|  | /* Copyright (c) 2016, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <utility> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/hkdf.h> | 
|  | #include <openssl/hmac.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | static bool init_key_schedule(SSL_HANDSHAKE *hs, SSLTranscript *transcript, | 
|  | uint16_t version, const SSL_CIPHER *cipher) { | 
|  | if (!transcript->InitHash(version, cipher)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Initialize the secret to the zero key. | 
|  | hs->ResizeSecrets(transcript->DigestLen()); | 
|  | OPENSSL_memset(hs->secret().data(), 0, hs->secret().size()); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs, | 
|  | const SSLTranscript &transcript, | 
|  | Span<const uint8_t> in) { | 
|  | size_t len; | 
|  | if (!HKDF_extract(hs->secret().data(), &len, transcript.Digest(), in.data(), | 
|  | in.size(), hs->secret().data(), hs->secret().size())) { | 
|  | return false; | 
|  | } | 
|  | assert(len == hs->secret().size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) { | 
|  | if (!init_key_schedule(hs, &hs->transcript, ssl_protocol_version(hs->ssl), | 
|  | hs->new_cipher)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Handback includes the whole handshake transcript, so we cannot free the | 
|  | // transcript buffer in the handback case. | 
|  | if (!hs->handback) { | 
|  | hs->transcript.FreeBuffer(); | 
|  | } | 
|  | return hkdf_extract_to_secret(hs, hs->transcript, psk); | 
|  | } | 
|  |  | 
|  | bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session) { | 
|  | assert(!hs->ssl->server); | 
|  | // When offering ECH, early data is associated with ClientHelloInner, not | 
|  | // ClientHelloOuter. | 
|  | SSLTranscript *transcript = | 
|  | hs->selected_ech_config ? &hs->inner_transcript : &hs->transcript; | 
|  | return init_key_schedule(hs, transcript, | 
|  | ssl_session_protocol_version(session), | 
|  | session->cipher) && | 
|  | hkdf_extract_to_secret( | 
|  | hs, *transcript, | 
|  | MakeConstSpan(session->secret, session->secret_length)); | 
|  | } | 
|  |  | 
|  | static Span<const char> label_to_span(const char *label) { | 
|  | return MakeConstSpan(label, strlen(label)); | 
|  | } | 
|  |  | 
|  | static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const char> label, | 
|  | Span<const uint8_t> hash) { | 
|  | Span<const char> protocol_label = label_to_span("tls13 "); | 
|  | ScopedCBB cbb; | 
|  | CBB child; | 
|  | Array<uint8_t> hkdf_label; | 
|  | if (!CBB_init(cbb.get(), 2 + 1 + protocol_label.size() + label.size() + 1 + | 
|  | hash.size()) || | 
|  | !CBB_add_u16(cbb.get(), out.size()) || | 
|  | !CBB_add_u8_length_prefixed(cbb.get(), &child) || | 
|  | !CBB_add_bytes(&child, | 
|  | reinterpret_cast<const uint8_t *>(protocol_label.data()), | 
|  | protocol_label.size()) || | 
|  | !CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()), | 
|  | label.size()) || | 
|  | !CBB_add_u8_length_prefixed(cbb.get(), &child) || | 
|  | !CBB_add_bytes(&child, hash.data(), hash.size()) || | 
|  | !CBBFinishArray(cbb.get(), &hkdf_label)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return HKDF_expand(out.data(), out.size(), digest, secret.data(), | 
|  | secret.size(), hkdf_label.data(), hkdf_label.size()); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelDerived[] = "derived"; | 
|  |  | 
|  | bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) { | 
|  | uint8_t derive_context[EVP_MAX_MD_SIZE]; | 
|  | unsigned derive_context_len; | 
|  | return EVP_Digest(nullptr, 0, derive_context, &derive_context_len, | 
|  | hs->transcript.Digest(), nullptr) && | 
|  | hkdf_expand_label(hs->secret(), hs->transcript.Digest(), hs->secret(), | 
|  | label_to_span(kTLS13LabelDerived), | 
|  | MakeConstSpan(derive_context, derive_context_len)) && | 
|  | hkdf_extract_to_secret(hs, hs->transcript, in); | 
|  | } | 
|  |  | 
|  | // derive_secret_with_transcript derives a secret of length |out.size()| and | 
|  | // writes the result in |out| with the given label, the current base secret, and | 
|  | // the state of |transcript|. It returns true on success and false on error. | 
|  | static bool derive_secret_with_transcript(const SSL_HANDSHAKE *hs, | 
