|  | /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project. | 
|  | * ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * Portions of the attached software ("Contribution") are developed by | 
|  | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
|  | * | 
|  | * The Contribution is licensed pursuant to the OpenSSL open source | 
|  | * license provided above. | 
|  | * | 
|  | * The elliptic curve binary polynomial software is originally written by | 
|  | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
|  | * Laboratories. */ | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../bn/internal.h" | 
|  | #include "../delocate.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | int ec_GFp_mont_group_init(EC_GROUP *group) { | 
|  | int ok; | 
|  |  | 
|  | ok = ec_GFp_simple_group_init(group); | 
|  | group->mont = NULL; | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_group_finish(EC_GROUP *group) { | 
|  | BN_MONT_CTX_free(group->mont); | 
|  | group->mont = NULL; | 
|  | ec_GFp_simple_group_finish(group); | 
|  | } | 
|  |  | 
|  | int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p, | 
|  | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { | 
|  | BN_MONT_CTX_free(group->mont); | 
|  | group->mont = BN_MONT_CTX_new_for_modulus(p, ctx); | 
|  | if (group->mont == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ec_GFp_simple_group_set_curve(group, p, a, b, ctx)) { | 
|  | BN_MONT_CTX_free(group->mont); | 
|  | group->mont = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void ec_GFp_mont_felem_to_montgomery(const EC_GROUP *group, | 
|  | EC_FELEM *out, const EC_FELEM *in) { | 
|  | bn_to_montgomery_small(out->words, in->words, group->field.width, | 
|  | group->mont); | 
|  | } | 
|  |  | 
|  | static void ec_GFp_mont_felem_from_montgomery(const EC_GROUP *group, | 
|  | EC_FELEM *out, | 
|  | const EC_FELEM *in) { | 
|  | bn_from_montgomery_small(out->words, group->field.width, in->words, | 
|  | group->field.width, group->mont); | 
|  | } | 
|  |  | 
|  | static void ec_GFp_mont_felem_inv0(const EC_GROUP *group, EC_FELEM *out, | 
|  | const EC_FELEM *a) { | 
|  | bn_mod_inverse0_prime_mont_small(out->words, a->words, group->field.width, | 
|  | group->mont); | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_felem_mul(const EC_GROUP *group, EC_FELEM *r, | 
|  | const EC_FELEM *a, const EC_FELEM *b) { | 
|  | bn_mod_mul_montgomery_small(r->words, a->words, b->words, group->field.width, | 
|  | group->mont); | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_felem_sqr(const EC_GROUP *group, EC_FELEM *r, | 
|  | const EC_FELEM *a) { | 
|  | bn_mod_mul_montgomery_small(r->words, a->words, a->words, group->field.width, | 
|  | group->mont); | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_felem_to_bytes(const EC_GROUP *group, uint8_t *out, | 
|  | size_t *out_len, const EC_FELEM *in) { | 
|  | EC_FELEM tmp; | 
|  | ec_GFp_mont_felem_from_montgomery(group, &tmp, in); | 
