((c >> 20L) & 0x01) | ((c >> 21L) & 0x06) | | 
|  | ((c >> 22L) & 0x38)]; | 
|  | t = des_skb[4][(d) & 0x3f] | | 
|  | des_skb[5][((d >> 7L) & 0x03) | ((d >> 8L) & 0x3c)] | | 
|  | des_skb[6][(d >> 15L) & 0x3f] | | 
|  | des_skb[7][((d >> 21L) & 0x0f) | ((d >> 22L) & 0x30)]; | 
|  |  | 
|  | // table contained 0213 4657 | 
|  | t2 = ((t << 16L) | (s & 0x0000ffffL)) & 0xffffffffL; | 
|  | schedule->subkeys[i][0] = ROTATE(t2, 30) & 0xffffffffL; | 
|  |  | 
|  | t2 = ((s >> 16L) | (t & 0xffff0000L)); | 
|  | schedule->subkeys[i][1] = ROTATE(t2, 26) & 0xffffffffL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const uint8_t kOddParity[256] = { | 
|  | 1,   1,   2,   2,   4,   4,   7,   7,   8,   8,   11,  11,  13,  13,  14, | 
|  | 14,  16,  16,  19,  19,  21,  21,  22,  22,  25,  25,  26,  26,  28,  28, | 
|  | 31,  31,  32,  32,  35,  35,  37,  37,  38,  38,  41,  41,  42,  42,  44, | 
|  | 44,  47,  47,  49,  49,  50,  50,  52,  52,  55,  55,  56,  56,  59,  59, | 
|  | 61,  61,  62,  62,  64,  64,  67,  67,  69,  69,  70,  70,  73,  73,  74, | 
|  | 74,  76,  76,  79,  79,  81,  81,  82,  82,  84,  84,  87,  87,  88,  88, | 
|  | 91,  91,  93,  93,  94,  94,  97,  97,  98,  98,  100, 100, 103, 103, 104, | 
|  | 104, 107, 107, 109, 109, 110, 110, 112, 112, 115, 115, 117, 117, 118, 118, | 
|  | 121, 121, 122, 122, 124, 124, 127, 127, 128, 128, 131, 131, 133, 133, 134, | 
|  | 134, 137, 137, 138, 138, 140, 140, 143, 143, 145, 145, 146, 146, 148, 148, | 
|  | 151, 151, 152, 152, 155, 155, 157, 157, 158, 158, 161, 161, 162, 162, 164, | 
|  | 164, 167, 167, 168, 168, 171, 171, 173, 173, 174, 174, 176, 176, 179, 179, | 
|  | 181, 181, 182, 182, 185, 185, 186, 186, 188, 188, 191, 191, 193, 193, 194, | 
|  | 194, 196, 196, 199, 199, 200, 200, 203, 203, 205, 205, 206, 206, 208, 208, | 
|  | 211, 211, 213, 213, 214, 214, 217, 217, 218, 218, 220, 220, 223, 223, 224, | 
|  | 224, 227, 227, 229, 229, 230, 230, 233, 233, 234, 234, 236, 236, 239, 239, | 
|  | 241, 241, 242, 242, 244, 244, 247, 247, 248, 248, 251, 251, 253, 253, 254, | 
|  | 254 | 
|  | }; | 
|  |  | 
|  | void DES_set_odd_parity(DES_cblock *key) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < DES_KEY_SZ; i++) { | 
|  | key->bytes[i] = kOddParity[key->bytes[i]]; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void DES_encrypt1(uint32_t *data, const DES_key_schedule *ks, int enc) { | 
|  | uint32_t l, r, t, u; | 
|  |  | 
|  | r = data[0]; | 
|  | l = data[1]; | 
|  |  | 
|  | IP(r, l); | 
|  | // Things have been modified so that the initial rotate is done outside | 
|  | // the loop.  This required the DES_SPtrans values in sp.h to be | 
|  | // rotated 1 bit to the right. One perl script later and things have a | 
|  | // 5% speed up on a sparc2. Thanks to Richard Outerbridge | 
