|  | /* Originally written by Bodo Moeller for the OpenSSL project. | 
|  | * ==================================================================== | 
|  | * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== | 
|  | * | 
|  | * This product includes cryptographic software written by Eric Young | 
|  | * (eay@cryptsoft.com).  This product includes software written by Tim | 
|  | * Hudson (tjh@cryptsoft.com). | 
|  | * | 
|  | */ | 
|  | /* ==================================================================== | 
|  | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 
|  | * | 
|  | * Portions of the attached software ("Contribution") are developed by | 
|  | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. | 
|  | * | 
|  | * The Contribution is licensed pursuant to the OpenSSL open source | 
|  | * license provided above. | 
|  | * | 
|  | * The elliptic curve binary polynomial software is originally written by | 
|  | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems | 
|  | * Laboratories. */ | 
|  |  | 
|  | #include <openssl/ec.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "../../internal.h" | 
|  | #include "../bn/internal.h" | 
|  | #include "../delocate.h" | 
|  |  | 
|  |  | 
|  | static void ec_point_free(EC_POINT *point, int free_group); | 
|  |  | 
|  | static const uint8_t kP224Params[6 * 28] = { | 
|  | // p = 2^224 - 2^96 + 1 | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x01, | 
|  | // a | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFE, | 
|  | // b | 
|  | 0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56, | 
|  | 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43, | 
|  | 0x23, 0x55, 0xFF, 0xB4, | 
|  | // x | 
|  | 0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9, | 
|  | 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6, | 
|  | 0x11, 0x5C, 0x1D, 0x21, | 
|  | // y | 
|  | 0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6, | 
|  | 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99, | 
|  | 0x85, 0x00, 0x7e, 0x34, | 
|  | // order | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45, | 
|  | 0x5C, 0x5C, 0x2A, 0x3D, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kP256Params[6 * 32] = { | 
|  | // p = 2^256 - 2^224 + 2^192 + 2^96 - 1 | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | // a | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | 
|  | // b | 
|  | 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, | 
|  | 0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, | 
|  | 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B, | 
|  | // x | 
|  | 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, | 
|  | 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, | 
|  | 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, | 
|  | // y | 
|  | 0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, | 
|  | 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, | 
|  | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5, | 
|  | // order | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, | 
|  | 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kP384Params[6 * 48] = { | 
|  | // p = 2^384 - 2^128 - 2^96 + 2^32 - 1 | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | // a | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC, | 
|  | // b | 
|  | 0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, | 
|  | 0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12, | 
|  | 0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D, | 
|  | 0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF, | 
|  | // x | 
|  | 0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, | 
|  | 0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98, | 
|  | 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D, | 
|  | 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7, | 
|  | // y | 
|  | 0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, | 
|  | 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, | 
|  | 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce, | 
|  | 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f, | 
|  | // order | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2, | 
|  | 0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kP521Params[6 * 66] = { | 
|  | // p = 2^521 - 1 | 
|  | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | // a | 
|  | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, | 
|  | // b | 
|  | 0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A, | 
|  | 0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3, | 
|  | 0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19, | 
|  | 0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1, | 
|  | 0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45, | 
|  | 0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00, | 