|  | ec_GFp_simple_felem_to_bytes(group, out, out_len, &tmp); | 
|  | } | 
|  |  | 
|  | int ec_GFp_mont_felem_from_bytes(const EC_GROUP *group, EC_FELEM *out, | 
|  | const uint8_t *in, size_t len) { | 
|  | if (!ec_GFp_simple_felem_from_bytes(group, out, in, len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ec_GFp_mont_felem_to_montgomery(group, out, out); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void ec_GFp_mont_felem_reduce(const EC_GROUP *group, EC_FELEM *out, | 
|  | const BN_ULONG *words, size_t num) { | 
|  | // Convert "from" Montgomery form so the value is reduced mod p. | 
|  | bn_from_montgomery_small(out->words, group->field.width, words, num, | 
|  | group->mont); | 
|  | // Convert "to" Montgomery form to remove the R^-1 factor added. | 
|  | ec_GFp_mont_felem_to_montgomery(group, out, out); | 
|  | // Convert to Montgomery form to match this implementation's representation. | 
|  | ec_GFp_mont_felem_to_montgomery(group, out, out); | 
|  | } | 
|  |  | 
|  | static void ec_GFp_mont_felem_exp(const EC_GROUP *group, EC_FELEM *out, | 
|  | const EC_FELEM *a, const BN_ULONG *exp, | 
|  | size_t num_exp) { | 
|  | bn_mod_exp_mont_small(out->words, a->words, group->field.width, exp, num_exp, | 
|  | group->mont); | 
|  | } | 
|  |  | 
|  | static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group, | 
|  | const EC_RAW_POINT *point, | 
|  | EC_FELEM *x, EC_FELEM *y) { | 
|  | if (ec_GFp_simple_is_at_infinity(group, point)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3). Note the check above | 
|  | // ensures |point->Z| is non-zero, so the inverse always exists. | 
|  | EC_FELEM z1, z2; | 
|  | ec_GFp_mont_felem_inv0(group, &z2, &point->Z); | 
|  | ec_GFp_mont_felem_sqr(group, &z1, &z2); | 
|  |  | 
|  | if (x != NULL) { | 
|  | ec_GFp_mont_felem_mul(group, x, &point->X, &z1); | 
|  | } | 
|  |  | 
|  | if (y != NULL) { | 
|  | ec_GFp_mont_felem_mul(group, &z1, &z1, &z2); | 
|  | ec_GFp_mont_felem_mul(group, y, &point->Y, &z1); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ec_GFp_mont_jacobian_to_affine_batch(const EC_GROUP *group, | 
|  | EC_AFFINE *out, | 
|  | const EC_RAW_POINT *in, | 
|  | size_t num) { | 
|  | if (num == 0) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Compute prefix products of all Zs. Use |out[i].X| as scratch space | 
|  | // to store these values. | 
|  | out[0].X = in[0].Z; | 
|  | for (size_t i = 1; i < num; i++) { | 
|  | ec_GFp_mont_felem_mul(group, &out[i].X, &out[i - 1].X, &in[i].Z); | 
|  | } | 
|  |  | 
|  | // Some input was infinity iff the product of all Zs is zero. | 
|  | if (ec_felem_non_zero_mask(group, &out[num - 1].X) == 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Invert the product of all Zs. | 
|  | EC_FELEM zinvprod; | 
|  | ec_GFp_mont_felem_inv0(group, &zinvprod, &out[num - 1].X); | 
|  | for (size_t i = num - 1; i < num; i--) { | 
|  | // Our loop invariant is that |zinvprod| is Z0^-1 * Z1^-1 * ... * Zi^-1. | 
