|  | /* ==================================================================== | 
|  | * Copyright (c) 2008 The OpenSSL Project.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in | 
|  | *    the documentation and/or other materials provided with the | 
|  | *    distribution. | 
|  | * | 
|  | * 3. All advertising materials mentioning features or use of this | 
|  | *    software must display the following acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | 
|  | * | 
|  | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | 
|  | *    endorse or promote products derived from this software without | 
|  | *    prior written permission. For written permission, please contact | 
|  | *    openssl-core@openssl.org. | 
|  | * | 
|  | * 5. Products derived from this software may not be called "OpenSSL" | 
|  | *    nor may "OpenSSL" appear in their names without prior written | 
|  | *    permission of the OpenSSL Project. | 
|  | * | 
|  | * 6. Redistributions of any form whatsoever must retain the following | 
|  | *    acknowledgment: | 
|  | *    "This product includes software developed by the OpenSSL Project | 
|  | *    for use in the OpenSSL Toolkit (http://www.openssl.org/)" | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | 
|  | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR | 
|  | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | 
|  | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
|  | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
|  | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
|  | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
|  | * OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | * ==================================================================== */ | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../delocate.h" | 
|  | #include "../service_indicator/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | struct ccm128_context { | 
|  | block128_f block; | 
|  | ctr128_f ctr; | 
|  | unsigned M, L; | 
|  | }; | 
|  |  | 
|  | struct ccm128_state { | 
|  | union { | 
|  | uint64_t u[2]; | 
|  | uint8_t c[16]; | 
|  | } nonce, cmac; | 
|  | }; | 
|  |  | 
|  | static int CRYPTO_ccm128_init(struct ccm128_context *ctx, const AES_KEY *key, | 
|  | block128_f block, ctr128_f ctr, unsigned M, | 
|  | unsigned L) { | 
|  | if (M < 4 || M > 16 || (M & 1) != 0 || L < 2 || L > 8) { | 
|  | return 0; | 
|  | } | 
|  | ctx->block = block; | 
|  | ctx->ctr = ctr; | 
|  | ctx->M = M; | 
|  | ctx->L = L; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static size_t CRYPTO_ccm128_max_input(const struct ccm128_context *ctx) { | 
|  | return ctx->L >= sizeof(size_t) ? (size_t)-1 | 
|  | : (((size_t)1) << (ctx->L * 8)) - 1; | 
|  | } | 
|  |  | 
|  | static int ccm128_init_state(const struct ccm128_context *ctx, | 
|  | struct ccm128_state *state, const AES_KEY *key, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *aad, size_t aad_len, | 
|  | size_t plaintext_len) { | 
|  | const block128_f block = ctx->block; | 
|  | const unsigned M = ctx->M; | 
|  | const unsigned L = ctx->L; | 
|  |  | 
|  | // |L| determines the expected |nonce_len| and the limit for |plaintext_len|. | 
|  | if (plaintext_len > CRYPTO_ccm128_max_input(ctx) || | 
|  | nonce_len != 15 - L) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Assemble the first block for computing the MAC. | 
|  | OPENSSL_memset(state, 0, sizeof(*state)); | 
|  | state->nonce.c[0] = (uint8_t)((L - 1) | ((M - 2) / 2) << 3); | 
|  | if (aad_len != 0) { | 
|  | state->nonce.c[0] |= 0x40;  // Set AAD Flag | 
|  | } | 
|  | OPENSSL_memcpy(&state->nonce.c[1], nonce, nonce_len); | 
