|  | /* Copyright (c) 2014, Google Inc. | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | #include <unistd.h> | 
|  | #endif | 
|  |  | 
|  | #include <openssl/chacha.h> | 
|  | #include <openssl/ctrdrbg.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "fork_detect.h" | 
|  | #include "../../internal.h" | 
|  | #include "../delocate.h" | 
|  |  | 
|  |  | 
|  | // It's assumed that the operating system always has an unfailing source of | 
|  | // entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating | 
|  | // system entropy source fails, it's up to |CRYPTO_sysrand| to abort the | 
|  | // process—we don't try to handle it.) | 
|  | // | 
|  | // In addition, the hardware may provide a low-latency RNG. Intel's rdrand | 
|  | // instruction is the canonical example of this. When a hardware RNG is | 
|  | // available we don't need to worry about an RNG failure arising from fork()ing | 
|  | // the process or moving a VM, so we can keep thread-local RNG state and use it | 
|  | // as an additional-data input to CTR-DRBG. | 
|  | // | 
|  | // (We assume that the OS entropy is safe from fork()ing and VM duplication. | 
|  | // This might be a bit of a leap of faith, esp on Windows, but there's nothing | 
|  | // that we can do about it.) | 
|  |  | 
|  | // kReseedInterval is the number of generate calls made to CTR-DRBG before | 
|  | // reseeding. | 
|  | static const unsigned kReseedInterval = 4096; | 
|  |  | 
|  | // CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the | 
|  | // continuous random number generator test in FIPS 140-2, section 4.9.2. | 
|  | #define CRNGT_BLOCK_SIZE 16 | 
|  |  | 
|  | // rand_thread_state contains the per-thread state for the RNG. | 
|  | struct rand_thread_state { | 
|  | CTR_DRBG_STATE drbg; | 
|  | uint64_t fork_generation; | 
|  | // calls is the number of generate calls made on |drbg| since it was last | 
|  | // (re)seeded. This is bound by |kReseedInterval|. | 
|  | unsigned calls; | 
|  | // last_block_valid is non-zero iff |last_block| contains data from | 
|  | // |get_seed_entropy|. | 
|  | int last_block_valid; | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | // last_block contains the previous block from |get_seed_entropy|. | 
|  | uint8_t last_block[CRNGT_BLOCK_SIZE]; | 
|  | // next and prev form a NULL-terminated, double-linked list of all states in | 
|  | // a process. | 
|  | struct rand_thread_state *next, *prev; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | // thread_states_list is the head of a linked-list of all |rand_thread_state| | 
|  | // objects in the process, one per thread. This is needed because FIPS requires | 
|  | // that they be zeroed on process exit, but thread-local destructors aren't | 
|  | // called when the whole process is exiting. | 
|  | DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list); | 
|  | DEFINE_STATIC_MUTEX(thread_states_list_lock); | 
|  | DEFINE_STATIC_MUTEX(state_clear_all_lock); | 
|  |  | 
|  | static void rand_thread_state_clear_all(void) __attribute__((destructor)); | 
|  | static void rand_thread_state_clear_all(void) { | 
|  | CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
|  | CRYPTO_STATIC_MUTEX_lock_write(state_clear_all_lock_bss_get()); | 
|  | for (struct rand_thread_state *cur = *thread_states_list_bss_get(); | 
|  | cur != NULL; cur = cur->next) { | 
|  | CTR_DRBG_clear(&cur->drbg); | 
|  | } | 
|  | // The locks are deliberately left locked so that any threads that are still | 
|  | // running will hang if they try to call |RAND_bytes|. | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // rand_thread_state_free frees a |rand_thread_state|. This is called when a | 
|  | // thread exits. | 
|  | static void rand_thread_state_free(void *state_in) { | 
|  | struct rand_thread_state *state = state_in; | 
|  |  | 
|  | if (state_in == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
|  |  | 
|  | if (state->prev != NULL) { | 
|  | state->prev->next = state->next; | 
|  | } else { | 
|  | *thread_states_list_bss_get() = state->next; | 
|  | } | 
|  |  | 
|  | if (state->next != NULL) { | 
|  | state->next->prev = state->prev; | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get()); | 
|  |  | 
|  | CTR_DRBG_clear(&state->drbg); | 
|  | #endif | 
|  |  | 
|  | OPENSSL_free(state); | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \ | 
|  | !defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) | 
|  | // rdrand should only be called if either |have_rdrand| or |have_fast_rdrand| | 
