|  | #! /usr/bin/env perl | 
|  | # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | # | 
|  | # Licensed under the OpenSSL license (the "License").  You may not use | 
|  | # this file except in compliance with the License.  You can obtain a copy | 
|  | # in the file LICENSE in the source distribution or at | 
|  | # https://www.openssl.org/source/license.html | 
|  |  | 
|  | # | 
|  | # ==================================================================== | 
|  | # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL | 
|  | # project. The module is, however, dual licensed under OpenSSL and | 
|  | # CRYPTOGAMS licenses depending on where you obtain it. For further | 
|  | # details see http://www.openssl.org/~appro/cryptogams/. | 
|  | # ==================================================================== | 
|  | # | 
|  | # March, May, June 2010 | 
|  | # | 
|  | # The module implements "4-bit" GCM GHASH function and underlying | 
|  | # single multiplication operation in GF(2^128). "4-bit" means that it | 
|  | # uses 256 bytes per-key table [+64/128 bytes fixed table]. It has two | 
|  | # code paths: vanilla x86 and vanilla SSE. Former will be executed on | 
|  | # 486 and Pentium, latter on all others. SSE GHASH features so called | 
|  | # "528B" variant of "4-bit" method utilizing additional 256+16 bytes | 
|  | # of per-key storage [+512 bytes shared table]. Performance results | 
|  | # are for streamed GHASH subroutine and are expressed in cycles per | 
|  | # processed byte, less is better: | 
|  | # | 
|  | #		gcc 2.95.3(*)	SSE assembler	x86 assembler | 
|  | # | 
|  | # Pentium	105/111(**)	-		50 | 
|  | # PIII		68 /75		12.2		24 | 
|  | # P4		125/125		17.8		84(***) | 
|  | # Opteron	66 /70		10.1		30 | 
|  | # Core2		54 /67		8.4		18 | 
|  | # Atom		105/105		16.8		53 | 
|  | # VIA Nano	69 /71		13.0		27 | 
|  | # | 
|  | # (*)	gcc 3.4.x was observed to generate few percent slower code, | 
|  | #	which is one of reasons why 2.95.3 results were chosen, | 
|  | #	another reason is lack of 3.4.x results for older CPUs; | 
|  | #	comparison with SSE results is not completely fair, because C | 
|  | #	results are for vanilla "256B" implementation, while | 
|  | #	assembler results are for "528B";-) | 
|  | # (**)	second number is result for code compiled with -fPIC flag, | 
|  | #	which is actually more relevant, because assembler code is | 
|  | #	position-independent; | 
|  | # (***)	see comment in non-MMX routine for further details; | 
|  | # | 
|  | # To summarize, it's >2-5 times faster than gcc-generated code. To | 
|  | # anchor it to something else SHA1 assembler processes one byte in | 
|  | # ~7 cycles on contemporary x86 cores. As for choice of MMX/SSE | 
|  | # in particular, see comment at the end of the file... | 
|  |  | 
|  | # May 2010 | 
|  | # | 
|  | # Add PCLMULQDQ version performing at 2.10 cycles per processed byte. | 
|  | # The question is how close is it to theoretical limit? The pclmulqdq | 
|  | # instruction latency appears to be 14 cycles and there can't be more | 
|  | # than 2 of them executing at any given time. This means that single | 
|  | # Karatsuba multiplication would take 28 cycles *plus* few cycles for | 
|  | # pre- and post-processing. Then multiplication has to be followed by | 
|  | # modulo-reduction. Given that aggregated reduction method [see | 
|  | # "Carry-less Multiplication and Its Usage for Computing the GCM Mode" | 
|  | # white paper by Intel] allows you to perform reduction only once in | 
|  | # a while we can assume that asymptotic performance can be estimated | 
|  | # as (28+Tmod/Naggr)/16, where Tmod is time to perform reduction | 
|  | # and Naggr is the aggregation factor. | 
|  | # | 
|  | # Before we proceed to this implementation let's have closer look at | 
|  | # the best-performing code suggested by Intel in their white paper. | 
|  | # By tracing inter-register dependencies Tmod is estimated as ~19 | 
|  | # cycles and Naggr chosen by Intel is 4, resulting in 2.05 cycles per | 
|  | # processed byte. As implied, this is quite optimistic estimate, | 
|  | # because it does not account for Karatsuba pre- and post-processing, | 
|  | # which for a single multiplication is ~5 cycles. Unfortunately Intel | 
|  | # does not provide performance data for GHASH alone. But benchmarking | 
