|  | /* | 
|  | * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | * | 
|  | * Licensed under the OpenSSL license (the "License").  You may not use | 
|  | * this file except in compliance with the License.  You can obtain a copy | 
|  | * in the file LICENSE in the source distribution or at | 
|  | * https://www.openssl.org/source/license.html | 
|  | */ | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | // This file implements scrypt, described in RFC 7914. | 
|  | // | 
|  | // Note scrypt refers to both "blocks" and a "block size" parameter, r. These | 
|  | // are two different notions of blocks. A Salsa20 block is 64 bytes long, | 
|  | // represented in this implementation by 16 |uint32_t|s. |r| determines the | 
|  | // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r| | 
|  | // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and | 
|  | // scrypt blocks, respectively. | 
|  |  | 
|  | // A block_t is a Salsa20 block. | 
|  | typedef struct { uint32_t words[16]; } block_t; | 
|  |  | 
|  | static_assert(sizeof(block_t) == 64, "block_t has padding"); | 
|  |  | 
|  | // salsa208_word_specification implements the Salsa20/8 core function, also | 
|  | // described in RFC 7914, section 3. It modifies the block at |inout| | 
|  | // in-place. | 
|  | static void salsa208_word_specification(block_t *inout) { | 
|  | block_t x; | 
|  | OPENSSL_memcpy(&x, inout, sizeof(x)); | 
|  |  | 
|  | for (int i = 8; i > 0; i -= 2) { | 
|  | x.words[4] ^= CRYPTO_rotl_u32(x.words[0] + x.words[12], 7); | 
|  | x.words[8] ^= CRYPTO_rotl_u32(x.words[4] + x.words[0], 9); | 
|  | x.words[12] ^= CRYPTO_rotl_u32(x.words[8] + x.words[4], 13); | 
|  | x.words[0] ^= CRYPTO_rotl_u32(x.words[12] + x.words[8], 18); | 
|  | x.words[9] ^= CRYPTO_rotl_u32(x.words[5] + x.words[1], 7); | 
|  | x.words[13] ^= CRYPTO_rotl_u32(x.words[9] + x.words[5], 9); | 
|  | x.words[1] ^= CRYPTO_rotl_u32(x.words[13] + x.words[9], 13); | 
|  | x.words[5] ^= CRYPTO_rotl_u32(x.words[1] + x.words[13], 18); | 
|  | x.words[14] ^= CRYPTO_rotl_u32(x.words[10] + x.words[6], 7); | 
|  | x.words[2] ^= CRYPTO_rotl_u32(x.words[14] + x.words[10], 9); | 
|  | x.words[6] ^= CRYPTO_rotl_u32(x.words[2] + x.words[14], 13); | 
|  | x.words[10] ^= CRYPTO_rotl_u32(x.words[6] + x.words[2], 18); | 
|  | x.words[3] ^= CRYPTO_rotl_u32(x.words[15] + x.words[11], 7); | 
|  | x.words[7] ^= CRYPTO_rotl_u32(x.words[3] + x.words[15], 9); | 
|  | x.words[11] ^= CRYPTO_rotl_u32(x.words[7] + x.words[3], 13); | 
|  | x.words[15] ^= CRYPTO_rotl_u32(x.words[11] + x.words[7], 18); | 
|  | x.words[1] ^= CRYPTO_rotl_u32(x.words[0] + x.words[3], 7); | 
|  | x.words[2] ^= CRYPTO_rotl_u32(x.words[1] + x.words[0], 9); | 
|  | x.words[3] ^= CRYPTO_rotl_u32(x.words[2] + x.words[1], 13); | 
|  | x.words[0] ^= CRYPTO_rotl_u32(x.words[3] + x.words[2], 18); | 
|  | x.words[6] ^= CRYPTO_rotl_u32(x.words[5] + x.words[4], 7); | 
|  | x.words[7] ^= CRYPTO_rotl_u32(x.words[6] + x.words[5], 9); | 
|  | x.words[4] ^= CRYPTO_rotl_u32(x.words[7] + x.words[6], 13); | 
|  | x.words[5] ^= CRYPTO_rotl_u32(x.words[4] + x.words[7], 18); | 
|  | x.words[11] ^= CRYPTO_rotl_u32(x.words[10] + x.words[9], 7); | 
|  | x.words[8] ^= CRYPTO_rotl_u32(x.words[11] + x.words[10], 9); | 
|  | x.words[9] ^= CRYPTO_rotl_u32(x.words[8] + x.words[11], 13); | 
|  | x.words[10] ^= CRYPTO_rotl_u32(x.words[9] + x.words[8], 18); | 
|  | x.words[12] ^= CRYPTO_rotl_u32(x.words[15] + x.words[14], 7); | 
|  | x.words[13] ^= CRYPTO_rotl_u32(x.words[12] + x.words[15], 9); | 
|  | x.words[14] ^= CRYPTO_rotl_u32(x.words[13] + x.words[12], 13); | 
|  | x.words[15] ^= CRYPTO_rotl_u32(x.words[14] + x.words[13], 18); | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | inout->words[i] += x.words[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // xor_block sets |*out| to be |*a| XOR |*b|. | 
|  | static void xor_block(block_t *out, const block_t *a, const block_t *b) { | 
|  | for (size_t i = 0; i < 16; i++) { | 
|  | out->words[i] = a->words[i] ^ b->words[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // scryptBlockMix implements the function described in RFC 7914, section 4. B' | 
|  | // is written to |out|. |out| and |B| may not alias and must be each one scrypt | 