|  | for (unsigned i = 0; i < L; i++) { | 
|  | state->nonce.c[15 - i] = (uint8_t)(plaintext_len >> (8 * i)); | 
|  | } | 
|  |  | 
|  | (*block)(state->nonce.c, state->cmac.c, key); | 
|  | size_t blocks = 1; | 
|  |  | 
|  | if (aad_len != 0) { | 
|  | unsigned i; | 
|  | // Cast to u64 to avoid the compiler complaining about invalid shifts. | 
|  | uint64_t aad_len_u64 = aad_len; | 
|  | if (aad_len_u64 < 0x10000 - 0x100) { | 
|  | state->cmac.c[0] ^= (uint8_t)(aad_len_u64 >> 8); | 
|  | state->cmac.c[1] ^= (uint8_t)aad_len_u64; | 
|  | i = 2; | 
|  | } else if (aad_len_u64 <= 0xffffffff) { | 
|  | state->cmac.c[0] ^= 0xff; | 
|  | state->cmac.c[1] ^= 0xfe; | 
|  | state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 24); | 
|  | state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 16); | 
|  | state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 8); | 
|  | state->cmac.c[5] ^= (uint8_t)aad_len_u64; | 
|  | i = 6; | 
|  | } else { | 
|  | state->cmac.c[0] ^= 0xff; | 
|  | state->cmac.c[1] ^= 0xff; | 
|  | state->cmac.c[2] ^= (uint8_t)(aad_len_u64 >> 56); | 
|  | state->cmac.c[3] ^= (uint8_t)(aad_len_u64 >> 48); | 
|  | state->cmac.c[4] ^= (uint8_t)(aad_len_u64 >> 40); | 
|  | state->cmac.c[5] ^= (uint8_t)(aad_len_u64 >> 32); | 
|  | state->cmac.c[6] ^= (uint8_t)(aad_len_u64 >> 24); | 
|  | state->cmac.c[7] ^= (uint8_t)(aad_len_u64 >> 16); | 
|  | state->cmac.c[8] ^= (uint8_t)(aad_len_u64 >> 8); | 
|  | state->cmac.c[9] ^= (uint8_t)aad_len_u64; | 
|  | i = 10; | 
|  | } | 
|  |  | 
|  | do { | 
|  | for (; i < 16 && aad_len != 0; i++) { | 
|  | state->cmac.c[i] ^= *aad; | 
|  | aad++; | 
|  | aad_len--; | 
|  | } | 
|  | (*block)(state->cmac.c, state->cmac.c, key); | 
|  | blocks++; | 
|  | i = 0; | 
|  | } while (aad_len != 0); | 
|  | } | 
|  |  | 
|  | // Per RFC 3610, section 2.6, the total number of block cipher operations done | 
|  | // must not exceed 2^61. There are two block cipher operations remaining per | 
|  | // message block, plus one block at the end to encrypt the MAC. | 
|  | size_t remaining_blocks = 2 * ((plaintext_len + 15) / 16) + 1; | 
|  | if (plaintext_len + 15 < plaintext_len || | 
|  | remaining_blocks + blocks < blocks || | 
|  | (uint64_t) remaining_blocks + blocks > UINT64_C(1) << 61) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Assemble the first block for encrypting and decrypting. The bottom |L| | 
|  | // bytes are replaced with a counter and all bit the encoding of |L| is | 
|  | // cleared in the first byte. | 
|  | state->nonce.c[0] &= 7; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ccm128_encrypt(const struct ccm128_context *ctx, | 
|  | struct ccm128_state *state, const AES_KEY *key, | 
|  | uint8_t *out, const uint8_t *in, size_t len) { | 
|  | // The counter for encryption begins at one. | 
|  | for (unsigned i = 0; i < ctx->L; i++) { | 
|  | state->nonce.c[15 - i] = 0; | 
|  | } | 
|  | state->nonce.c[15] = 1; | 
|  |  | 
|  | uint8_t partial_buf[16]; | 
|  | unsigned num = 0; | 
|  | if (ctx->ctr != NULL) { | 
|  | CRYPTO_ctr128_encrypt_ctr32(in, out, len, key, state->nonce.c, partial_buf, | 
|  | &num, ctx->ctr); | 
|  | } else { | 
|  | CRYPTO_ctr128_encrypt(in, out, len, key, state->nonce.c, partial_buf, &num, | 
|  | ctx->block); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int ccm128_compute_mac(const struct ccm128_context *ctx, | 
|  | struct ccm128_state *state, const AES_KEY *key, | 
|  | uint8_t *out_tag, size_t tag_len, | 
|  | const uint8_t *in, size_t len) { | 
|  | block128_f block = ctx->block; | 
|  | if (tag_len != ctx->M) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Incorporate |in| into the MAC. | 