|  | Span<uint8_t> out, | 
|  | const SSLTranscript &transcript, | 
|  | Span<const char> label) { | 
|  | uint8_t context_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t context_hash_len; | 
|  | if (!transcript.GetHash(context_hash, &context_hash_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return hkdf_expand_label(out, transcript.Digest(), hs->secret(), label, | 
|  | MakeConstSpan(context_hash, context_hash_len)); | 
|  | } | 
|  |  | 
|  | static bool derive_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out, | 
|  | Span<const char> label) { | 
|  | return derive_secret_with_transcript(hs, out, hs->transcript, label); | 
|  | } | 
|  |  | 
|  | bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level, | 
|  | enum evp_aead_direction_t direction, | 
|  | const SSL_SESSION *session, | 
|  | Span<const uint8_t> traffic_secret) { | 
|  | uint16_t version = ssl_session_protocol_version(session); | 
|  | UniquePtr<SSLAEADContext> traffic_aead; | 
|  | Span<const uint8_t> secret_for_quic; | 
|  | if (ssl->quic_method != nullptr) { | 
|  | // Install a placeholder SSLAEADContext so that SSL accessors work. The | 
|  | // encryption itself will be handled by the SSL_QUIC_METHOD. | 
|  | traffic_aead = | 
|  | SSLAEADContext::CreatePlaceholderForQUIC(version, session->cipher); | 
|  | secret_for_quic = traffic_secret; | 
|  | } else { | 
|  | // Look up cipher suite properties. | 
|  | const EVP_AEAD *aead; | 
|  | size_t discard; | 
|  | if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher, | 
|  | version, SSL_is_dtls(ssl))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  |  | 
|  | // Derive the key. | 
|  | size_t key_len = EVP_AEAD_key_length(aead); | 
|  | uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH]; | 
|  | auto key = MakeSpan(key_buf, key_len); | 
|  | if (!hkdf_expand_label(key, digest, traffic_secret, label_to_span("key"), | 
|  | {})) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Derive the IV. | 
|  | size_t iv_len = EVP_AEAD_nonce_length(aead); | 
|  | uint8_t iv_buf[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | auto iv = MakeSpan(iv_buf, iv_len); | 
|  | if (!hkdf_expand_label(iv, digest, traffic_secret, label_to_span("iv"), | 
|  | {})) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | traffic_aead = SSLAEADContext::Create(direction, session->ssl_version, | 
|  | SSL_is_dtls(ssl), session->cipher, | 
|  | key, Span<const uint8_t>(), iv); | 
|  | } | 
|  |  | 
|  | if (!traffic_aead) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (traffic_secret.size() > | 
|  | OPENSSL_ARRAY_SIZE(ssl->s3->read_traffic_secret) || | 
|  | traffic_secret.size() > | 
|  | OPENSSL_ARRAY_SIZE(ssl->s3->write_traffic_secret)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (direction == evp_aead_open) { | 
|  | if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead), | 
|  | secret_for_quic)) { | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memmove(ssl->s3->read_traffic_secret, traffic_secret.data(), | 
|  | traffic_secret.size()); | 
|  | ssl->s3->read_traffic_secret_len = traffic_secret.size(); | 
|  | } else { | 
|  | if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead), | 
|  | secret_for_quic)) { | 
|  | return false; | 
|  | } | 
|  | OPENSSL_memmove(ssl->s3->write_traffic_secret, traffic_secret.data(), | 
|  | traffic_secret.size()); | 
|  | ssl->s3->write_traffic_secret_len = traffic_secret.size(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const char kTLS13LabelExporter[] = "exp master"; | 
|  |  | 
|  | static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic"; | 
|  | static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic"; | 
|  | static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic"; | 
|  | static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic"; | 
|  | static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic"; | 
|  |  | 
|  | bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | // When offering ECH on the client, early data is associated with | 
|  | // ClientHelloInner, not ClientHelloOuter. | 
|  | const SSLTranscript &transcript = (!ssl->server && hs->selected_ech_config) | 