|  | // x | 
|  | 0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E, | 
|  | 0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F, | 
|  | 0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B, | 
|  | 0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF, | 
|  | 0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E, | 
|  | 0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66, | 
|  | // y | 
|  | 0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a, | 
|  | 0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b, | 
|  | 0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee, | 
|  | 0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad, | 
|  | 0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe, | 
|  | 0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50, | 
|  | // order | 
|  | 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86, | 
|  | 0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09, | 
|  | 0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F, | 
|  | 0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09, | 
|  | }; | 
|  |  | 
|  | DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) { | 
|  | // 1.3.132.0.35 | 
|  | static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23}; | 
|  | out->curves[0].nid = NID_secp521r1; | 
|  | out->curves[0].oid = kOIDP521; | 
|  | out->curves[0].oid_len = sizeof(kOIDP521); | 
|  | out->curves[0].comment = "NIST P-521"; | 
|  | out->curves[0].param_len = 66; | 
|  | out->curves[0].params = kP521Params; | 
|  | out->curves[0].method = EC_GFp_mont_method(); | 
|  |  | 
|  | // 1.3.132.0.34 | 
|  | static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22}; | 
|  | out->curves[1].nid = NID_secp384r1; | 
|  | out->curves[1].oid = kOIDP384; | 
|  | out->curves[1].oid_len = sizeof(kOIDP384); | 
|  | out->curves[1].comment = "NIST P-384"; | 
|  | out->curves[1].param_len = 48; | 
|  | out->curves[1].params = kP384Params; | 
|  | out->curves[1].method = EC_GFp_mont_method(); | 
|  |  | 
|  | // 1.2.840.10045.3.1.7 | 
|  | static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce, | 
|  | 0x3d, 0x03, 0x01, 0x07}; | 
|  | out->curves[2].nid = NID_X9_62_prime256v1; | 
|  | out->curves[2].oid = kOIDP256; | 
|  | out->curves[2].oid_len = sizeof(kOIDP256); | 
|  | out->curves[2].comment = "NIST P-256"; | 
|  | out->curves[2].param_len = 32; | 
|  | out->curves[2].params = kP256Params; | 
|  | out->curves[2].method = | 
|  | #if !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) &&   \ | 
|  | !defined(OPENSSL_SMALL) | 
|  | EC_GFp_nistz256_method(); | 
|  | #else | 
|  | EC_GFp_nistp256_method(); | 
|  | #endif | 
|  |  | 
|  | // 1.3.132.0.33 | 
|  | static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21}; | 
|  | out->curves[3].nid = NID_secp224r1; | 
|  | out->curves[3].oid = kOIDP224; | 
|  | out->curves[3].oid_len = sizeof(kOIDP224); | 
|  | out->curves[3].comment = "NIST P-224"; | 
|  | out->curves[3].param_len = 28; | 
|  | out->curves[3].params = kP224Params; | 
|  | out->curves[3].method = | 
|  | #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL) | 
|  | EC_GFp_nistp224_method(); | 
|  | #else | 
|  | EC_GFp_mont_method(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EC_GROUP *ec_group_new(const EC_METHOD *meth) { | 
|  | EC_GROUP *ret; | 
|  |  | 
|  | if (meth == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_SLOT_FULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (meth->group_init == 0) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret = OPENSSL_malloc(sizeof(EC_GROUP)); | 
|  | if (ret == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  | OPENSSL_memset(ret, 0, sizeof(EC_GROUP)); | 
|  |  | 
|  | ret->references = 1; | 
|  | ret->meth = meth; | 
|  | BN_init(&ret->order); | 
|  |  | 
|  | if (!meth->group_init(ret)) { | 
|  | OPENSSL_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ec_group_set_generator(EC_GROUP *group, const EC_AFFINE *generator, | 
|  | const BIGNUM *order) { | 
|  | assert(group->generator == NULL); | 
|  |  | 
|  | if (!BN_copy(&group->order, order)) { | 
|  | return 0; | 
|  | } | 
|  | // Store the order in minimal form, so it can be used with |BN_ULONG| arrays. | 
|  | bn_set_minimal_width(&group->order); | 
|  |  | 
|  | BN_MONT_CTX_free(group->order_mont); | 
|  | group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, NULL); | 
|  | if (group->order_mont == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | group->field_greater_than_order = BN_cmp(&group->field, order) > 0; | 
|  | if (group->field_greater_than_order) { | 
|  | BIGNUM tmp; | 
|  | BN_init(&tmp); | 
|  | int ok = | 
|  | BN_sub(&tmp, &group->field, order) && | 
|  | bn_copy_words(group->field_minus_order.words, group->field.width, &tmp); | 
|  | BN_free(&tmp); | 