|  | // <71755.204@CompuServe.COM> for pointing this out. | 
|  | // clear the top bits on machines with 8byte longs | 
|  | // shift left by 2 | 
|  | r = ROTATE(r, 29) & 0xffffffffL; | 
|  | l = ROTATE(l, 29) & 0xffffffffL; | 
|  |  | 
|  | // I don't know if it is worth the effort of loop unrolling the | 
|  | // inner loop | 
|  | if (enc) { | 
|  | D_ENCRYPT(ks, l, r, 0); | 
|  | D_ENCRYPT(ks, r, l, 1); | 
|  | D_ENCRYPT(ks, l, r, 2); | 
|  | D_ENCRYPT(ks, r, l, 3); | 
|  | D_ENCRYPT(ks, l, r, 4); | 
|  | D_ENCRYPT(ks, r, l, 5); | 
|  | D_ENCRYPT(ks, l, r, 6); | 
|  | D_ENCRYPT(ks, r, l, 7); | 
|  | D_ENCRYPT(ks, l, r, 8); | 
|  | D_ENCRYPT(ks, r, l, 9); | 
|  | D_ENCRYPT(ks, l, r, 10); | 
|  | D_ENCRYPT(ks, r, l, 11); | 
|  | D_ENCRYPT(ks, l, r, 12); | 
|  | D_ENCRYPT(ks, r, l, 13); | 
|  | D_ENCRYPT(ks, l, r, 14); | 
|  | D_ENCRYPT(ks, r, l, 15); | 
|  | } else { | 
|  | D_ENCRYPT(ks, l, r, 15); | 
|  | D_ENCRYPT(ks, r, l, 14); | 
|  | D_ENCRYPT(ks, l, r, 13); | 
|  | D_ENCRYPT(ks, r, l, 12); | 
|  | D_ENCRYPT(ks, l, r, 11); | 
|  | D_ENCRYPT(ks, r, l, 10); | 
|  | D_ENCRYPT(ks, l, r, 9); | 
|  | D_ENCRYPT(ks, r, l, 8); | 
|  | D_ENCRYPT(ks, l, r, 7); | 
|  | D_ENCRYPT(ks, r, l, 6); | 
|  | D_ENCRYPT(ks, l, r, 5); | 
|  | D_ENCRYPT(ks, r, l, 4); | 
|  | D_ENCRYPT(ks, l, r, 3); | 
|  | D_ENCRYPT(ks, r, l, 2); | 
|  | D_ENCRYPT(ks, l, r, 1); | 
|  | D_ENCRYPT(ks, r, l, 0); | 
|  | } | 
|  |  | 
|  | // rotate and clear the top bits on machines with 8byte longs | 
|  | l = ROTATE(l, 3) & 0xffffffffL; | 
|  | r = ROTATE(r, 3) & 0xffffffffL; | 
|  |  | 
|  | FP(r, l); | 
|  | data[0] = l; | 
|  | data[1] = r; | 
|  | } | 
|  |  | 
|  | static void DES_encrypt2(uint32_t *data, const DES_key_schedule *ks, int enc) { | 
|  | uint32_t l, r, t, u; | 
|  |  | 
|  | r = data[0]; | 
|  | l = data[1]; | 
|  |  | 
|  | // Things have been modified so that the initial rotate is done outside the | 
|  | // loop.  This required the DES_SPtrans values in sp.h to be rotated 1 bit to | 
|  | // the right. One perl script later and things have a 5% speed up on a | 
|  | // sparc2. Thanks to Richard Outerbridge <71755.204@CompuServe.COM> for | 
|  | // pointing this out. | 
|  | // clear the top bits on machines with 8byte longs | 
|  | r = ROTATE(r, 29) & 0xffffffffL; | 
|  | l = ROTATE(l, 29) & 0xffffffffL; | 
|  |  | 
|  | // I don't know if it is worth the effort of loop unrolling the | 
|  | // inner loop | 
|  | if (enc) { | 
|  | D_ENCRYPT(ks, l, r, 0); | 
|  | D_ENCRYPT(ks, r, l, 1); | 
|  | D_ENCRYPT(ks, l, r, 2); | 
|  | D_ENCRYPT(ks, r, l, 3); | 
|  | D_ENCRYPT(ks, l, r, 4); | 
|  | D_ENCRYPT(ks, r, l, 5); | 
|  | D_ENCRYPT(ks, l, r, 6); | 
|  | D_ENCRYPT(ks, r, l, 7); | 
|  | D_ENCRYPT(ks, l, r, 8); | 
|  | D_ENCRYPT(ks, r, l, 9); | 