|  | ? hs->inner_transcript | 
|  | : hs->transcript; | 
|  | if (!derive_secret_with_transcript( | 
|  | hs, hs->early_traffic_secret(), transcript, | 
|  | label_to_span(kTLS13LabelClientEarlyTraffic)) || | 
|  | !ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET", | 
|  | hs->early_traffic_secret())) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | if (!derive_secret(hs, hs->client_handshake_secret(), | 
|  | label_to_span(kTLS13LabelClientHandshakeTraffic)) || | 
|  | !ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET", | 
|  | hs->client_handshake_secret()) || | 
|  | !derive_secret(hs, hs->server_handshake_secret(), | 
|  | label_to_span(kTLS13LabelServerHandshakeTraffic)) || | 
|  | !ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET", | 
|  | hs->server_handshake_secret())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) { | 
|  | SSL *const ssl = hs->ssl; | 
|  | ssl->s3->exporter_secret_len = hs->transcript.DigestLen(); | 
|  | if (!derive_secret(hs, hs->client_traffic_secret_0(), | 
|  | label_to_span(kTLS13LabelClientApplicationTraffic)) || | 
|  | !ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0", | 
|  | hs->client_traffic_secret_0()) || | 
|  | !derive_secret(hs, hs->server_traffic_secret_0(), | 
|  | label_to_span(kTLS13LabelServerApplicationTraffic)) || | 
|  | !ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0", | 
|  | hs->server_traffic_secret_0()) || | 
|  | !derive_secret( | 
|  | hs, MakeSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len), | 
|  | label_to_span(kTLS13LabelExporter)) || | 
|  | !ssl_log_secret(ssl, "EXPORTER_SECRET", | 
|  | MakeConstSpan(ssl->s3->exporter_secret, | 
|  | ssl->s3->exporter_secret_len))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelApplicationTraffic[] = "traffic upd"; | 
|  |  | 
|  | bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) { | 
|  | Span<uint8_t> secret; | 
|  | if (direction == evp_aead_open) { | 
|  | secret = MakeSpan(ssl->s3->read_traffic_secret, | 
|  | ssl->s3->read_traffic_secret_len); | 
|  | } else { | 
|  | secret = MakeSpan(ssl->s3->write_traffic_secret, | 
|  | ssl->s3->write_traffic_secret_len); | 
|  | } | 
|  |  | 
|  | const SSL_SESSION *session = SSL_get_session(ssl); | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  | return hkdf_expand_label(secret, digest, secret, | 
|  | label_to_span(kTLS13LabelApplicationTraffic), {}) && | 
|  | tls13_set_traffic_key(ssl, ssl_encryption_application, direction, | 
|  | session, secret); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelResumption[] = "res master"; | 
|  |  | 
|  | bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) { | 
|  | if (hs->transcript.DigestLen() > SSL_MAX_MASTER_KEY_LENGTH) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | hs->new_session->secret_length = hs->transcript.DigestLen(); | 
|  | return derive_secret( | 
|  | hs, MakeSpan(hs->new_session->secret, hs->new_session->secret_length), | 
|  | label_to_span(kTLS13LabelResumption)); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelFinished[] = "finished"; | 
|  |  | 
|  | // tls13_verify_data sets |out| to be the HMAC of |context| using a derived | 
|  | // Finished key for both Finished messages and the PSK binder. |out| must have | 
|  | // space available for |EVP_MAX_MD_SIZE| bytes. | 
|  | static bool tls13_verify_data(uint8_t *out, size_t *out_len, | 
|  | const EVP_MD *digest, uint16_t version, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const uint8_t> context) { | 
|  | uint8_t key_buf[EVP_MAX_MD_SIZE]; | 
|  | auto key = MakeSpan(key_buf, EVP_MD_size(digest)); | 
|  | unsigned len; | 
|  | if (!hkdf_expand_label(key, digest, secret, | 
|  | label_to_span(kTLS13LabelFinished), {}) || | 
|  | HMAC(digest, key.data(), key.size(), context.data(), context.size(), out, | 
|  | &len) == nullptr) { | 
|  | return false; | 
|  | } | 
|  | *out_len = len; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, | 
|  | bool is_server) { | 
|  | Span<const uint8_t> traffic_secret = | 
|  | is_server ? hs->server_handshake_secret() : hs->client_handshake_secret(); | 
|  |  | 
|  | uint8_t context_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t context_hash_len; | 