|  | if (!ok) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | group->generator = EC_POINT_new(group); | 
|  | if (group->generator == NULL) { | 
|  | return 0; | 
|  | } | 
|  | ec_affine_to_jacobian(group, &group->generator->raw, generator); | 
|  | assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z)); | 
|  |  | 
|  | // Avoid a reference cycle. |group->generator| does not maintain an owning | 
|  | // pointer to |group|. | 
|  | int is_zero = CRYPTO_refcount_dec_and_test_zero(&group->references); | 
|  |  | 
|  | assert(!is_zero); | 
|  | (void)is_zero; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a, | 
|  | const BIGNUM *b, BN_CTX *ctx) { | 
|  | if (BN_num_bytes(p) > EC_MAX_BYTES) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BN_CTX *new_ctx = NULL; | 
|  | if (ctx == NULL) { | 
|  | ctx = new_ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Historically, |a| and |b| were not required to be fully reduced. | 
|  | // TODO(davidben): Can this be removed? | 
|  | EC_GROUP *ret = NULL; | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *a_reduced = BN_CTX_get(ctx); | 
|  | BIGNUM *b_reduced = BN_CTX_get(ctx); | 
|  | if (a_reduced == NULL || b_reduced == NULL || | 
|  | !BN_nnmod(a_reduced, a, p, ctx) || | 
|  | !BN_nnmod(b_reduced, b, p, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = ec_group_new(EC_GFp_mont_method()); | 
|  | if (ret == NULL || | 
|  | !ret->meth->group_set_curve(ret, p, a_reduced, b_reduced, ctx)) { | 
|  | EC_GROUP_free(ret); | 
|  | ret = NULL; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | err: | 
|  | BN_CTX_end(ctx); | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, | 
|  | const BIGNUM *order, const BIGNUM *cofactor) { | 
|  | if (group->curve_name != NID_undef || group->generator != NULL || | 
|  | generator->group != group) { | 
|  | // |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by | 
|  | // |EC_GROUP_new_curve_GFp| and may only used once on each group. | 
|  | // |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a | 
|  | // copy, so that |generator->group->generator| is set correctly. | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BN_num_bytes(order) > EC_MAX_BYTES) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Require a cofactor of one for custom curves, which implies prime order. | 
|  | if (!BN_is_one(cofactor)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Require that p < 2×order. This simplifies some ECDSA operations. | 
|  | // | 
|  | // Note any curve which did not satisfy this must have been invalid or use a | 
|  | // tiny prime (less than 17). See the proof in |field_element_to_scalar| in | 
|  | // the ECDSA implementation. | 
|  | int ret = 0; | 
|  | BIGNUM *tmp = BN_new(); | 
|  | if (tmp == NULL || | 
|  | !BN_lshift1(tmp, order)) { | 
|  | goto err; | 
|  | } | 
|  | if (BN_cmp(tmp, &group->field) <= 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | EC_AFFINE affine; | 
|  | if (!ec_jacobian_to_affine(group, &affine, &generator->raw) || | 
|  | !ec_group_set_generator(group, &affine, order)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_free(tmp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static EC_GROUP *ec_group_new_from_data(const struct built_in_curve *curve) { | 
|  | EC_GROUP *group = NULL; | 
|  | BIGNUM *p = NULL, *a = NULL, *b = NULL, *order = NULL; | 
|  | int ok = 0; | 
|  |  | 
|  | BN_CTX *ctx = BN_CTX_new(); | 
|  | if (ctx == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | const unsigned param_len = curve->param_len; | 
|  | const uint8_t *params = curve->params; | 
|  |  | 
|  | if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) || | 
|  | !(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) || | 
|  | !(b = BN_bin2bn(params + 2 * param_len, param_len, NULL)) || | 
|  | !(order = BN_bin2bn(params + 5 * param_len, param_len, NULL))) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | group = ec_group_new(curve->method); | 
|  | if (group == NULL || | 
|  | !group->meth->group_set_curve(group, p, a, b, ctx)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | EC_AFFINE G; | 
|  | EC_FELEM x, y; | 
|  | if (!ec_felem_from_bytes(group, &x, params + 3 * param_len, param_len) || | 
|  | !ec_felem_from_bytes(group, &y, params + 4 * param_len, param_len) || | 
|  | !ec_point_set_affine_coordinates(group, &G, &x, &y)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!ec_group_set_generator(group, &G, order)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ok = 1; | 
|  |  | 
|  | err: | 
|  | if (!ok) { | 
|  | EC_GROUP_free(group); | 
|  | group = NULL; | 
|  | } | 
|  | BN_CTX_free(ctx); | 
|  | BN_free(p); | 
|  | BN_free(a); | 
|  | BN_free(b); | 
|  | BN_free(order); | 
|  | return group; | 
|  | } | 
|  |  | 
|  | // Built-in groups are allocated lazily and static once allocated. | 