|  | // returned true. | 
|  | static int rdrand(uint8_t *buf, const size_t len) { | 
|  | const size_t len_multiple8 = len & ~7; | 
|  | if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) { | 
|  | return 0; | 
|  | } | 
|  | const size_t remainder = len - len_multiple8; | 
|  |  | 
|  | if (remainder != 0) { | 
|  | assert(remainder < 8); | 
|  |  | 
|  | uint8_t rand_buf[8]; | 
|  | if (!CRYPTO_rdrand(rand_buf)) { | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static int rdrand(uint8_t *buf, size_t len) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  |  | 
|  | void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, | 
|  | int *out_want_additional_input) { | 
|  | *out_want_additional_input = 0; | 
|  | if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) { | 
|  | *out_want_additional_input = 1; | 
|  | } else { | 
|  | CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len); | 
|  | } | 
|  |  | 
|  | if (boringssl_fips_break_test("CRNG")) { | 
|  | // This breaks the "continuous random number generator test" defined in FIPS | 
|  | // 140-2, section 4.9.2, and implemented in |rand_get_seed|. | 
|  | OPENSSL_memset(out_entropy, 0, out_entropy_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In passive entropy mode, entropy is supplied from outside of the module via | 
|  | // |RAND_load_entropy| and is stored in global instance of the following | 
|  | // structure. | 
|  |  | 
|  | struct entropy_buffer { | 
|  | // bytes contains entropy suitable for seeding a DRBG. | 
|  | uint8_t | 
|  | bytes[CRNGT_BLOCK_SIZE + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; | 
|  | // bytes_valid indicates the number of bytes of |bytes| that contain valid | 
|  | // data. | 
|  | size_t bytes_valid; | 
|  | // want_additional_input is true if any of the contents of |bytes| were | 
|  | // obtained via a method other than from the kernel. In these cases entropy | 
|  | // from the kernel is also provided via an additional input to the DRBG. | 
|  | int want_additional_input; | 
|  | }; | 
|  |  | 
|  | DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer); | 
|  | DEFINE_STATIC_MUTEX(entropy_buffer_lock); | 
|  |  | 
|  | void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len, | 
|  | int want_additional_input) { | 
|  | struct entropy_buffer *const buffer = entropy_buffer_bss_get(); | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
|  | const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid; | 
|  | if (entropy_len > space) { | 
|  | entropy_len = space; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len); | 
|  | buffer->bytes_valid += entropy_len; | 
|  | buffer->want_additional_input |= | 
|  | want_additional_input && (entropy_len != 0); | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
|  | } | 
|  |  | 
|  | // get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the | 
|  | // global |entropy_buffer|. | 
|  | static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len, | 
|  | int *out_want_additional_input) { | 
|  | struct entropy_buffer *const buffer = entropy_buffer_bss_get(); | 
|  | if (out_entropy_len > sizeof(buffer->bytes)) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
|  | while (buffer->bytes_valid < out_entropy_len) { | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
|  | RAND_need_entropy(out_entropy_len - buffer->bytes_valid); | 
|  | CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get()); | 
|  | } | 
|  |  | 
|  | *out_want_additional_input = buffer->want_additional_input; | 
|  | OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len); | 
|  | OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len], | 
|  | buffer->bytes_valid - out_entropy_len); | 
|  | buffer->bytes_valid -= out_entropy_len; | 
|  | if (buffer->bytes_valid == 0) { | 
|  | buffer->want_additional_input = 0; | 
|  | } | 
|  |  | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get()); | 
|  | } | 
|  |  | 
|  | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally | 
|  | // fill |additional_input| with entropy to supplement |seed|. It sets | 
|  | // |*out_additional_input_len| to the number of extra bytes. | 
|  | static void rand_get_seed(struct rand_thread_state *state, | 
|  | uint8_t seed[CTR_DRBG_ENTROPY_LEN], | 
|  | uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], | 
|  | size_t *out_additional_input_len) { | 
|  | uint8_t entropy_bytes[sizeof(state->last_block) + | 
|  | CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD]; | 