|  | D_ENCRYPT(ks, l, r, 10); | 
|  | D_ENCRYPT(ks, r, l, 11); | 
|  | D_ENCRYPT(ks, l, r, 12); | 
|  | D_ENCRYPT(ks, r, l, 13); | 
|  | D_ENCRYPT(ks, l, r, 14); | 
|  | D_ENCRYPT(ks, r, l, 15); | 
|  | } else { | 
|  | D_ENCRYPT(ks, l, r, 15); | 
|  | D_ENCRYPT(ks, r, l, 14); | 
|  | D_ENCRYPT(ks, l, r, 13); | 
|  | D_ENCRYPT(ks, r, l, 12); | 
|  | D_ENCRYPT(ks, l, r, 11); | 
|  | D_ENCRYPT(ks, r, l, 10); | 
|  | D_ENCRYPT(ks, l, r, 9); | 
|  | D_ENCRYPT(ks, r, l, 8); | 
|  | D_ENCRYPT(ks, l, r, 7); | 
|  | D_ENCRYPT(ks, r, l, 6); | 
|  | D_ENCRYPT(ks, l, r, 5); | 
|  | D_ENCRYPT(ks, r, l, 4); | 
|  | D_ENCRYPT(ks, l, r, 3); | 
|  | D_ENCRYPT(ks, r, l, 2); | 
|  | D_ENCRYPT(ks, l, r, 1); | 
|  | D_ENCRYPT(ks, r, l, 0); | 
|  | } | 
|  | // rotate and clear the top bits on machines with 8byte longs | 
|  | data[0] = ROTATE(l, 3) & 0xffffffffL; | 
|  | data[1] = ROTATE(r, 3) & 0xffffffffL; | 
|  | } | 
|  |  | 
|  | void DES_encrypt3(uint32_t *data, const DES_key_schedule *ks1, | 
|  | const DES_key_schedule *ks2, const DES_key_schedule *ks3) { | 
|  | uint32_t l, r; | 
|  |  | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  | IP(l, r); | 
|  | data[0] = l; | 
|  | data[1] = r; | 
|  | DES_encrypt2((uint32_t *)data, ks1, DES_ENCRYPT); | 
|  | DES_encrypt2((uint32_t *)data, ks2, DES_DECRYPT); | 
|  | DES_encrypt2((uint32_t *)data, ks3, DES_ENCRYPT); | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  | FP(r, l); | 
|  | data[0] = l; | 
|  | data[1] = r; | 
|  | } | 
|  |  | 
|  | void DES_decrypt3(uint32_t *data, const DES_key_schedule *ks1, | 
|  | const DES_key_schedule *ks2, const DES_key_schedule *ks3) { | 
|  | uint32_t l, r; | 
|  |  | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  | IP(l, r); | 
|  | data[0] = l; | 
|  | data[1] = r; | 
|  | DES_encrypt2((uint32_t *)data, ks3, DES_DECRYPT); | 
|  | DES_encrypt2((uint32_t *)data, ks2, DES_ENCRYPT); | 
|  | DES_encrypt2((uint32_t *)data, ks1, DES_DECRYPT); | 
|  | l = data[0]; | 
|  | r = data[1]; | 
|  | FP(r, l); | 
|  | data[0] = l; | 
|  | data[1] = r; | 
|  | } | 
|  |  | 
|  | void DES_ecb_encrypt(const DES_cblock *in_block, DES_cblock *out_block, | 
|  | const DES_key_schedule *schedule, int is_encrypt) { | 
|  | uint32_t l; | 
|  | uint32_t ll[2]; | 
|  | const uint8_t *in = in_block->bytes; | 
|  | uint8_t *out = out_block->bytes; | 
|  |  | 
|  | c2l(in, l); | 
|  | ll[0] = l; | 
|  | c2l(in, l); | 
|  | ll[1] = l; | 
|  | DES_encrypt1(ll, schedule, is_encrypt); | 
|  | l = ll[0]; | 
|  | l2c(l, out); | 
|  | l = ll[1]; | 
|  | l2c(l, out); | 
|  | ll[0] = ll[1] = 0; | 
|  | } | 
|  |  | 
|  | void DES_ncbc_encrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const DES_key_schedule *schedule, DES_cblock *ivec, | 
|  | int enc) { | 
|  | uint32_t tin0, tin1; | 