|  | // TODO(davidben): Make these actually static. https://crbug.com/boringssl/20. | 
|  | struct built_in_groups_st { | 
|  | EC_GROUP *groups[OPENSSL_NUM_BUILT_IN_CURVES]; | 
|  | }; | 
|  | DEFINE_BSS_GET(struct built_in_groups_st, built_in_groups) | 
|  | DEFINE_STATIC_MUTEX(built_in_groups_lock) | 
|  |  | 
|  | EC_GROUP *EC_GROUP_new_by_curve_name(int nid) { | 
|  | struct built_in_groups_st *groups = built_in_groups_bss_get(); | 
|  | EC_GROUP **group_ptr = NULL; | 
|  | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); | 
|  | const struct built_in_curve *curve = NULL; | 
|  | for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) { | 
|  | if (curves->curves[i].nid == nid) { | 
|  | curve = &curves->curves[i]; | 
|  | group_ptr = &groups->groups[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (curve == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_read(built_in_groups_lock_bss_get()); | 
|  | EC_GROUP *ret = *group_ptr; | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(built_in_groups_lock_bss_get()); | 
|  | if (ret != NULL) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = ec_group_new_from_data(curve); | 
|  | if (ret == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EC_GROUP *to_free = NULL; | 
|  | CRYPTO_STATIC_MUTEX_lock_write(built_in_groups_lock_bss_get()); | 
|  | if (*group_ptr == NULL) { | 
|  | *group_ptr = ret; | 
|  | // Filling in |ret->curve_name| makes |EC_GROUP_free| and |EC_GROUP_dup| | 
|  | // into no-ops. At this point, |ret| is considered static. | 
|  | ret->curve_name = nid; | 
|  | } else { | 
|  | to_free = ret; | 
|  | ret = *group_ptr; | 
|  | } | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(built_in_groups_lock_bss_get()); | 
|  |  | 
|  | EC_GROUP_free(to_free); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void EC_GROUP_free(EC_GROUP *group) { | 
|  | if (group == NULL || | 
|  | // Built-in curves are static. | 
|  | group->curve_name != NID_undef || | 
|  | !CRYPTO_refcount_dec_and_test_zero(&group->references)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (group->meth->group_finish != NULL) { | 
|  | group->meth->group_finish(group); | 
|  | } | 
|  |  | 
|  | ec_point_free(group->generator, 0 /* don't free group */); | 
|  | BN_free(&group->order); | 
|  | BN_MONT_CTX_free(group->order_mont); | 
|  |  | 
|  | OPENSSL_free(group); | 
|  | } | 
|  |  | 
|  | EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) { | 
|  | if (a == NULL || | 
|  | // Built-in curves are static. | 
|  | a->curve_name != NID_undef) { | 
|  | return (EC_GROUP *)a; | 
|  | } | 
|  |  | 
|  | // Groups are logically immutable (but for |EC_GROUP_set_generator| which must | 
|  | // be called early on), so we simply take a reference. | 
|  | EC_GROUP *group = (EC_GROUP *)a; | 
|  | CRYPTO_refcount_inc(&group->references); | 
|  | return group; | 
|  | } | 
|  |  | 
|  | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) { | 
|  | // Note this function returns 0 if equal and non-zero otherwise. | 
|  | if (a == b) { | 
|  | return 0; | 
|  | } | 
|  | if (a->curve_name != b->curve_name) { | 
|  | return 1; | 
|  | } | 
|  | if (a->curve_name != NID_undef) { | 
|  | // Built-in curves may be compared by curve name alone. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // |a| and |b| are both custom curves. We compare the entire curve | 
|  | // structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes, | 
|  | // custom curve construction is sadly done in two parts) but otherwise not the | 
|  | // same object, we consider them always unequal. | 
|  | return a->meth != b->meth || | 
|  | a->generator == NULL || | 
|  | b->generator == NULL || | 
|  | BN_cmp(&a->order, &b->order) != 0 || | 
|  | BN_cmp(&a->field, &b->field) != 0 || | 
|  | !ec_felem_equal(a, &a->a, &b->a) || | 
|  | !ec_felem_equal(a, &a->b, &b->b) || | 
|  | !ec_GFp_simple_points_equal(a, &a->generator->raw, &b->generator->raw); | 
|  | } | 
|  |  | 
|  | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) { | 
|  | return group->generator; | 
|  | } | 
|  |  | 
|  | const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) { | 
|  | assert(!BN_is_zero(&group->order)); | 
|  | return &group->order; | 
|  | } | 
|  |  | 
|  | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) { | 
|  | if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_GROUP_order_bits(const EC_GROUP *group) { | 
|  | return BN_num_bits(&group->order); | 
|  | } | 
|  |  | 
|  | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, | 
|  | BN_CTX *ctx) { | 
|  | // All |EC_GROUP|s have cofactor 1. | 
|  | return BN_set_word(cofactor, 1); | 
|  | } | 
|  |  | 
|  | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a, | 
|  | BIGNUM *out_b, BN_CTX *ctx) { | 
|  | return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b); | 