|  | if (!hs->transcript.GetHash(context_hash, &context_hash_len) || | 
|  | !tls13_verify_data(out, out_len, hs->transcript.Digest(), | 
|  | hs->ssl->version, traffic_secret, | 
|  | MakeConstSpan(context_hash, context_hash_len))) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelResumptionPSK[] = "resumption"; | 
|  |  | 
|  | bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) { | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  | // The session initially stores the resumption_master_secret, which we | 
|  | // override with the PSK. | 
|  | auto session_secret = MakeSpan(session->secret, session->secret_length); | 
|  | return hkdf_expand_label(session_secret, digest, session_secret, | 
|  | label_to_span(kTLS13LabelResumptionPSK), nonce); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelExportKeying[] = "exporter"; | 
|  |  | 
|  | bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out, | 
|  | Span<const uint8_t> secret, | 
|  | Span<const char> label, | 
|  | Span<const uint8_t> context) { | 
|  | if (secret.empty()) { | 
|  | assert(0); | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl)); | 
|  |  | 
|  | uint8_t hash_buf[EVP_MAX_MD_SIZE]; | 
|  | uint8_t export_context_buf[EVP_MAX_MD_SIZE]; | 
|  | unsigned hash_len; | 
|  | unsigned export_context_len; | 
|  | if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest, | 
|  | nullptr) || | 
|  | !EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest, | 
|  | nullptr)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto hash = MakeConstSpan(hash_buf, hash_len); | 
|  | auto export_context = MakeConstSpan(export_context_buf, export_context_len); | 
|  | uint8_t derived_secret_buf[EVP_MAX_MD_SIZE]; | 
|  | auto derived_secret = MakeSpan(derived_secret_buf, EVP_MD_size(digest)); | 
|  | return hkdf_expand_label(derived_secret, digest, secret, label, | 
|  | export_context) && | 
|  | hkdf_expand_label(out, digest, derived_secret, | 
|  | label_to_span(kTLS13LabelExportKeying), hash); | 
|  | } | 
|  |  | 
|  | static const char kTLS13LabelPSKBinder[] = "res binder"; | 
|  |  | 
|  | static bool tls13_psk_binder(uint8_t *out, size_t *out_len, | 
|  | const SSL_SESSION *session, | 
|  | const SSLTranscript &transcript, | 
|  | Span<const uint8_t> client_hello, | 
|  | size_t binders_len) { | 
|  | const EVP_MD *digest = ssl_session_get_digest(session); | 
|  |  | 
|  | // Compute the binder key. | 
|  | // | 
|  | // TODO(davidben): Ideally we wouldn't recompute early secret and the binder | 
|  | // key each time. | 
|  | uint8_t binder_context[EVP_MAX_MD_SIZE]; | 
|  | unsigned binder_context_len; | 
|  | uint8_t early_secret[EVP_MAX_MD_SIZE] = {0}; | 
|  | size_t early_secret_len; | 
|  | uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0}; | 
|  | auto binder_key = MakeSpan(binder_key_buf, EVP_MD_size(digest)); | 
|  | if (!EVP_Digest(nullptr, 0, binder_context, &binder_context_len, digest, | 
|  | nullptr) || | 
|  | !HKDF_extract(early_secret, &early_secret_len, digest, session->secret, | 
|  | session->secret_length, nullptr, 0) || | 
|  | !hkdf_expand_label(binder_key, digest, | 
|  | MakeConstSpan(early_secret, early_secret_len), | 
|  | label_to_span(kTLS13LabelPSKBinder), | 
|  | MakeConstSpan(binder_context, binder_context_len))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Hash the transcript and truncated ClientHello. | 
|  | if (client_hello.size() < binders_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  | auto truncated = client_hello.subspan(0, client_hello.size() - binders_len); | 
|  | uint8_t context[EVP_MAX_MD_SIZE]; | 
|  | unsigned context_len; | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!transcript.CopyToHashContext(ctx.get(), digest) || | 
|  | !EVP_DigestUpdate(ctx.get(), truncated.data(), | 
|  | truncated.size()) || | 
|  | !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!tls13_verify_data(out, out_len, digest, session->ssl_version, binder_key, | 
|  | MakeConstSpan(context, context_len))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(*out_len == EVP_MD_size(digest)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSLTranscript &transcript, Span<uint8_t> msg, | 
