|  | /* ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@OpenSSL.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). */ | 
|  |  | 
|  | #include <openssl/ecdsa.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "../../internal.h" | 
|  | #include "../bn/internal.h" | 
|  | #include "../ec/internal.h" | 
|  | #include "../service_indicator/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for | 
|  | // ECDSA. | 
|  | static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const uint8_t *digest, size_t digest_len) { | 
|  | const BIGNUM *order = &group->order; | 
|  | size_t num_bits = BN_num_bits(order); | 
|  | // Need to truncate digest if it is too long: first truncate whole bytes. | 
|  | size_t num_bytes = (num_bits + 7) / 8; | 
|  | if (digest_len > num_bytes) { | 
|  | digest_len = num_bytes; | 
|  | } | 
|  | bn_big_endian_to_words(out->words, order->width, digest, digest_len); | 
|  |  | 
|  | // If it is still too long, truncate remaining bits with a shift. | 
|  | if (8 * digest_len > num_bits) { | 
|  | bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width); | 
|  | } | 
|  |  | 
|  | // |out| now has the same bit width as |order|, but this only bounds by | 
|  | // 2*|order|. Subtract the order if out of range. | 
|  | // | 
|  | // Montgomery multiplication accepts the looser bounds, so this isn't strictly | 
|  | // necessary, but it is a cleaner abstraction and has no performance impact. | 
|  | BN_ULONG tmp[EC_MAX_WORDS]; | 
|  | bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp, | 
|  | order->width); | 
|  | } | 
|  |  | 
|  | ECDSA_SIG *ECDSA_SIG_new(void) { | 
|  | ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG)); | 
|  | if (sig == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | sig->r = BN_new(); | 
|  | sig->s = BN_new(); | 
|  | if (sig->r == NULL || sig->s == NULL) { | 
|  | ECDSA_SIG_free(sig); | 
|  | return NULL; | 
|  | } | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | void ECDSA_SIG_free(ECDSA_SIG *sig) { | 
|  | if (sig == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | BN_free(sig->r); | 
|  | BN_free(sig->s); | 
|  | OPENSSL_free(sig); | 
|  | } | 
|  |  | 
|  | const BIGNUM *ECDSA_SIG_get0_r(const ECDSA_SIG *sig) { | 
|  | return sig->r; | 
|  | } | 
|  |  | 
|  | const BIGNUM *ECDSA_SIG_get0_s(const ECDSA_SIG *sig) { | 
|  | return sig->s; | 
|  | } | 
|  |  | 
|  | void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r, | 
|  | const BIGNUM **out_s) { | 
|  | if (out_r != NULL) { | 
|  | *out_r = sig->r; | 
|  | } | 
|  | if (out_s != NULL) { | 
|  | *out_s = sig->s; | 
|  | } | 
|  | } | 
|  |  | 
|  | int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { | 
|  | if (r == NULL || s == NULL) { | 
|  | return 0; | 
|  | } | 
|  | BN_free(sig->r); | 
|  | BN_free(sig->s); | 
|  | sig->r = r; | 
|  | sig->s = s; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ecdsa_do_verify_no_self_test(const uint8_t *digest, size_t digest_len, | 
|  | const ECDSA_SIG *sig, const EC_KEY *eckey) { | 
|  | const EC_GROUP *group = EC_KEY_get0_group(eckey); | 
|  | const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey); | 
|  | if (group == NULL || pub_key == NULL || sig == NULL) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_SCALAR r, s, u1, u2, s_inv_mont, m; | 
|  | if (BN_is_zero(sig->r) || | 
|  | !ec_bignum_to_scalar(group, &r, sig->r) || | 
|  | BN_is_zero(sig->s) || | 
|  | !ec_bignum_to_scalar(group, &s, sig->s)) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // s_inv_mont = s^-1 in the Montgomery domain. | 
|  | if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // u1 = m * s^-1 mod order | 
|  | // u2 = r * s^-1 mod order | 
|  | // | 
|  | // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and | 
|  | // |u2| will be taken out of Montgomery form, as desired. | 
|  | digest_to_scalar(group, &m, digest, digest_len); | 
|  | ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont); | 
|  | ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont); | 
|  |  | 
|  | EC_RAW_POINT point; | 
|  | if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ec_cmp_x_coordinate(group, &point, &r)) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ECDSA_do_verify(const uint8_t *digest, size_t digest_len, | 
|  | const ECDSA_SIG *sig, const EC_KEY *eckey) { | 
|  | boringssl_ensure_ecc_self_test(); | 
|  |  | 
|  | return ecdsa_do_verify_no_self_test(digest, digest_len, sig, eckey); | 
|  | } | 
|  |  | 
|  | static ECDSA_SIG *ecdsa_sign_impl(const EC_GROUP *group, int *out_retry, | 
|  | const EC_SCALAR *priv_key, const EC_SCALAR *k, | 
|  | const uint8_t *digest, size_t digest_len) { | 
|  | *out_retry = 0; | 
|  |  | 
|  | // Check that the size of the group order is FIPS compliant (FIPS 186-4 | 
|  | // B.5.2). | 
|  | const BIGNUM *order = EC_GROUP_get0_order(group); | 