|  | } | 
|  |  | 
|  | int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; } | 
|  |  | 
|  | unsigned EC_GROUP_get_degree(const EC_GROUP *group) { | 
|  | return BN_num_bits(&group->field); | 
|  | } | 
|  |  | 
|  | const char *EC_curve_nid2nist(int nid) { | 
|  | switch (nid) { | 
|  | case NID_secp224r1: | 
|  | return "P-224"; | 
|  | case NID_X9_62_prime256v1: | 
|  | return "P-256"; | 
|  | case NID_secp384r1: | 
|  | return "P-384"; | 
|  | case NID_secp521r1: | 
|  | return "P-521"; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int EC_curve_nist2nid(const char *name) { | 
|  | if (strcmp(name, "P-224") == 0) { | 
|  | return NID_secp224r1; | 
|  | } | 
|  | if (strcmp(name, "P-256") == 0) { | 
|  | return NID_X9_62_prime256v1; | 
|  | } | 
|  | if (strcmp(name, "P-384") == 0) { | 
|  | return NID_secp384r1; | 
|  | } | 
|  | if (strcmp(name, "P-521") == 0) { | 
|  | return NID_secp521r1; | 
|  | } | 
|  | return NID_undef; | 
|  | } | 
|  |  | 
|  | EC_POINT *EC_POINT_new(const EC_GROUP *group) { | 
|  | if (group == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EC_POINT *ret = OPENSSL_malloc(sizeof *ret); | 
|  | if (ret == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ret->group = EC_GROUP_dup(group); | 
|  | ec_GFp_simple_point_init(&ret->raw); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void ec_point_free(EC_POINT *point, int free_group) { | 
|  | if (!point) { | 
|  | return; | 
|  | } | 
|  | if (free_group) { | 
|  | EC_GROUP_free(point->group); | 
|  | } | 
|  | OPENSSL_free(point); | 
|  | } | 
|  |  | 
|  | void EC_POINT_free(EC_POINT *point) { | 
|  | ec_point_free(point, 1 /* free group */); | 
|  | } | 
|  |  | 
|  | void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); } | 
|  |  | 
|  | int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) { | 
|  | if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | if (dest == src) { | 
|  | return 1; | 
|  | } | 
|  | ec_GFp_simple_point_copy(&dest->raw, &src->raw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) { | 
|  | if (a == NULL) { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | EC_POINT *ret = EC_POINT_new(group); | 
|  | if (ret == NULL || | 
|  | !EC_POINT_copy(ret, a)) { | 
|  | EC_POINT_free(ret); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | ec_GFp_simple_point_set_to_infinity(group, &point->raw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | return ec_GFp_simple_is_at_infinity(group, &point->raw); | 
|  | } | 
|  |  | 
|  | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, | 
|  | BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | return ec_GFp_simple_is_on_curve(group, &point->raw); | 
|  | } | 
|  |  | 
|  | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, | 
|  | BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, a->group, NULL) != 0 || | 
|  | EC_GROUP_cmp(group, b->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Note |EC_POINT_cmp| returns zero for equality and non-zero for inequality. | 
|  | return ec_GFp_simple_points_equal(group, &a->raw, &b->raw) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, | 
|  | const EC_POINT *point, BIGNUM *x, | 
|  | BIGNUM *y, BN_CTX *ctx) { | 
|  | if (group->meth->point_get_affine_coordinates == 0) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | EC_FELEM x_felem, y_felem; | 
|  | if (!group->meth->point_get_affine_coordinates(group, &point->raw, | 
|  | x == NULL ? NULL : &x_felem, | 
|  | y == NULL ? NULL : &y_felem) || | 
|  | (x != NULL && !ec_felem_to_bignum(group, x, &x_felem)) || | 
|  | (y != NULL && !ec_felem_to_bignum(group, y, &y_felem))) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_get_affine_coordinates(const EC_GROUP *group, | 
|  | const EC_POINT *point, BIGNUM *x, BIGNUM *y, | 
|  | BN_CTX *ctx) { | 
|  | return EC_POINT_get_affine_coordinates_GFp(group, point, x, y, ctx); | 
|  | } | 
|  |  | 
|  | void ec_affine_to_jacobian(const EC_GROUP *group, EC_RAW_POINT *out, | 
|  | const EC_AFFINE *p) { | 
|  | out->X = p->X; | 
|  | out->Y = p->Y; | 
|  | out->Z = group->one; | 
|  | } | 
|  |  | 
|  | int ec_jacobian_to_affine(const EC_GROUP *group, EC_AFFINE *out, | 
|  | const EC_RAW_POINT *p) { | 
|  | return group->meth->point_get_affine_coordinates(group, p, &out->X, &out->Y); | 
|  | } | 
|  |  | 
|  | int ec_jacobian_to_affine_batch(const EC_GROUP *group, EC_AFFINE *out, | 
|  | const EC_RAW_POINT *in, size_t num) { | 
|  | if (group->meth->jacobian_to_affine_batch == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | return group->meth->jacobian_to_affine_batch(group, out, in, num); | 
|  | } | 
|  |  | 
|  | int ec_point_set_affine_coordinates(const EC_GROUP *group, EC_AFFINE *out, | 
|  | const EC_FELEM *x, const EC_FELEM *y) { | 
|  | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, | 
