|  | /* Copyright (c) 2020, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | package main | 
|  |  | 
|  | import ( | 
|  | "crypto/elliptic" | 
|  | "fmt" | 
|  | "io" | 
|  | "math/big" | 
|  | "os" | 
|  | ) | 
|  |  | 
|  | func main() { | 
|  | if err := writeP256NistzTable("p256-nistz-table.h"); err != nil { | 
|  | fmt.Fprintf(os.Stderr, "Error writing p256-nistz-table.h: %s\n", err) | 
|  | os.Exit(1) | 
|  | } | 
|  |  | 
|  | if err := writeP256Table("p256_table.h"); err != nil { | 
|  | fmt.Fprintf(os.Stderr, "Error writing p256_table.h: %s\n", err) | 
|  | os.Exit(1) | 
|  | } | 
|  | } | 
|  |  | 
|  | func writeP256NistzTable(path string) error { | 
|  | curve := elliptic.P256() | 
|  | tables := make([][][2]*big.Int, 0, 37) | 
|  | for shift := 0; shift < 256; shift += 7 { | 
|  | row := makeMultiples(curve, 64, shift) | 
|  | tables = append(tables, row) | 
|  | } | 
|  |  | 
|  | f, err := os.Create(path) | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | defer f.Close() | 
|  |  | 
|  | const fileHeader = `/* | 
|  | * Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * Copyright (c) 2015, Intel Inc. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | // This is the precomputed constant time access table for the code in | 
|  | // p256-nistz.c, for the default generator. The table consists of 37 | 
|  | // subtables, each subtable contains 64 affine points. The affine points are | 
|  | // encoded as eight uint64's, four for the x coordinate and four for the y. | 
|  | // Both values are in little-endian order. There are 37 tables because a | 
|  | // signed, 6-bit wNAF form of the scalar is used and ceil(256/(6 + 1)) = 37. | 
|  | // Within each table there are 64 values because the 6-bit wNAF value can take | 
|  | // 64 values, ignoring the sign bit, which is implemented by performing a | 
|  | // negation of the affine point when required. We would like to align it to 2MB | 
|  | // in order to increase the chances of using a large page but that appears to | 
|  | // lead to invalid ELF files being produced. | 
|  |  | 
|  | // This file is generated by make_tables.go. | 
|  |  | 
|  | static const alignas(4096) PRECOMP256_ROW ecp_nistz256_precomputed[37] = ` | 
|  | if _, err := f.WriteString(fileHeader); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeTables(f, curve, tables, true, 4, writeBNMont); err != nil { | 
|  | return err | 
|  | } | 
|  | if _, err := f.WriteString(";\n"); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func writeP256Table(path string) error { | 
|  | curve := elliptic.P256() | 
|  | tables := [][][2]*big.Int{ | 
|  | makeComb(curve, 64, 4, 0), | 
|  | makeComb(curve, 64, 4, 32), | 
|  | } | 
|  |  | 
|  | f, err := os.Create(path) | 
|  | if err != nil { | 
|  | return err | 
|  | } | 
|  | defer f.Close() | 
|  |  | 
|  | const fileHeader = `/* Copyright (c) 2020, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | // This file is generated by make_tables.go. | 
|  |  | 
|  | // Base point pre computation | 
|  | // -------------------------- | 
|  | // | 
|  | // Two different sorts of precomputed tables are used in the following code. | 
|  | // Each contain various points on the curve, where each point is three field | 
|  | // elements (x, y, z). | 
|  | // | 
|  | // For the base point table, z is usually 1 (0 for the point at infinity). | 
|  | // This table has 2 * 16 elements, starting with the following: | 
|  | // index | bits    | point | 
|  | // ------+---------+------------------------------ | 
|  | //     0 | 0 0 0 0 | 0G | 
|  | //     1 | 0 0 0 1 | 1G | 
|  | //     2 | 0 0 1 0 | 2^64G | 
|  | //     3 | 0 0 1 1 | (2^64 + 1)G | 
|  | //     4 | 0 1 0 0 | 2^128G | 
|  | //     5 | 0 1 0 1 | (2^128 + 1)G | 
|  | //     6 | 0 1 1 0 | (2^128 + 2^64)G | 
|  | //     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G | 
|  | //     8 | 1 0 0 0 | 2^192G | 
|  | //     9 | 1 0 0 1 | (2^192 + 1)G | 
|  | //    10 | 1 0 1 0 | (2^192 + 2^64)G | 
|  | //    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G | 
|  | //    12 | 1 1 0 0 | (2^192 + 2^128)G | 
|  | //    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G | 
|  | //    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G | 
|  | //    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G | 
|  | // followed by a copy of this with each element multiplied by 2^32. | 