|  | size_t *out_binder_len) { | 
|  | const SSL *const ssl = hs->ssl; | 
|  | const EVP_MD *digest = ssl_session_get_digest(ssl->session.get()); | 
|  | const size_t hash_len = EVP_MD_size(digest); | 
|  | // We only offer one PSK, so the binders are a u16 and u8 length | 
|  | // prefix, followed by the binder. The caller is assumed to have constructed | 
|  | // |msg| with placeholder binders. | 
|  | const size_t binders_len = 3 + hash_len; | 
|  | uint8_t verify_data[EVP_MAX_MD_SIZE]; | 
|  | size_t verify_data_len; | 
|  | if (!tls13_psk_binder(verify_data, &verify_data_len, ssl->session.get(), | 
|  | transcript, msg, binders_len) || | 
|  | verify_data_len != hash_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto msg_binder = msg.last(verify_data_len); | 
|  | OPENSSL_memcpy(msg_binder.data(), verify_data, verify_data_len); | 
|  | if (out_binder_len != nullptr) { | 
|  | *out_binder_len = verify_data_len; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs, | 
|  | const SSL_SESSION *session, const SSLMessage &msg, | 
|  | CBS *binders) { | 
|  | uint8_t verify_data[EVP_MAX_MD_SIZE]; | 
|  | size_t verify_data_len; | 
|  | CBS binder; | 
|  | // The binders are computed over |msg| with |binders| and its u16 length | 
|  | // prefix removed. The caller is assumed to have parsed |msg|, extracted | 
|  | // |binders|, and verified the PSK extension is last. | 
|  | if (!tls13_psk_binder(verify_data, &verify_data_len, session, hs->transcript, | 
|  | msg.raw, 2 + CBS_len(binders)) || | 
|  | // We only consider the first PSK, so compare against the first binder. | 
|  | !CBS_get_u8_length_prefixed(binders, &binder)) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool binder_ok = | 
|  | CBS_len(&binder) == verify_data_len && | 
|  | CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0; | 
|  | #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) | 
|  | binder_ok = true; | 
|  | #endif | 
|  | if (!binder_ok) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl) { | 
|  | static_assert(ECH_CONFIRMATION_SIGNAL_LEN < SSL3_RANDOM_SIZE, | 
|  | "the confirmation signal is a suffix of the random"); | 
|  | const size_t header_len = | 
|  | SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH; | 
|  | return header_len + 2 /* version */ + SSL3_RANDOM_SIZE - | 
|  | ECH_CONFIRMATION_SIGNAL_LEN; | 
|  | } | 
|  |  | 
|  | bool ssl_ech_accept_confirmation(const SSL_HANDSHAKE *hs, Span<uint8_t> out, | 
|  | Span<const uint8_t> client_random, | 
|  | const SSLTranscript &transcript, bool is_hrr, | 
|  | Span<const uint8_t> msg, size_t offset) { | 
|  | // See draft-ietf-tls-esni-13, sections 7.2 and 7.2.1. | 
|  | static const uint8_t kZeros[EVP_MAX_MD_SIZE] = {0}; | 
|  |  | 
|  | // We hash |msg|, with bytes from |offset| zeroed. | 
|  | if (msg.size() < offset + ECH_CONFIRMATION_SIGNAL_LEN) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | auto before_zeros = msg.subspan(0, offset); | 
|  | auto after_zeros = msg.subspan(offset + ECH_CONFIRMATION_SIGNAL_LEN); | 
|  | uint8_t context[EVP_MAX_MD_SIZE]; | 
|  | unsigned context_len; | 
|  | ScopedEVP_MD_CTX ctx; | 
|  | if (!transcript.CopyToHashContext(ctx.get(), transcript.Digest()) || | 
|  | !EVP_DigestUpdate(ctx.get(), before_zeros.data(), before_zeros.size()) || | 
|  | !EVP_DigestUpdate(ctx.get(), kZeros, ECH_CONFIRMATION_SIGNAL_LEN) || | 
|  | !EVP_DigestUpdate(ctx.get(), after_zeros.data(), after_zeros.size()) || | 
|  | !EVP_DigestFinal_ex(ctx.get(), context, &context_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint8_t secret[EVP_MAX_MD_SIZE]; | 
|  | size_t secret_len; | 
|  | if (!HKDF_extract(secret, &secret_len, transcript.Digest(), | 
|  | client_random.data(), client_random.size(), kZeros, | 
|  | transcript.DigestLen())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(out.size() == ECH_CONFIRMATION_SIGNAL_LEN); | 
|  | return hkdf_expand_label(out, transcript.Digest(), | 
|  | MakeConstSpan(secret, secret_len), | 
|  | is_hrr ? label_to_span("hrr ech accept confirmation") | 
|  | : label_to_span("ech accept confirmation"), | 
|  | MakeConstSpan(context, context_len)); | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END |