|  | const EC_FELEM *b) = group->meth->felem_mul; | 
|  | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = | 
|  | group->meth->felem_sqr; | 
|  |  | 
|  | // Check if the point is on the curve. | 
|  | EC_FELEM lhs, rhs; | 
|  | felem_sqr(group, &lhs, y);                   // lhs = y^2 | 
|  | felem_sqr(group, &rhs, x);                   // rhs = x^2 | 
|  | ec_felem_add(group, &rhs, &rhs, &group->a);  // rhs = x^2 + a | 
|  | felem_mul(group, &rhs, &rhs, x);             // rhs = x^3 + ax | 
|  | ec_felem_add(group, &rhs, &rhs, &group->b);  // rhs = x^3 + ax + b | 
|  | if (!ec_felem_equal(group, &lhs, &rhs)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE); | 
|  | // In the event of an error, defend against the caller not checking the | 
|  | // return value by setting a known safe value. Note this may not be possible | 
|  | // if the caller is in the process of constructing an arbitrary group and | 
|  | // the generator is missing. | 
|  | if (group->generator != NULL) { | 
|  | assert(ec_felem_equal(group, &group->one, &group->generator->raw.Z)); | 
|  | out->X = group->generator->raw.X; | 
|  | out->Y = group->generator->raw.Y; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | out->X = *x; | 
|  | out->Y = *y; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point, | 
|  | const BIGNUM *x, const BIGNUM *y, | 
|  | BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, point->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (x == NULL || y == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_FELEM x_felem, y_felem; | 
|  | EC_AFFINE affine; | 
|  | if (!ec_bignum_to_felem(group, &x_felem, x) || | 
|  | !ec_bignum_to_felem(group, &y_felem, y) || | 
|  | !ec_point_set_affine_coordinates(group, &affine, &x_felem, &y_felem)) { | 
|  | // In the event of an error, defend against the caller not checking the | 
|  | // return value by setting a known safe value. | 
|  | ec_set_to_safe_point(group, &point->raw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ec_affine_to_jacobian(group, &point->raw, &affine); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | 
|  | const BIGNUM *x, const BIGNUM *y, | 
|  | BN_CTX *ctx) { | 
|  | return EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx); | 
|  | } | 
|  |  | 
|  | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
|  | const EC_POINT *b, BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || | 
|  | EC_GROUP_cmp(group, a->group, NULL) != 0 || | 
|  | EC_GROUP_cmp(group, b->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | group->meth->add(group, &r->raw, &a->raw, &b->raw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | 
|  | BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || | 
|  | EC_GROUP_cmp(group, a->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | group->meth->dbl(group, &r->raw, &a->raw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) { | 
|  | if (EC_GROUP_cmp(group, a->group, NULL) != 0) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  | ec_GFp_simple_invert(group, &a->raw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const BIGNUM *in, BN_CTX *ctx) { | 
|  | if (ec_bignum_to_scalar(group, out, in)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // This is an unusual input, so we do not guarantee constant-time processing. | 
|  | const BIGNUM *order = &group->order; | 
|  | BN_CTX_start(ctx); | 
|  | BIGNUM *tmp = BN_CTX_get(ctx); | 
|  | int ok = tmp != NULL && | 
|  | BN_nnmod(tmp, in, order, ctx) && | 
|  | ec_bignum_to_scalar(group, out, tmp); | 
|  | BN_CTX_end(ctx); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | int ec_point_mul_no_self_test(const EC_GROUP *group, EC_POINT *r, | 
|  | const BIGNUM *g_scalar, const EC_POINT *p, | 
|  | const BIGNUM *p_scalar, BN_CTX *ctx) { | 
|  | // Previously, this function set |r| to the point at infinity if there was | 
|  | // nothing to multiply. But, nobody should be calling this function with | 
|  | // nothing to multiply in the first place. | 
|  | if ((g_scalar == NULL && p_scalar == NULL) || | 
|  | (p == NULL) != (p_scalar == NULL))  { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (EC_GROUP_cmp(group, r->group, NULL) != 0 || | 
|  | (p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | BN_CTX *new_ctx = NULL; | 
|  | if (ctx == NULL) { | 
|  | new_ctx = BN_CTX_new(); | 
|  | if (new_ctx == NULL) { | 
|  | goto err; | 
|  | } | 
|  | ctx = new_ctx; | 
|  | } | 
|  |  | 
|  | // If both |g_scalar| and |p_scalar| are non-NULL, | 
|  | // |ec_point_mul_scalar_public| would share the doublings between the two | 
|  | // products, which would be more efficient. However, we conservatively assume | 
|  | // the caller needs a constant-time operation. (ECDSA verification does not | 
|  | // use this function.) | 
|  | // | 