|  | union { | 
|  | uint64_t u[2]; | 
|  | uint8_t c[16]; | 
|  | } tmp; | 
|  | while (len >= 16) { | 
|  | OPENSSL_memcpy(tmp.c, in, 16); | 
|  | state->cmac.u[0] ^= tmp.u[0]; | 
|  | state->cmac.u[1] ^= tmp.u[1]; | 
|  | (*block)(state->cmac.c, state->cmac.c, key); | 
|  | in += 16; | 
|  | len -= 16; | 
|  | } | 
|  | if (len > 0) { | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | state->cmac.c[i] ^= in[i]; | 
|  | } | 
|  | (*block)(state->cmac.c, state->cmac.c, key); | 
|  | } | 
|  |  | 
|  | // Encrypt the MAC with counter zero. | 
|  | for (unsigned i = 0; i < ctx->L; i++) { | 
|  | state->nonce.c[15 - i] = 0; | 
|  | } | 
|  | (*block)(state->nonce.c, tmp.c, key); | 
|  | state->cmac.u[0] ^= tmp.u[0]; | 
|  | state->cmac.u[1] ^= tmp.u[1]; | 
|  |  | 
|  | OPENSSL_memcpy(out_tag, state->cmac.c, tag_len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int CRYPTO_ccm128_encrypt(const struct ccm128_context *ctx, | 
|  | const AES_KEY *key, uint8_t *out, | 
|  | uint8_t *out_tag, size_t tag_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t len, | 
|  | const uint8_t *aad, size_t aad_len) { | 
|  | struct ccm128_state state; | 
|  | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, | 
|  | len) && | 
|  | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, in, len) && | 
|  | ccm128_encrypt(ctx, &state, key, out, in, len); | 
|  | } | 
|  |  | 
|  | static int CRYPTO_ccm128_decrypt(const struct ccm128_context *ctx, | 
|  | const AES_KEY *key, uint8_t *out, | 
|  | uint8_t *out_tag, size_t tag_len, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t len, | 
|  | const uint8_t *aad, size_t aad_len) { | 
|  | struct ccm128_state state; | 
|  | return ccm128_init_state(ctx, &state, key, nonce, nonce_len, aad, aad_len, | 
|  | len) && | 
|  | ccm128_encrypt(ctx, &state, key, out, in, len) && | 
|  | ccm128_compute_mac(ctx, &state, key, out_tag, tag_len, out, len); | 
|  | } | 
|  |  | 
|  | #define EVP_AEAD_AES_CCM_MAX_TAG_LEN 16 | 
|  |  | 
|  | struct aead_aes_ccm_ctx { | 
|  | union { | 
|  | double align; | 
|  | AES_KEY ks; | 
|  | } ks; | 
|  | struct ccm128_context ccm; | 
|  | }; | 
|  |  | 
|  | static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >= | 
|  | sizeof(struct aead_aes_ccm_ctx), | 
|  | "AEAD state is too small"); | 
|  | static_assert(alignof(union evp_aead_ctx_st_state) >= | 
|  | alignof(struct aead_aes_ccm_ctx), | 
|  | "AEAD state has insufficient alignment"); | 
|  |  | 
|  | static int aead_aes_ccm_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len, unsigned M, | 
|  | unsigned L) { | 
|  | assert(M == EVP_AEAD_max_overhead(ctx->aead)); | 
|  | assert(M == EVP_AEAD_max_tag_len(ctx->aead)); | 
|  | assert(15 - L == EVP_AEAD_nonce_length(ctx->aead)); | 
|  |  | 
|  | if (key_len != EVP_AEAD_key_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH); | 
|  | return 0;  // EVP_AEAD_CTX_init should catch this. | 
|  | } | 
|  |  | 
|  | if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) { | 
|  | tag_len = M; | 
|  | } | 
|  |  | 
|  | if (tag_len != M) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct aead_aes_ccm_ctx *ccm_ctx = (struct aead_aes_ccm_ctx *)&ctx->state; | 
|  |  | 
|  | block128_f block; | 
|  | ctr128_f ctr = aes_ctr_set_key(&ccm_ctx->ks.ks, NULL, &block, key, key_len); | 
|  | ctx->tag_len = tag_len; | 
|  | if (!CRYPTO_ccm128_init(&ccm_ctx->ccm, &ccm_ctx->ks.ks, block, ctr, M, L)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void aead_aes_ccm_cleanup(EVP_AEAD_CTX *ctx) {} | 
|  |  | 
|  | static int aead_aes_ccm_seal_scatter( | 