|  | if (BN_num_bits(order) < 160) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Compute r, the x-coordinate of k * generator. | 
|  | EC_RAW_POINT tmp_point; | 
|  | EC_SCALAR r; | 
|  | if (!ec_point_mul_scalar_base(group, &tmp_point, k) || | 
|  | !ec_get_x_coordinate_as_scalar(group, &r, &tmp_point)) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (ec_scalar_is_zero(group, &r)) { | 
|  | *out_retry = 1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // s = priv_key * r. Note if only one parameter is in the Montgomery domain, | 
|  | // |ec_scalar_mod_mul_montgomery| will compute the answer in the normal | 
|  | // domain. | 
|  | EC_SCALAR s; | 
|  | ec_scalar_to_montgomery(group, &s, &r); | 
|  | ec_scalar_mul_montgomery(group, &s, priv_key, &s); | 
|  |  | 
|  | // s = m + priv_key * r. | 
|  | EC_SCALAR tmp; | 
|  | digest_to_scalar(group, &tmp, digest, digest_len); | 
|  | ec_scalar_add(group, &s, &s, &tmp); | 
|  |  | 
|  | // s = k^-1 * (m + priv_key * r). First, we compute k^-1 in the Montgomery | 
|  | // domain. This is |ec_scalar_to_montgomery| followed by | 
|  | // |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery| followed by | 
|  | // |ec_scalar_from_montgomery| is equivalent and slightly more efficient. | 
|  | // Then, as above, only one parameter is in the Montgomery domain, so the | 
|  | // result is in the normal domain. Finally, note k is non-zero (or computing r | 
|  | // would fail), so the inverse must exist. | 
|  | ec_scalar_inv0_montgomery(group, &tmp, k);     // tmp = k^-1 R^2 | 
|  | ec_scalar_from_montgomery(group, &tmp, &tmp);  // tmp = k^-1 R | 
|  | ec_scalar_mul_montgomery(group, &s, &s, &tmp); | 
|  | if (ec_scalar_is_zero(group, &s)) { | 
|  | *out_retry = 1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ECDSA_SIG *ret = ECDSA_SIG_new(); | 
|  | if (ret == NULL ||  // | 
|  | !bn_set_words(ret->r, r.words, order->width) || | 
|  | !bn_set_words(ret->s, s.words, order->width)) { | 
|  | ECDSA_SIG_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ECDSA_SIG *ecdsa_sign_with_nonce_for_known_answer_test(const uint8_t *digest, | 
|  | size_t digest_len, | 
|  | const EC_KEY *eckey, | 
|  | const uint8_t *nonce, | 
|  | size_t nonce_len) { | 
|  | if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const EC_GROUP *group = EC_KEY_get0_group(eckey); | 
|  | if (group == NULL || eckey->priv_key == NULL) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return NULL; | 
|  | } | 
|  | const EC_SCALAR *priv_key = &eckey->priv_key->scalar; | 
|  |  | 
|  | EC_SCALAR k; | 
|  | if (!ec_scalar_from_bytes(group, &k, nonce, nonce_len)) { | 
|  | return NULL; | 
|  | } | 
|  | int retry_ignored; | 
|  | return ecdsa_sign_impl(group, &retry_ignored, priv_key, &k, digest, | 
|  | digest_len); | 
|  | } | 
|  |  | 
|  | // This function is only exported for testing and is not called in production | 
|  | // code. | 
|  | ECDSA_SIG *ECDSA_sign_with_nonce_and_leak_private_key_for_testing( | 
|  | const uint8_t *digest, size_t digest_len, const EC_KEY *eckey, | 
|  | const uint8_t *nonce, size_t nonce_len) { | 
|  | boringssl_ensure_ecc_self_test(); | 
|  |  | 
|  | return ecdsa_sign_with_nonce_for_known_answer_test(digest, digest_len, eckey, | 
|  | nonce, nonce_len); | 
|  | } | 
|  |  | 
|  | ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len, | 
|  | const EC_KEY *eckey) { | 
|  | boringssl_ensure_ecc_self_test(); | 
|  |  | 
|  | if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const EC_GROUP *group = EC_KEY_get0_group(eckey); | 
|  | if (group == NULL || eckey->priv_key == NULL) { | 
|  | OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return NULL; | 
|  | } | 
|  | const BIGNUM *order = EC_GROUP_get0_order(group); | 
|  | const EC_SCALAR *priv_key = &eckey->priv_key->scalar; | 
|  |  | 
|  | // Pass a SHA512 hash of the private key and digest as additional data | 
|  | // into the RBG. This is a hardening measure against entropy failure. | 
|  | static_assert(SHA512_DIGEST_LENGTH >= 32, | 
|  | "additional_data is too large for SHA-512"); | 
|  |  | 
|  | FIPS_service_indicator_lock_state(); | 
|  |  | 
|  | SHA512_CTX sha; | 
|  | uint8_t additional_data[SHA512_DIGEST_LENGTH]; | 
|  | SHA512_Init(&sha); | 
|  | SHA512_Update(&sha, priv_key->words, order->width * sizeof(BN_ULONG)); | 
|  | SHA512_Update(&sha, digest, digest_len); | 
|  | SHA512_Final(additional_data, &sha); | 
|  |  | 
|  | ECDSA_SIG *ret = NULL; | 
|  | for (;;) { | 
|  | EC_SCALAR k; | 
|  | if (!ec_random_nonzero_scalar(group, &k, additional_data)) { | 
|  | ret = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | int retry; | 
|  | ret = ecdsa_sign_impl(group, &retry, priv_key, &k, digest, digest_len); | 
|  | if (ret != NULL || !retry) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | FIPS_service_indicator_unlock_state(); | 
|  | return ret; | 
|  | } |