|  | // Previously, the low-level constant-time multiplication function aligned | 
|  | // with this function's calling convention, but this was misleading. Curves | 
|  | // which combined the two multiplications did not avoid the doubling case | 
|  | // in the incomplete addition formula and were not constant-time. | 
|  |  | 
|  | if (g_scalar != NULL) { | 
|  | EC_SCALAR scalar; | 
|  | if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) || | 
|  | !ec_point_mul_scalar_base(group, &r->raw, &scalar)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p_scalar != NULL) { | 
|  | EC_SCALAR scalar; | 
|  | EC_RAW_POINT tmp; | 
|  | if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) || | 
|  | !ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) { | 
|  | goto err; | 
|  | } | 
|  | if (g_scalar == NULL) { | 
|  | OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_RAW_POINT)); | 
|  | } else { | 
|  | group->meth->add(group, &r->raw, &r->raw, &tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | BN_CTX_free(new_ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | 
|  | const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) { | 
|  | boringssl_ensure_ecc_self_test(); | 
|  |  | 
|  | return ec_point_mul_no_self_test(group, r, g_scalar, p, p_scalar, ctx); | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar_public(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *g_scalar, const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *p_scalar) { | 
|  | if (g_scalar == NULL || p_scalar == NULL || p == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (group->meth->mul_public == NULL) { | 
|  | return group->meth->mul_public_batch(group, r, g_scalar, p, p_scalar, 1); | 
|  | } | 
|  |  | 
|  | group->meth->mul_public(group, r, g_scalar, p, p_scalar); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar_public_batch(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *g_scalar, | 
|  | const EC_RAW_POINT *points, | 
|  | const EC_SCALAR *scalars, size_t num) { | 
|  | if (group->meth->mul_public_batch == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return group->meth->mul_public_batch(group, r, g_scalar, points, scalars, | 
|  | num); | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_RAW_POINT *p, const EC_SCALAR *scalar) { | 
|  | if (p == NULL || scalar == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | group->meth->mul(group, r, p, scalar); | 
|  |  | 
|  | // Check the result is on the curve to defend against fault attacks or bugs. | 
|  | // This has negligible cost compared to the multiplication. | 
|  | if (!ec_GFp_simple_is_on_curve(group, r)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_SCALAR *scalar) { | 
|  | if (scalar == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | group->meth->mul_base(group, r, scalar); | 
|  |  | 
|  | // Check the result is on the curve to defend against fault attacks or bugs. | 
|  | // This has negligible cost compared to the multiplication. | 
|  | if (!ec_GFp_simple_is_on_curve(group, r)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar_batch(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_RAW_POINT *p0, const EC_SCALAR *scalar0, | 
|  | const EC_RAW_POINT *p1, const EC_SCALAR *scalar1, | 
|  | const EC_RAW_POINT *p2, | 
|  | const EC_SCALAR *scalar2) { | 
|  | if (group->meth->mul_batch == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | group->meth->mul_batch(group, r, p0, scalar0, p1, scalar1, p2, scalar2); | 
|  |  | 
|  | // Check the result is on the curve to defend against fault attacks or bugs. | 
|  | // This has negligible cost compared to the multiplication. | 
|  | if (!ec_GFp_simple_is_on_curve(group, r)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, | 
|  | const EC_RAW_POINT *p) { | 
|  | if (group->meth->init_precomp == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return group->meth->init_precomp(group, out, p); | 
|  | } | 
|  |  | 
|  | int ec_point_mul_scalar_precomp(const EC_GROUP *group, EC_RAW_POINT *r, | 
|  | const EC_PRECOMP *p0, const EC_SCALAR *scalar0, | 
|  | const EC_PRECOMP *p1, const EC_SCALAR *scalar1, | 
|  | const EC_PRECOMP *p2, | 
|  | const EC_SCALAR *scalar2) { | 
|  | if (group->meth->mul_precomp == NULL) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | group->meth->mul_precomp(group, r, p0, scalar0, p1, scalar1, p2, scalar2); | 
|  |  | 
|  | // Check the result is on the curve to defend against fault attacks or bugs. | 
|  | // This has negligible cost compared to the multiplication. | 
|  | if (!ec_GFp_simple_is_on_curve(group, r)) { | 
|  | OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_point_select(const EC_GROUP *group, EC_RAW_POINT *out, BN_ULONG mask, | 
|  | const EC_RAW_POINT *a, const EC_RAW_POINT *b) { | 
|  | ec_felem_select(group, &out->X, mask, &a->X, &b->X); | 