|  | // Recover Zi^-1 by multiplying by the previous product. | 
|  | EC_FELEM zinv, zinv2; | 
|  | if (i == 0) { | 
|  | zinv = zinvprod; | 
|  | } else { | 
|  | ec_GFp_mont_felem_mul(group, &zinv, &zinvprod, &out[i - 1].X); | 
|  | // Maintain the loop invariant for the next iteration. | 
|  | ec_GFp_mont_felem_mul(group, &zinvprod, &zinvprod, &in[i].Z); | 
|  | } | 
|  |  | 
|  | // Compute affine coordinates: x = X * Z^-2 and y = Y * Z^-3. | 
|  | ec_GFp_mont_felem_sqr(group, &zinv2, &zinv); | 
|  | ec_GFp_mont_felem_mul(group, &out[i].X, &in[i].X, &zinv2); | 
|  | ec_GFp_mont_felem_mul(group, &out[i].Y, &in[i].Y, &zinv2); | 
|  | ec_GFp_mont_felem_mul(group, &out[i].Y, &out[i].Y, &zinv); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_add(const EC_GROUP *group, EC_RAW_POINT *out, | 
|  | const EC_RAW_POINT *a, const EC_RAW_POINT *b) { | 
|  | if (a == b) { | 
|  | ec_GFp_mont_dbl(group, out, a); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The method is taken from: | 
|  | //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl | 
|  | // | 
|  | // Coq transcription and correctness proof: | 
|  | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L467> | 
|  | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L544> | 
|  | EC_FELEM x_out, y_out, z_out; | 
|  | BN_ULONG z1nz = ec_felem_non_zero_mask(group, &a->Z); | 
|  | BN_ULONG z2nz = ec_felem_non_zero_mask(group, &b->Z); | 
|  |  | 
|  | // z1z1 = z1z1 = z1**2 | 
|  | EC_FELEM z1z1; | 
|  | ec_GFp_mont_felem_sqr(group, &z1z1, &a->Z); | 
|  |  | 
|  | // z2z2 = z2**2 | 
|  | EC_FELEM z2z2; | 
|  | ec_GFp_mont_felem_sqr(group, &z2z2, &b->Z); | 
|  |  | 
|  | // u1 = x1*z2z2 | 
|  | EC_FELEM u1; | 
|  | ec_GFp_mont_felem_mul(group, &u1, &a->X, &z2z2); | 
|  |  | 
|  | // two_z1z2 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 | 
|  | EC_FELEM two_z1z2; | 
|  | ec_felem_add(group, &two_z1z2, &a->Z, &b->Z); | 
|  | ec_GFp_mont_felem_sqr(group, &two_z1z2, &two_z1z2); | 
|  | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z1z1); | 
|  | ec_felem_sub(group, &two_z1z2, &two_z1z2, &z2z2); | 
|  |  | 
|  | // s1 = y1 * z2**3 | 
|  | EC_FELEM s1; | 
|  | ec_GFp_mont_felem_mul(group, &s1, &b->Z, &z2z2); | 
|  | ec_GFp_mont_felem_mul(group, &s1, &s1, &a->Y); | 
|  |  | 
|  | // u2 = x2*z1z1 | 
|  | EC_FELEM u2; | 
|  | ec_GFp_mont_felem_mul(group, &u2, &b->X, &z1z1); | 
|  |  | 
|  | // h = u2 - u1 | 
|  | EC_FELEM h; | 
|  | ec_felem_sub(group, &h, &u2, &u1); | 
|  |  | 
|  | BN_ULONG xneq = ec_felem_non_zero_mask(group, &h); | 
|  |  | 
|  | // z_out = two_z1z2 * h | 
|  | ec_GFp_mont_felem_mul(group, &z_out, &h, &two_z1z2); | 
|  |  | 
|  | // z1z1z1 = z1 * z1z1 | 
|  | EC_FELEM z1z1z1; | 
|  | ec_GFp_mont_felem_mul(group, &z1z1z1, &a->Z, &z1z1); | 
|  |  | 
|  | // s2 = y2 * z1**3 | 
|  | EC_FELEM s2; | 
|  | ec_GFp_mont_felem_mul(group, &s2, &b->Y, &z1z1z1); | 
|  |  | 
|  | // r = (s2 - s1)*2 | 
|  | EC_FELEM r; | 
|  | ec_felem_sub(group, &r, &s2, &s1); | 