|  | // block (2 * |r| Salsa20 blocks) long. | 
|  | static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) { | 
|  | assert(out != B); | 
|  |  | 
|  | block_t X; | 
|  | OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X)); | 
|  | for (uint64_t i = 0; i < r * 2; i++) { | 
|  | xor_block(&X, &X, &B[i]); | 
|  | salsa208_word_specification(&X); | 
|  |  | 
|  | // This implements the permutation in step 3. | 
|  | OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // scryptROMix implements the function described in RFC 7914, section 5.  |B| is | 
|  | // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and | 
|  | // |V| are scratch space allocated by the caller. |T| must have space for one | 
|  | // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt | 
|  | // blocks (2 * |r| * |N| Salsa20 blocks). | 
|  | static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T, | 
|  | block_t *V) { | 
|  | // Steps 1 and 2. | 
|  | OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t)); | 
|  | for (uint64_t i = 1; i < N; i++) { | 
|  | scryptBlockMix(&V[2 * r * i /* scrypt block i */], | 
|  | &V[2 * r * (i - 1) /* scrypt block i-1 */], r); | 
|  | } | 
|  | scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r); | 
|  |  | 
|  | // Step 3. | 
|  | for (uint64_t i = 0; i < N; i++) { | 
|  | // Note this assumes |N| <= 2^32 and is a power of 2. | 
|  | uint32_t j = B[2 * r - 1].words[0] & (N - 1); | 
|  | for (size_t k = 0; k < 2 * r; k++) { | 
|  | xor_block(&T[k], &B[k], &V[2 * r * j + k]); | 
|  | } | 
|  | scryptBlockMix(B, T, r); | 
|  | } | 
|  | } | 
|  |  | 
|  | // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the | 
|  | // bounds on p in section 6: | 
|  | // | 
|  | //   p <= ((2^32-1) * hLen) / MFLen iff | 
|  | //   p <= ((2^32-1) * 32) / (128 * r) iff | 
|  | //   p * r <= (2^30-1) | 
|  | #define SCRYPT_PR_MAX ((1 << 30) - 1) | 
|  |  | 
|  | // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by | 
|  | // |EVP_PBE_scrypt|. | 
|  | #define SCRYPT_MAX_MEM (1024 * 1024 * 32) | 
|  |  | 
|  | int EVP_PBE_scrypt(const char *password, size_t password_len, | 
|  | const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r, | 
|  | uint64_t p, size_t max_mem, uint8_t *out_key, | 
|  | size_t key_len) { | 
|  | if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r || | 
|  | // |N| must be a power of two. | 
|  | N < 2 || (N & (N - 1)) || | 
|  | // We only support |N| <= 2^32 in |scryptROMix|. | 
|  | N > UINT64_C(1) << 32 || | 
|  | // Check that |N| < 2^(128×r / 8). | 
|  | (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N| | 
|  | // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s. | 
|  | if (max_mem == 0) { | 
|  | max_mem = SCRYPT_MAX_MEM; | 
|  | } | 
|  |  | 
|  | size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t)); | 
|  | if (max_scrypt_blocks < p + 1 || | 
|  | max_scrypt_blocks - p - 1 < N) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which | 
|  | // is no bigger than uint64_t, so none of these operations may overflow. | 
|  | static_assert(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t"); | 
|  | size_t B_blocks = p * 2 * r; | 
|  | size_t B_bytes = B_blocks * sizeof(block_t); | 
|  | size_t T_blocks = 2 * r; | 
|  | size_t V_blocks = N * 2 * r; | 
|  | block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t)); | 
|  | if (B == NULL) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | block_t *T = B + B_blocks; | 
|  | block_t *V = T + T_blocks; | 
|  |  | 
|  | // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure | 
|  | // or |iterations| of 0 (we pass 1 here). This is consistent with | 
|  | // the documented failure conditions of EVP_PBE_scrypt. | 
|  | if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1, | 
|  | EVP_sha256(), B_bytes, (uint8_t *)B)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (uint64_t i = 0; i < p; i++) { | 
|  | scryptROMix(B + 2 * r * i, r, N, T, V); | 
|  | } | 
|  |  | 
|  | if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1, | 
|  | EVP_sha256(), key_len, out_key)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(B); | 
|  | return ret; | 
|  | } |