|  | ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); | 
|  | ec_felem_select(group, &out->Z, mask, &a->Z, &b->Z); | 
|  | } | 
|  |  | 
|  | void ec_affine_select(const EC_GROUP *group, EC_AFFINE *out, BN_ULONG mask, | 
|  | const EC_AFFINE *a, const EC_AFFINE *b) { | 
|  | ec_felem_select(group, &out->X, mask, &a->X, &b->X); | 
|  | ec_felem_select(group, &out->Y, mask, &a->Y, &b->Y); | 
|  | } | 
|  |  | 
|  | void ec_precomp_select(const EC_GROUP *group, EC_PRECOMP *out, BN_ULONG mask, | 
|  | const EC_PRECOMP *a, const EC_PRECOMP *b) { | 
|  | static_assert(sizeof(out->comb) == sizeof(*out), | 
|  | "out->comb does not span the entire structure"); | 
|  | for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(out->comb); i++) { | 
|  | ec_affine_select(group, &out->comb[i], mask, &a->comb[i], &b->comb[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, | 
|  | const EC_SCALAR *r) { | 
|  | return group->meth->cmp_x_coordinate(group, p, r); | 
|  | } | 
|  |  | 
|  | int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out, | 
|  | const EC_RAW_POINT *p) { | 
|  | uint8_t bytes[EC_MAX_BYTES]; | 
|  | size_t len; | 
|  | if (!ec_get_x_coordinate_as_bytes(group, bytes, &len, sizeof(bytes), p)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // The x-coordinate is bounded by p, but we need a scalar, bounded by the | 
|  | // order. These may not have the same size. However, we must have p < 2×order, | 
|  | // assuming p is not tiny (p >= 17). | 
|  | // | 
|  | // Thus |bytes| will fit in |order.width + 1| words, and we can reduce by | 
|  | // performing at most one subtraction. | 
|  | // | 
|  | // Proof: We only work with prime order curves, so the number of points on | 
|  | // the curve is the order. Thus Hasse's theorem gives: | 
|  | // | 
|  | //     |order - (p + 1)| <= 2×sqrt(p) | 
|  | //         p + 1 - order <= 2×sqrt(p) | 
|  | //     p + 1 - 2×sqrt(p) <= order | 
|  | //       p + 1 - 2×(p/4)  < order       (p/4 > sqrt(p) for p >= 17) | 
|  | //         p/2 < p/2 + 1  < order | 
|  | //                     p  < 2×order | 
|  | // | 
|  | // Additionally, one can manually check this property for built-in curves. It | 
|  | // is enforced for legacy custom curves in |EC_GROUP_set_generator|. | 
|  | const BIGNUM *order = &group->order; | 
|  | BN_ULONG words[EC_MAX_WORDS + 1]; | 
|  | bn_big_endian_to_words(words, order->width + 1, bytes, len); | 
|  | bn_reduce_once(out->words, words, /*carry=*/words[order->width], order->d, | 
|  | order->width); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int ec_get_x_coordinate_as_bytes(const EC_GROUP *group, uint8_t *out, | 
|  | size_t *out_len, size_t max_out, | 
|  | const EC_RAW_POINT *p) { | 
|  | size_t len = BN_num_bytes(&group->field); | 
|  | assert(len <= EC_MAX_BYTES); | 
|  | if (max_out < len) { | 
|  | OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EC_FELEM x; | 
|  | if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ec_felem_to_bytes(group, out, out_len, &x); | 
|  | *out_len = len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void ec_set_to_safe_point(const EC_GROUP *group, EC_RAW_POINT *out) { | 
|  | if (group->generator != NULL) { | 
|  | ec_GFp_simple_point_copy(out, &group->generator->raw); | 
|  | } else { | 
|  | // The generator can be missing if the caller is in the process of | 
|  | // constructing an arbitrary group. In this case, we give up and use the | 
|  | // point at infinity. | 
|  | ec_GFp_simple_point_set_to_infinity(group, out); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {} | 
|  |  | 
|  | int EC_GROUP_get_asn1_flag(const EC_GROUP *group) { | 
|  | return OPENSSL_EC_NAMED_CURVE; | 
|  | } | 
|  |  | 
|  | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) { | 
|  | // This function exists purely to give callers a way to call | 
|  | // |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of| | 
|  | // returns NULL, so return some other garbage pointer. | 
|  | return (const EC_METHOD *)0x12340000; | 
|  | } | 
|  |  | 
|  | int EC_METHOD_get_field_type(const EC_METHOD *meth) { | 
|  | return NID_X9_62_prime_field; | 
|  | } | 
|  |  | 
|  | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, | 
|  | point_conversion_form_t form) { | 
|  | if (form != POINT_CONVERSION_UNCOMPRESSED) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t EC_get_builtin_curves(EC_builtin_curve *out_curves, | 
|  | size_t max_num_curves) { | 
|  | const struct built_in_curves *const curves = OPENSSL_built_in_curves(); | 
|  |  | 
|  | for (size_t i = 0; i < max_num_curves && i < OPENSSL_NUM_BUILT_IN_CURVES; | 
|  | i++) { | 
|  | out_curves[i].comment = curves->curves[i].comment; | 
|  | out_curves[i].nid = curves->curves[i].nid; | 
|  | } | 
|  |  | 
|  | return OPENSSL_NUM_BUILT_IN_CURVES; | 
|  | } |