|  | ec_felem_add(group, &r, &r, &r); | 
|  |  | 
|  | BN_ULONG yneq = ec_felem_non_zero_mask(group, &r); | 
|  |  | 
|  | // This case will never occur in the constant-time |ec_GFp_mont_mul|. | 
|  | BN_ULONG is_nontrivial_double = ~xneq & ~yneq & z1nz & z2nz; | 
|  | if (is_nontrivial_double) { | 
|  | ec_GFp_mont_dbl(group, out, a); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // I = (2h)**2 | 
|  | EC_FELEM i; | 
|  | ec_felem_add(group, &i, &h, &h); | 
|  | ec_GFp_mont_felem_sqr(group, &i, &i); | 
|  |  | 
|  | // J = h * I | 
|  | EC_FELEM j; | 
|  | ec_GFp_mont_felem_mul(group, &j, &h, &i); | 
|  |  | 
|  | // V = U1 * I | 
|  | EC_FELEM v; | 
|  | ec_GFp_mont_felem_mul(group, &v, &u1, &i); | 
|  |  | 
|  | // x_out = r**2 - J - 2V | 
|  | ec_GFp_mont_felem_sqr(group, &x_out, &r); | 
|  | ec_felem_sub(group, &x_out, &x_out, &j); | 
|  | ec_felem_sub(group, &x_out, &x_out, &v); | 
|  | ec_felem_sub(group, &x_out, &x_out, &v); | 
|  |  | 
|  | // y_out = r(V-x_out) - 2 * s1 * J | 
|  | ec_felem_sub(group, &y_out, &v, &x_out); | 
|  | ec_GFp_mont_felem_mul(group, &y_out, &y_out, &r); | 
|  | EC_FELEM s1j; | 
|  | ec_GFp_mont_felem_mul(group, &s1j, &s1, &j); | 
|  | ec_felem_sub(group, &y_out, &y_out, &s1j); | 
|  | ec_felem_sub(group, &y_out, &y_out, &s1j); | 
|  |  | 
|  | ec_felem_select(group, &x_out, z1nz, &x_out, &b->X); | 
|  | ec_felem_select(group, &out->X, z2nz, &x_out, &a->X); | 
|  | ec_felem_select(group, &y_out, z1nz, &y_out, &b->Y); | 
|  | ec_felem_select(group, &out->Y, z2nz, &y_out, &a->Y); | 
|  | ec_felem_select(group, &z_out, z1nz, &z_out, &b->Z); | 
|  | ec_felem_select(group, &out->Z, z2nz, &z_out, &a->Z); | 
|  | } | 
|  |  | 
|  | void ec_GFp_mont_dbl(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_RAW_POINT *a) { | 
|  | if (group->a_is_minus3) { | 
|  | // The method is taken from: | 
|  | //   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b | 
|  | // | 
|  | // Coq transcription and correctness proof: | 
|  | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L93> | 
|  | // <https://github.com/mit-plv/fiat-crypto/blob/79f8b5f39ed609339f0233098dee1a3c4e6b3080/src/Curves/Weierstrass/Jacobian.v#L201> | 
|  | EC_FELEM delta, gamma, beta, ftmp, ftmp2, tmptmp, alpha, fourbeta; | 
|  | // delta = z^2 | 
|  | ec_GFp_mont_felem_sqr(group, &delta, &a->Z); | 
|  | // gamma = y^2 | 
|  | ec_GFp_mont_felem_sqr(group, &gamma, &a->Y); | 
|  | // beta = x*gamma | 
|  | ec_GFp_mont_felem_mul(group, &beta, &a->X, &gamma); | 
|  |  | 
|  | // alpha = 3*(x-delta)*(x+delta) | 
|  | ec_felem_sub(group, &ftmp, &a->X, &delta); | 
|  | ec_felem_add(group, &ftmp2, &a->X, &delta); | 
|  |  | 
|  | ec_felem_add(group, &tmptmp, &ftmp2, &ftmp2); | 
|  | ec_felem_add(group, &ftmp2, &ftmp2, &tmptmp); | 
|  | ec_GFp_mont_felem_mul(group, &alpha, &ftmp, &ftmp2); | 
|  |  | 
|  | // x' = alpha^2 - 8*beta | 
|  | ec_GFp_mont_felem_sqr(group, &r->X, &alpha); | 
|  | ec_felem_add(group, &fourbeta, &beta, &beta); | 