|  | // | 
|  | // The reason for this is so that we can clock bits into four different | 
|  | // locations when doing simple scalar multiplies against the base point, | 
|  | // and then another four locations using the second 16 elements. | 
|  | // | 
|  | // Tables for other points have table[i] = iG for i in 0 .. 16. | 
|  |  | 
|  | // fiat_p256_g_pre_comp is the table of precomputed base points | 
|  | #if defined(BORINGSSL_NISTP256_64BIT) | 
|  | static const fiat_p256_felem fiat_p256_g_pre_comp[2][15][2] = ` | 
|  | if _, err := f.WriteString(fileHeader); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeTables(f, curve, tables, true, 4, writeU64Mont); err != nil { | 
|  | return err | 
|  | } | 
|  | if _, err := f.WriteString(";\n#else\nstatic const fiat_p256_felem fiat_p256_g_pre_comp[2][15][2] = "); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeTables(f, curve, tables, true, 4, writeU32Mont); err != nil { | 
|  | return err | 
|  | } | 
|  | if _, err := f.WriteString(";\n#endif\n"); err != nil { | 
|  | return err | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // makeMultiples returns a table of the first n multiples of 2^shift * G, | 
|  | // starting from 1 * 2^shift * G. | 
|  | func makeMultiples(curve elliptic.Curve, n, shift int) [][2]*big.Int { | 
|  | ret := make([][2]*big.Int, n) | 
|  | x, y := curve.Params().Gx, curve.Params().Gy | 
|  | for j := 0; j < shift; j++ { | 
|  | x, y = curve.Double(x, y) | 
|  | } | 
|  | ret[1-1] = [2]*big.Int{x, y} | 
|  | for i := 2; i <= n; i++ { | 
|  | if i&1 == 0 { | 
|  | x, y := curve.Double(ret[i/2-1][0], ret[i/2-1][1]) | 
|  | ret[i-1] = [2]*big.Int{x, y} | 
|  | } else { | 
|  | x, y := curve.Add(ret[i-1-1][0], ret[i-1-1][1], ret[1-1][0], ret[1-1][1]) | 
|  | ret[i-1] = [2]*big.Int{x, y} | 
|  | } | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | // makeComb returns a table of 2^size - 1 points. The i-1th entry is k*G. | 
|  | // If i is represented in binary by b0*2^0 + b1*2^1 + ... bn*2^n, k is | 
|  | // b0*2^(shift + 0*stride) + b1*2^(shift + 1*stride) + ... + bn*2^(shift + n*stride). | 
|  | // The entry for i = 0 is omitted because it is always the point at infinity. | 
|  | func makeComb(curve elliptic.Curve, stride, size, shift int) [][2]*big.Int { | 
|  | ret := make([][2]*big.Int, 1<<size-1) | 
|  | x, y := curve.Params().Gx, curve.Params().Gy | 
|  | for j := 0; j < shift; j++ { | 
|  | x, y = curve.Double(x, y) | 
|  | } | 
|  | ret[1<<0-1] = [2]*big.Int{x, y} | 
|  | for i := 1; i < size; i++ { | 
|  | // Entry 2^i is entry 2^(i-1) doubled stride times. | 
|  | x, y = ret[1<<(i-1)-1][0], ret[1<<(i-1)-1][1] | 
|  | for j := 0; j < stride; j++ { | 
|  | x, y = curve.Double(x, y) | 
|  | } | 
|  | ret[1<<i-1] = [2]*big.Int{x, y} | 
|  | // The remaining entries with MSB 2^i are computed by adding entry 2^i | 
|  | // to the corresponding previous entry. | 
|  | for j := 1; j < 1<<i; j++ { | 
|  | x, y = curve.Add(ret[1<<i-1][0], ret[1<<i-1][1], ret[j-1][0], ret[j-1][1]) | 
|  | ret[1<<i+j-1] = [2]*big.Int{x, y} | 
|  | } | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | // toMontgomery sets n to be n×R mod p, where R is the Montgomery factor. | 
|  | func toMontgomery(curve elliptic.Curve, n *big.Int) *big.Int { | 
|  | params := curve.Params() | 
|  | // R is the bit width of p, rounded up to word size. | 
|  | rounded64 := 64 * ((params.BitSize + 63) / 64) | 
|  | rounded32 := 32 * ((params.BitSize + 31) / 32) | 
|  | if rounded64 != rounded32 { | 
|  | panic(fmt.Sprintf("Montgomery form for %s is inconsistent between 32-bit and 64-bit", params.Name)) | 
|  | } | 
|  | R := new(big.Int).SetInt64(1) | 
|  | R.Lsh(R, uint(rounded64)) | 
|  |  | 
|  | ret := new(big.Int).Mul(n, R) | 
|  | ret.Mod(ret, params.P) | 
|  | return ret | 
|  | } | 
|  |  | 
|  | func bigIntToU64s(curve elliptic.Curve, n *big.Int) []uint64 { | 
|  | words := (curve.Params().BitSize + 63) / 64 | 
|  | ret := make([]uint64, words) | 
|  | bytes := n.Bytes() | 
|  | for i, b := range bytes { | 
|  | i = len(bytes) - i - 1 | 
|  | ret[i/8] |= uint64(b) << (8 * (i % 8)) | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | func bigIntToU32s(curve elliptic.Curve, n *big.Int) []uint64 { | 
|  | words := (curve.Params().BitSize + 31) / 32 | 
|  | ret := make([]uint64, words) | 