|  | const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag, | 
|  | size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce, | 
|  | size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in, | 
|  | size_t extra_in_len, const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_ccm_ctx *ccm_ctx = | 
|  | (struct aead_aes_ccm_ctx *)&ctx->state; | 
|  |  | 
|  | if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (max_out_tag_len < ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!CRYPTO_ccm128_encrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, out_tag, | 
|  | ctx->tag_len, nonce, nonce_len, in, in_len, ad, | 
|  | ad_len)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_tag_len = ctx->tag_len; | 
|  | AEAD_CCM_verify_service_indicator(ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_ccm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out, | 
|  | const uint8_t *nonce, size_t nonce_len, | 
|  | const uint8_t *in, size_t in_len, | 
|  | const uint8_t *in_tag, size_t in_tag_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | const struct aead_aes_ccm_ctx *ccm_ctx = | 
|  | (struct aead_aes_ccm_ctx *)&ctx->state; | 
|  |  | 
|  | if (in_len > CRYPTO_ccm128_max_input(&ccm_ctx->ccm)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (in_tag_len != ctx->tag_len) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t tag[EVP_AEAD_AES_CCM_MAX_TAG_LEN]; | 
|  | assert(ctx->tag_len <= EVP_AEAD_AES_CCM_MAX_TAG_LEN); | 
|  | if (!CRYPTO_ccm128_decrypt(&ccm_ctx->ccm, &ccm_ctx->ks.ks, out, tag, | 
|  | ctx->tag_len, nonce, nonce_len, in, in_len, ad, | 
|  | ad_len)) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) { | 
|  | OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | AEAD_CCM_verify_service_indicator(ctx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int aead_aes_ccm_bluetooth_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 4, 2); | 
|  | } | 
|  |  | 
|  | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth) { | 
|  | memset(out, 0, sizeof(EVP_AEAD)); | 
|  |  | 
|  | out->key_len = 16; | 
|  | out->nonce_len = 13; | 
|  | out->overhead = 4; | 
|  | out->max_tag_len = 4; | 
|  |  | 
|  | out->init = aead_aes_ccm_bluetooth_init; | 
|  | out->cleanup = aead_aes_ccm_cleanup; | 
|  | out->seal_scatter = aead_aes_ccm_seal_scatter; | 
|  | out->open_gather = aead_aes_ccm_open_gather; | 
|  | } | 
|  |  | 
|  | static int aead_aes_ccm_bluetooth_8_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 8, 2); | 
|  | } | 
|  |  | 
|  | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_bluetooth_8) { | 
|  | memset(out, 0, sizeof(EVP_AEAD)); | 
|  |  | 
|  | out->key_len = 16; | 
|  | out->nonce_len = 13; | 
|  | out->overhead = 8; | 
|  | out->max_tag_len = 8; | 
|  |  | 
|  | out->init = aead_aes_ccm_bluetooth_8_init; | 
|  | out->cleanup = aead_aes_ccm_cleanup; | 
|  | out->seal_scatter = aead_aes_ccm_seal_scatter; | 
|  | out->open_gather = aead_aes_ccm_open_gather; | 
|  | } | 
|  |  | 
|  | static int aead_aes_ccm_matter_init(EVP_AEAD_CTX *ctx, const uint8_t *key, | 
|  | size_t key_len, size_t tag_len) { | 
|  | return aead_aes_ccm_init(ctx, key, key_len, tag_len, 16, 2); | 
|  | } | 
|  |  | 
|  | DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_ccm_matter) { | 
|  | memset(out, 0, sizeof(EVP_AEAD)); | 
|  |  | 
|  | out->key_len = 16; | 
|  | out->nonce_len = 13; | 
|  | out->overhead = 16; | 
|  | out->max_tag_len = 16; | 
|  |  | 
|  | out->init = aead_aes_ccm_matter_init; | 
|  | out->cleanup = aead_aes_ccm_cleanup; | 
|  | out->seal_scatter = aead_aes_ccm_seal_scatter; | 
|  | out->open_gather = aead_aes_ccm_open_gather; | 
|  | } |