|  | ec_felem_add(group, &fourbeta, &fourbeta, &fourbeta); | 
|  | ec_felem_add(group, &tmptmp, &fourbeta, &fourbeta); | 
|  | ec_felem_sub(group, &r->X, &r->X, &tmptmp); | 
|  |  | 
|  | // z' = (y + z)^2 - gamma - delta | 
|  | ec_felem_add(group, &delta, &gamma, &delta); | 
|  | ec_felem_add(group, &ftmp, &a->Y, &a->Z); | 
|  | ec_GFp_mont_felem_sqr(group, &r->Z, &ftmp); | 
|  | ec_felem_sub(group, &r->Z, &r->Z, &delta); | 
|  |  | 
|  | // y' = alpha*(4*beta - x') - 8*gamma^2 | 
|  | ec_felem_sub(group, &r->Y, &fourbeta, &r->X); | 
|  | ec_felem_add(group, &gamma, &gamma, &gamma); | 
|  | ec_GFp_mont_felem_sqr(group, &gamma, &gamma); | 
|  | ec_GFp_mont_felem_mul(group, &r->Y, &alpha, &r->Y); | 
|  | ec_felem_add(group, &gamma, &gamma, &gamma); | 
|  | ec_felem_sub(group, &r->Y, &r->Y, &gamma); | 
|  | } else { | 
|  | // The method is taken from: | 
|  | //   http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl | 
|  | // | 
|  | // Coq transcription and correctness proof: | 
|  | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L102> | 
|  | // <https://github.com/davidben/fiat-crypto/blob/c7b95f62b2a54b559522573310e9b487327d219a/src/Curves/Weierstrass/Jacobian.v#L534> | 
|  | EC_FELEM xx, yy, yyyy, zz; | 
|  | ec_GFp_mont_felem_sqr(group, &xx, &a->X); | 
|  | ec_GFp_mont_felem_sqr(group, &yy, &a->Y); | 
|  | ec_GFp_mont_felem_sqr(group, &yyyy, &yy); | 
|  | ec_GFp_mont_felem_sqr(group, &zz, &a->Z); | 
|  |  | 
|  | // s = 2*((x_in + yy)^2 - xx - yyyy) | 
|  | EC_FELEM s; | 
|  | ec_felem_add(group, &s, &a->X, &yy); | 
|  | ec_GFp_mont_felem_sqr(group, &s, &s); | 
|  | ec_felem_sub(group, &s, &s, &xx); | 
|  | ec_felem_sub(group, &s, &s, &yyyy); | 
|  | ec_felem_add(group, &s, &s, &s); | 
|  |  | 
|  | // m = 3*xx + a*zz^2 | 
|  | EC_FELEM m; | 
|  | ec_GFp_mont_felem_sqr(group, &m, &zz); | 
|  | ec_GFp_mont_felem_mul(group, &m, &group->a, &m); | 
|  | ec_felem_add(group, &m, &m, &xx); | 
|  | ec_felem_add(group, &m, &m, &xx); | 
|  | ec_felem_add(group, &m, &m, &xx); | 
|  |  | 
|  | // x_out = m^2 - 2*s | 
|  | ec_GFp_mont_felem_sqr(group, &r->X, &m); | 
|  | ec_felem_sub(group, &r->X, &r->X, &s); | 
|  | ec_felem_sub(group, &r->X, &r->X, &s); | 
|  |  | 
|  | // z_out = (y_in + z_in)^2 - yy - zz | 
|  | ec_felem_add(group, &r->Z, &a->Y, &a->Z); | 
|  | ec_GFp_mont_felem_sqr(group, &r->Z, &r->Z); | 
|  | ec_felem_sub(group, &r->Z, &r->Z, &yy); | 
|  | ec_felem_sub(group, &r->Z, &r->Z, &zz); | 
|  |  | 
|  | // y_out = m*(s-x_out) - 8*yyyy | 
|  | ec_felem_add(group, &yyyy, &yyyy, &yyyy); | 
|  | ec_felem_add(group, &yyyy, &yyyy, &yyyy); | 
|  | ec_felem_add(group, &yyyy, &yyyy, &yyyy); | 
|  | ec_felem_sub(group, &r->Y, &s, &r->X); | 
|  | ec_GFp_mont_felem_mul(group, &r->Y, &r->Y, &m); | 
|  | ec_felem_sub(group, &r->Y, &r->Y, &yyyy); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int ec_GFp_mont_cmp_x_coordinate(const EC_GROUP *group, | 
|  | const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *r) { | 