|  | uint8_t *entropy = entropy_bytes; | 
|  | size_t entropy_len = sizeof(entropy_bytes); | 
|  |  | 
|  | if (state->last_block_valid) { | 
|  | // No need to fill |state->last_block| with entropy from the read. | 
|  | entropy += sizeof(state->last_block); | 
|  | entropy_len -= sizeof(state->last_block); | 
|  | } | 
|  |  | 
|  | int want_additional_input; | 
|  | get_seed_entropy(entropy, entropy_len, &want_additional_input); | 
|  |  | 
|  | if (!state->last_block_valid) { | 
|  | OPENSSL_memcpy(state->last_block, entropy, sizeof(state->last_block)); | 
|  | entropy += sizeof(state->last_block); | 
|  | entropy_len -= sizeof(state->last_block); | 
|  | } | 
|  |  | 
|  | // See FIPS 140-2, section 4.9.2. This is the “continuous random number | 
|  | // generator test” which causes the program to randomly abort. Hopefully the | 
|  | // rate of failure is small enough not to be a problem in practice. | 
|  | if (CRYPTO_memcmp(state->last_block, entropy, sizeof(state->last_block)) == | 
|  | 0) { | 
|  | fprintf(stderr, "CRNGT failed.\n"); | 
|  | BORINGSSL_FIPS_abort(); | 
|  | } | 
|  |  | 
|  | assert(entropy_len % CRNGT_BLOCK_SIZE == 0); | 
|  | for (size_t i = CRNGT_BLOCK_SIZE; i < entropy_len; i += CRNGT_BLOCK_SIZE) { | 
|  | if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i, | 
|  | CRNGT_BLOCK_SIZE) == 0) { | 
|  | fprintf(stderr, "CRNGT failed.\n"); | 
|  | BORINGSSL_FIPS_abort(); | 
|  | } | 
|  | } | 
|  | OPENSSL_memcpy(state->last_block, entropy + entropy_len - CRNGT_BLOCK_SIZE, | 
|  | CRNGT_BLOCK_SIZE); | 
|  |  | 
|  | assert(entropy_len == BORINGSSL_FIPS_OVERREAD * CTR_DRBG_ENTROPY_LEN); | 
|  | OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN); | 
|  |  | 
|  | for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) { | 
|  | for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) { | 
|  | seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we used something other than system entropy then also | 
|  | // opportunistically read from the system. This avoids solely relying on the | 
|  | // hardware once the entropy pool has been initialized. | 
|  | *out_additional_input_len = 0; | 
|  | if (want_additional_input && | 
|  | CRYPTO_sysrand_if_available(additional_input, CTR_DRBG_ENTROPY_LEN)) { | 
|  | *out_additional_input_len = CTR_DRBG_ENTROPY_LEN; | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | // rand_get_seed fills |seed| with entropy. In some cases, it will additionally | 
|  | // fill |additional_input| with entropy to supplement |seed|. It sets | 
|  | // |*out_additional_input_len| to the number of extra bytes. | 
|  | static void rand_get_seed(struct rand_thread_state *state, | 
|  | uint8_t seed[CTR_DRBG_ENTROPY_LEN], | 
|  | uint8_t additional_input[CTR_DRBG_ENTROPY_LEN], | 
|  | size_t *out_additional_input_len) { | 
|  | // If not in FIPS mode, we don't overread from the system entropy source and | 
|  | // we don't depend only on the hardware RDRAND. | 
|  | CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN); | 
|  | *out_additional_input_len = 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len, | 
|  | const uint8_t user_additional_data[32]) { | 
|  | if (out_len == 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | const uint64_t fork_generation = CRYPTO_get_fork_generation(); | 
|  |  | 
|  | // Additional data is mixed into every CTR-DRBG call to protect, as best we | 
|  | // can, against forks & VM clones. We do not over-read this information and | 
|  | // don't reseed with it so, from the point of view of FIPS, this doesn't | 
|  | // provide “prediction resistance”. But, in practice, it does. | 
|  | uint8_t additional_data[32]; | 
|  | // Intel chips have fast RDRAND instructions while, in other cases, RDRAND can | 
|  | // be _slower_ than a system call. | 
|  | if (!have_fast_rdrand() || | 
|  | !rdrand(additional_data, sizeof(additional_data))) { | 
|  | // Without a hardware RNG to save us from address-space duplication, the OS | 
|  | // entropy is used. This can be expensive (one read per |RAND_bytes| call) | 
|  | // and so is disabled when we have fork detection, or if the application has | 
|  | // promised not to fork. | 
|  | if (fork_generation != 0 || rand_fork_unsafe_buffering_enabled()) { | 
|  | OPENSSL_memset(additional_data, 0, sizeof(additional_data)); | 
|  | } else if (!have_rdrand()) { | 
|  | // No alternative so block for OS entropy. | 
|  | CRYPTO_sysrand(additional_data, sizeof(additional_data)); | 
|  | } else if (!CRYPTO_sysrand_if_available(additional_data, | 