|  | bytes := n.Bytes() | 
|  | for i, b := range bytes { | 
|  | i = len(bytes) - i - 1 | 
|  | ret[i/4] |= uint64(b) << (8 * (i % 4)) | 
|  | } | 
|  | return ret | 
|  | } | 
|  |  | 
|  | func writeIndent(w io.Writer, indent int) error { | 
|  | for i := 0; i < indent; i++ { | 
|  | if _, err := io.WriteString(w, " "); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func writeWords(w io.Writer, words []uint64, wrap, indent int, format func(uint64) string) error { | 
|  | if _, err := io.WriteString(w, "{"); err != nil { | 
|  | return err | 
|  | } | 
|  | for i, word := range words { | 
|  | if i > 0 { | 
|  | if i%wrap == 0 { | 
|  | if _, err := io.WriteString(w, ",\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent+1); err != nil { | 
|  | return err | 
|  | } | 
|  | } else { | 
|  | if _, err := io.WriteString(w, ", "); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | } | 
|  | if _, err := io.WriteString(w, format(word)); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | if _, err := io.WriteString(w, "}"); err != nil { | 
|  | return err | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func writeBNMont(w io.Writer, curve elliptic.Curve, n *big.Int, indent int) error { | 
|  | n = toMontgomery(curve, n) | 
|  | return writeWords(w, bigIntToU64s(curve, n), 2, indent, func(word uint64) string { | 
|  | return fmt.Sprintf("TOBN(0x%08x, 0x%08x)", uint32(word>>32), uint32(word)) | 
|  | }) | 
|  | } | 
|  |  | 
|  | func writeU64Mont(w io.Writer, curve elliptic.Curve, n *big.Int, indent int) error { | 
|  | n = toMontgomery(curve, n) | 
|  | return writeWords(w, bigIntToU64s(curve, n), 3, indent, func(word uint64) string { | 
|  | return fmt.Sprintf("0x%016x", word) | 
|  | }) | 
|  | } | 
|  |  | 
|  | func writeU32Mont(w io.Writer, curve elliptic.Curve, n *big.Int, indent int) error { | 
|  | n = toMontgomery(curve, n) | 
|  | return writeWords(w, bigIntToU32s(curve, n), 6, indent, func(word uint64) string { | 
|  | if word >= 1<<32 { | 
|  | panic(fmt.Sprintf("word too large: 0x%x", word)) | 
|  | } | 
|  | return fmt.Sprintf("0x%08x", word) | 
|  | }) | 
|  | } | 
|  |  | 
|  | type writeBigIntFunc func(w io.Writer, curve elliptic.Curve, n *big.Int, indent int) error | 
|  |  | 
|  | func writeTable(w io.Writer, curve elliptic.Curve, table [][2]*big.Int, isRoot bool, indent int, writeBigInt writeBigIntFunc) error { | 
|  | if _, err := io.WriteString(w, "{"); err != nil { | 
|  | return err | 
|  | } | 
|  | if isRoot { | 
|  | if _, err := io.WriteString(w, "\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent); err != nil { | 
|  | return err | 
|  | } | 
|  | } else { | 
|  | indent++ | 
|  | } | 
|  | for i, point := range table { | 
|  | if i != 0 { | 
|  | if _, err := io.WriteString(w, ",\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | if _, err := io.WriteString(w, "{"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeBigInt(w, curve, point[0], indent+1); err != nil { | 
|  | return err | 
|  | } | 
|  | if _, err := io.WriteString(w, ",\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent+1); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeBigInt(w, curve, point[1], indent+1); err != nil { | 
|  | return err | 
|  | } | 
|  | if _, err := io.WriteString(w, "}"); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | if _, err := io.WriteString(w, "}"); err != nil { | 
|  | return err | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func writeTables(w io.Writer, curve elliptic.Curve, tables [][][2]*big.Int, isRoot bool, indent int, writeBigInt writeBigIntFunc) error { | 
|  | if _, err := io.WriteString(w, "{"); err != nil { | 
|  | return err | 
|  | } | 
|  | if isRoot { | 
|  | if _, err := io.WriteString(w, "\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent); err != nil { | 
|  | return err | 
|  | } | 
|  | } else { | 
|  | indent++ | 
|  | } | 
|  | for i, table := range tables { | 
|  | if i != 0 { | 
|  | if _, err := io.WriteString(w, ",\n"); err != nil { | 
|  | return err | 
|  | } | 
|  | if err := writeIndent(w, indent); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | if err := writeTable(w, curve, table, false, indent, writeBigInt); err != nil { | 
|  | return err | 
|  | } | 
|  | } | 
|  | if _, err := io.WriteString(w, "}"); err != nil { | 
|  | return err | 
|  | } | 
|  | return nil | 
|  | } |