|  | uint32_t tout0, tout1, xor0, xor1; | 
|  | uint32_t tin[2]; | 
|  | unsigned char *iv; | 
|  |  | 
|  | iv = ivec->bytes; | 
|  |  | 
|  | if (enc) { | 
|  | c2l(iv, tout0); | 
|  | c2l(iv, tout1); | 
|  | for (; len >= 8; len -= 8) { | 
|  | c2l(in, tin0); | 
|  | c2l(in, tin1); | 
|  | tin0 ^= tout0; | 
|  | tin[0] = tin0; | 
|  | tin1 ^= tout1; | 
|  | tin[1] = tin1; | 
|  | DES_encrypt1((uint32_t *)tin, schedule, DES_ENCRYPT); | 
|  | tout0 = tin[0]; | 
|  | l2c(tout0, out); | 
|  | tout1 = tin[1]; | 
|  | l2c(tout1, out); | 
|  | } | 
|  | if (len != 0) { | 
|  | c2ln(in, tin0, tin1, len); | 
|  | tin0 ^= tout0; | 
|  | tin[0] = tin0; | 
|  | tin1 ^= tout1; | 
|  | tin[1] = tin1; | 
|  | DES_encrypt1((uint32_t *)tin, schedule, DES_ENCRYPT); | 
|  | tout0 = tin[0]; | 
|  | l2c(tout0, out); | 
|  | tout1 = tin[1]; | 
|  | l2c(tout1, out); | 
|  | } | 
|  | iv = ivec->bytes; | 
|  | l2c(tout0, iv); | 
|  | l2c(tout1, iv); | 
|  | } else { | 
|  | c2l(iv, xor0); | 
|  | c2l(iv, xor1); | 
|  | for (; len >= 8; len -= 8) { | 
|  | c2l(in, tin0); | 
|  | tin[0] = tin0; | 
|  | c2l(in, tin1); | 
|  | tin[1] = tin1; | 
|  | DES_encrypt1((uint32_t *)tin, schedule, DES_DECRYPT); | 
|  | tout0 = tin[0] ^ xor0; | 
|  | tout1 = tin[1] ^ xor1; | 
|  | l2c(tout0, out); | 
|  | l2c(tout1, out); | 
|  | xor0 = tin0; | 
|  | xor1 = tin1; | 
|  | } | 
|  | if (len != 0) { | 
|  | c2l(in, tin0); | 
|  | tin[0] = tin0; | 
|  | c2l(in, tin1); | 
|  | tin[1] = tin1; | 
|  | DES_encrypt1((uint32_t *)tin, schedule, DES_DECRYPT); | 
|  | tout0 = tin[0] ^ xor0; | 
|  | tout1 = tin[1] ^ xor1; | 
|  | l2cn(tout0, tout1, out, len); | 
|  | xor0 = tin0; | 
|  | xor1 = tin1; | 
|  | } | 
|  | iv = ivec->bytes; | 
|  | l2c(xor0, iv); | 
|  | l2c(xor1, iv); | 
|  | } | 
|  | tin[0] = tin[1] = 0; | 
|  | } | 
|  |  | 
|  | void DES_ecb3_encrypt(const DES_cblock *input, DES_cblock *output, | 
|  | const DES_key_schedule *ks1, const DES_key_schedule *ks2, | 
|  | const DES_key_schedule *ks3, int enc) { | 
|  | uint32_t l0, l1; | 
|  | uint32_t ll[2]; | 
|  | const uint8_t *in = input->bytes; | 
|  | uint8_t *out = output->bytes; | 
|  |  | 
|  | c2l(in, l0); | 
|  | c2l(in, l1); | 
|  | ll[0] = l0; | 
|  | ll[1] = l1; | 
|  | if (enc) { | 
|  | DES_encrypt3(ll, ks1, ks2, ks3); | 
|  | } else { | 
|  | DES_decrypt3(ll, ks1, ks2, ks3); | 
|  | } | 
|  | l0 = ll[0]; | 
|  | l1 = ll[1]; | 
|  | l2c(l0, out); | 
|  | l2c(l1, out); | 
|  | } | 
|  |  | 
|  | void DES_ede3_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const DES_key_schedule *ks1, | 
|  | const DES_key_schedule *ks2, | 
|  | const DES_key_schedule *ks3, DES_cblock *ivec, | 
|  | int enc) { | 
|  | uint32_t tin0, tin1; | 
|  | uint32_t tout0, tout1, xor0, xor1; | 
|  | uint32_t tin[2]; | 