|  | sizeof(additional_data)) && | 
|  | !rdrand(additional_data, sizeof(additional_data))) { | 
|  | // RDRAND failed: block for OS entropy. | 
|  | CRYPTO_sysrand(additional_data, sizeof(additional_data)); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sizeof(additional_data); i++) { | 
|  | additional_data[i] ^= user_additional_data[i]; | 
|  | } | 
|  |  | 
|  | struct rand_thread_state stack_state; | 
|  | struct rand_thread_state *state = | 
|  | CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND); | 
|  |  | 
|  | if (state == NULL) { | 
|  | state = OPENSSL_malloc(sizeof(struct rand_thread_state)); | 
|  | if (state == NULL || | 
|  | !CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state, | 
|  | rand_thread_state_free)) { | 
|  | // If the system is out of memory, use an ephemeral state on the | 
|  | // stack. | 
|  | state = &stack_state; | 
|  | } | 
|  |  | 
|  | state->last_block_valid = 0; | 
|  | uint8_t seed[CTR_DRBG_ENTROPY_LEN]; | 
|  | uint8_t personalization[CTR_DRBG_ENTROPY_LEN] = {0}; | 
|  | size_t personalization_len = 0; | 
|  | rand_get_seed(state, seed, personalization, &personalization_len); | 
|  |  | 
|  | if (!CTR_DRBG_init(&state->drbg, seed, personalization, | 
|  | personalization_len)) { | 
|  | abort(); | 
|  | } | 
|  | state->calls = 0; | 
|  | state->fork_generation = fork_generation; | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | if (state != &stack_state) { | 
|  | CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get()); | 
|  | struct rand_thread_state **states_list = thread_states_list_bss_get(); | 
|  | state->next = *states_list; | 
|  | if (state->next != NULL) { | 
|  | state->next->prev = state; | 
|  | } | 
|  | state->prev = NULL; | 
|  | *states_list = state; | 
|  | CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get()); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (state->calls >= kReseedInterval || | 
|  | state->fork_generation != fork_generation) { | 
|  | uint8_t seed[CTR_DRBG_ENTROPY_LEN]; | 
|  | uint8_t reseed_additional_data[CTR_DRBG_ENTROPY_LEN] = {0}; | 
|  | size_t reseed_additional_data_len = 0; | 
|  | rand_get_seed(state, seed, reseed_additional_data, | 
|  | &reseed_additional_data_len); | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | // Take a read lock around accesses to |state->drbg|. This is needed to | 
|  | // avoid returning bad entropy if we race with | 
|  | // |rand_thread_state_clear_all|. | 
|  | // | 
|  | // This lock must be taken after any calls to |CRYPTO_sysrand| to avoid a | 
|  | // bug on ppc64le. glibc may implement pthread locks by wrapping user code | 
|  | // in a hardware transaction, but, on some older versions of glibc and the | 
|  | // kernel, syscalls made with |syscall| did not abort the transaction. | 
|  | CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get()); | 
|  | #endif | 
|  | if (!CTR_DRBG_reseed(&state->drbg, seed, reseed_additional_data, | 
|  | reseed_additional_data_len)) { | 
|  | abort(); | 
|  | } | 
|  | state->calls = 0; | 
|  | state->fork_generation = fork_generation; | 
|  | } else { | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int first_call = 1; | 
|  | while (out_len > 0) { | 
|  | size_t todo = out_len; | 
|  | if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) { | 
|  | todo = CTR_DRBG_MAX_GENERATE_LENGTH; | 
|  | } | 
|  |  | 
|  | if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data, | 
|  | first_call ? sizeof(additional_data) : 0)) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | out += todo; | 
|  | out_len -= todo; | 
|  | // Though we only check before entering the loop, this cannot add enough to | 
|  | // overflow a |size_t|. | 
|  | state->calls++; | 
|  | first_call = 0; | 
|  | } | 
|  |  | 
|  | if (state == &stack_state) { | 
|  | CTR_DRBG_clear(&state->drbg); | 
|  | } | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  | CRYPTO_STATIC_MUTEX_unlock_read(state_clear_all_lock_bss_get()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int RAND_bytes(uint8_t *out, size_t out_len) { | 
|  | static const uint8_t kZeroAdditionalData[32] = {0}; | 
|  | RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int RAND_pseudo_bytes(uint8_t *buf, size_t len) { | 
|  | return RAND_bytes(buf, len); | 
|  | } | 
|  |  | 
|  | void RAND_get_system_entropy_for_custom_prng(uint8_t *buf, size_t len) { | 
|  | if (len > 256) { | 
|  | abort(); | 
|  | } | 
|  | CRYPTO_sysrand_for_seed(buf, len); | 
|  | } |