|  | if (!group->field_greater_than_order || | 
|  | group->field.width != group->order.width) { | 
|  | // Do not bother optimizing this case. p > order in all commonly-used | 
|  | // curves. | 
|  | return ec_GFp_simple_cmp_x_coordinate(group, p, r); | 
|  | } | 
|  |  | 
|  | if (ec_GFp_simple_is_at_infinity(group, p)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // We wish to compare X/Z^2 with r. This is equivalent to comparing X with | 
|  | // r*Z^2. Note that X and Z are represented in Montgomery form, while r is | 
|  | // not. | 
|  | EC_FELEM r_Z2, Z2_mont, X; | 
|  | ec_GFp_mont_felem_mul(group, &Z2_mont, &p->Z, &p->Z); | 
|  | // r < order < p, so this is valid. | 
|  | OPENSSL_memcpy(r_Z2.words, r->words, group->field.width * sizeof(BN_ULONG)); | 
|  | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); | 
|  | ec_GFp_mont_felem_from_montgomery(group, &X, &p->X); | 
|  |  | 
|  | if (ec_felem_equal(group, &r_Z2, &X)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // During signing the x coefficient is reduced modulo the group order. | 
|  | // Therefore there is a small possibility, less than 1/2^128, that group_order | 
|  | // < p.x < P. in that case we need not only to compare against |r| but also to | 
|  | // compare against r+group_order. | 
|  | if (bn_less_than_words(r->words, group->field_minus_order.words, | 
|  | group->field.width)) { | 
|  | // We can ignore the carry because: r + group_order < p < 2^256. | 
|  | bn_add_words(r_Z2.words, r->words, group->order.d, group->field.width); | 
|  | ec_GFp_mont_felem_mul(group, &r_Z2, &r_Z2, &Z2_mont); | 
|  | if (ec_felem_equal(group, &r_Z2, &X)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) { | 
|  | out->group_init = ec_GFp_mont_group_init; | 
|  | out->group_finish = ec_GFp_mont_group_finish; | 
|  | out->group_set_curve = ec_GFp_mont_group_set_curve; | 
|  | out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates; | 
|  | out->jacobian_to_affine_batch = ec_GFp_mont_jacobian_to_affine_batch; | 
|  | out->add = ec_GFp_mont_add; | 
|  | out->dbl = ec_GFp_mont_dbl; | 
|  | out->mul = ec_GFp_mont_mul; | 
|  | out->mul_base = ec_GFp_mont_mul_base; | 
|  | out->mul_batch = ec_GFp_mont_mul_batch; | 
|  | out->mul_public_batch = ec_GFp_mont_mul_public_batch; | 
|  | out->init_precomp = ec_GFp_mont_init_precomp; | 
|  | out->mul_precomp = ec_GFp_mont_mul_precomp; | 
|  | out->felem_mul = ec_GFp_mont_felem_mul; | 
|  | out->felem_sqr = ec_GFp_mont_felem_sqr; | 
|  | out->felem_to_bytes = ec_GFp_mont_felem_to_bytes; | 
|  | out->felem_from_bytes = ec_GFp_mont_felem_from_bytes; | 
|  | out->felem_reduce = ec_GFp_mont_felem_reduce; | 
|  | out->felem_exp = ec_GFp_mont_felem_exp; | 
|  | out->scalar_inv0_montgomery = ec_simple_scalar_inv0_montgomery; | 
|  | out->scalar_to_montgomery_inv_vartime = | 
|  | ec_simple_scalar_to_montgomery_inv_vartime; | 
|  | out->cmp_x_coordinate = ec_GFp_mont_cmp_x_coordinate; | 
|  | } |