|  | uint8_t *iv; | 
|  |  | 
|  | iv = ivec->bytes; | 
|  |  | 
|  | if (enc) { | 
|  | c2l(iv, tout0); | 
|  | c2l(iv, tout1); | 
|  | for (; len >= 8; len -= 8) { | 
|  | c2l(in, tin0); | 
|  | c2l(in, tin1); | 
|  | tin0 ^= tout0; | 
|  | tin1 ^= tout1; | 
|  |  | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | DES_encrypt3((uint32_t *)tin, ks1, ks2, ks3); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  |  | 
|  | l2c(tout0, out); | 
|  | l2c(tout1, out); | 
|  | } | 
|  | if (len != 0) { | 
|  | c2ln(in, tin0, tin1, len); | 
|  | tin0 ^= tout0; | 
|  | tin1 ^= tout1; | 
|  |  | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | DES_encrypt3((uint32_t *)tin, ks1, ks2, ks3); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  |  | 
|  | l2c(tout0, out); | 
|  | l2c(tout1, out); | 
|  | } | 
|  | iv = ivec->bytes; | 
|  | l2c(tout0, iv); | 
|  | l2c(tout1, iv); | 
|  | } else { | 
|  | uint32_t t0, t1; | 
|  |  | 
|  | c2l(iv, xor0); | 
|  | c2l(iv, xor1); | 
|  | for (; len >= 8; len -= 8) { | 
|  | c2l(in, tin0); | 
|  | c2l(in, tin1); | 
|  |  | 
|  | t0 = tin0; | 
|  | t1 = tin1; | 
|  |  | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | DES_decrypt3((uint32_t *)tin, ks1, ks2, ks3); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  |  | 
|  | tout0 ^= xor0; | 
|  | tout1 ^= xor1; | 
|  | l2c(tout0, out); | 
|  | l2c(tout1, out); | 
|  | xor0 = t0; | 
|  | xor1 = t1; | 
|  | } | 
|  | if (len != 0) { | 
|  | c2l(in, tin0); | 
|  | c2l(in, tin1); | 
|  |  | 
|  | t0 = tin0; | 
|  | t1 = tin1; | 
|  |  | 
|  | tin[0] = tin0; | 
|  | tin[1] = tin1; | 
|  | DES_decrypt3((uint32_t *)tin, ks1, ks2, ks3); | 
|  | tout0 = tin[0]; | 
|  | tout1 = tin[1]; | 
|  |  | 
|  | tout0 ^= xor0; | 
|  | tout1 ^= xor1; | 
|  | l2cn(tout0, tout1, out, len); | 
|  | xor0 = t0; | 
|  | xor1 = t1; | 
|  | } | 
|  |  | 
|  | iv = ivec->bytes; | 
|  | l2c(xor0, iv); | 
|  | l2c(xor1, iv); | 
|  | } | 
|  |  | 
|  | tin[0] = tin[1] = 0; | 
|  | } | 
|  |  | 
|  | void DES_ede2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len, | 
|  | const DES_key_schedule *ks1, | 
|  | const DES_key_schedule *ks2, | 
|  | DES_cblock *ivec, | 
|  | int enc) { | 
|  | DES_ede3_cbc_encrypt(in, out, len, ks1, ks2, ks1, ivec, enc); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Deprecated functions. | 
|  |  | 
|  | void DES_set_key_unchecked(const DES_cblock *key, DES_key_schedule *schedule) { | 
|  | DES_set_key(key, schedule); | 
|  | } | 
|  |  | 
|  | #undef HPERM_OP | 
|  | #undef c2l | 
|  | #undef l2c | 
|  | #undef c2ln | 
|  | #undef l2cn | 
|  | #undef PERM_OP | 
|  | #undef IP | 
|  | #undef FP | 
|  | #undef LOAD_DATA | 
|  | #undef D_ENCRYPT | 
|  | #undef ITERATIONS | 
|  | #undef HALF_ITERATIONS | 
|  | #undef ROTATE |