|  | # AES_GCM_encrypt ripped out of Fig. 15 of the white paper with aadt | 
|  | # alone resulted in 2.46 cycles per byte of out 16KB buffer. Note that | 
|  | # the result accounts even for pre-computing of degrees of the hash | 
|  | # key H, but its portion is negligible at 16KB buffer size. | 
|  | # | 
|  | # Moving on to the implementation in question. Tmod is estimated as | 
|  | # ~13 cycles and Naggr is 2, giving asymptotic performance of ... | 
|  | # 2.16. How is it possible that measured performance is better than | 
|  | # optimistic theoretical estimate? There is one thing Intel failed | 
|  | # to recognize. By serializing GHASH with CTR in same subroutine | 
|  | # former's performance is really limited to above (Tmul + Tmod/Naggr) | 
|  | # equation. But if GHASH procedure is detached, the modulo-reduction | 
|  | # can be interleaved with Naggr-1 multiplications at instruction level | 
|  | # and under ideal conditions even disappear from the equation. So that | 
|  | # optimistic theoretical estimate for this implementation is ... | 
|  | # 28/16=1.75, and not 2.16. Well, it's probably way too optimistic, | 
|  | # at least for such small Naggr. I'd argue that (28+Tproc/Naggr), | 
|  | # where Tproc is time required for Karatsuba pre- and post-processing, | 
|  | # is more realistic estimate. In this case it gives ... 1.91 cycles. | 
|  | # Or in other words, depending on how well we can interleave reduction | 
|  | # and one of the two multiplications the performance should be between | 
|  | # 1.91 and 2.16. As already mentioned, this implementation processes | 
|  | # one byte out of 8KB buffer in 2.10 cycles, while x86_64 counterpart | 
|  | # - in 2.02. x86_64 performance is better, because larger register | 
|  | # bank allows to interleave reduction and multiplication better. | 
|  | # | 
|  | # Does it make sense to increase Naggr? To start with it's virtually | 
|  | # impossible in 32-bit mode, because of limited register bank | 
|  | # capacity. Otherwise improvement has to be weighed against slower | 
|  | # setup, as well as code size and complexity increase. As even | 
|  | # optimistic estimate doesn't promise 30% performance improvement, | 
|  | # there are currently no plans to increase Naggr. | 
|  | # | 
|  | # Special thanks to David Woodhouse for providing access to a | 
|  | # Westmere-based system on behalf of Intel Open Source Technology Centre. | 
|  |  | 
|  | # January 2010 | 
|  | # | 
|  | # Tweaked to optimize transitions between integer and FP operations | 
|  | # on same XMM register, PCLMULQDQ subroutine was measured to process | 
|  | # one byte in 2.07 cycles on Sandy Bridge, and in 2.12 - on Westmere. | 
|  | # The minor regression on Westmere is outweighed by ~15% improvement | 
|  | # on Sandy Bridge. Strangely enough attempt to modify 64-bit code in | 
|  | # similar manner resulted in almost 20% degradation on Sandy Bridge, | 
|  | # where original 64-bit code processes one byte in 1.95 cycles. | 
|  |  | 
|  | ##################################################################### | 
|  | # For reference, AMD Bulldozer processes one byte in 1.98 cycles in | 
|  | # 32-bit mode and 1.89 in 64-bit. | 
|  |  | 
|  | # February 2013 | 
|  | # | 
|  | # Overhaul: aggregate Karatsuba post-processing, improve ILP in | 
|  | # reduction_alg9. Resulting performance is 1.96 cycles per byte on | 
|  | # Westmere, 1.95 - on Sandy/Ivy Bridge, 1.76 - on Bulldozer. | 
|  |  | 
|  | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | 
|  | push(@INC,"${dir}","${dir}../../../perlasm"); | 
|  | require "x86asm.pl"; | 
|  |  | 
|  | $output=pop; | 
|  | open STDOUT,">$output"; | 
|  |  | 
|  | &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386"); | 
|  |  | 
|  | $sse2=0; | 
|  | for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); } | 
|  |  | 
|  | ($Zhh,$Zhl,$Zlh,$Zll) = ("ebp","edx","ecx","ebx"); | 
|  | $inp  = "edi"; | 
|  | $Htbl = "esi"; | 
|  |  | 
|  | $unroll = 0;	# Affects x86 loop. Folded loop performs ~7% worse | 
|  | # than unrolled, which has to be weighted against | 
|  | # 2.5x x86-specific code size reduction. | 
|  |  | 
|  | sub x86_loop { | 
|  | my $off = shift; | 
|  | my $rem = "eax"; | 
|  |  | 
|  | &mov	($Zhh,&DWP(4,$Htbl,$Zll)); | 
|  | &mov	($Zhl,&DWP(0,$Htbl,$Zll)); | 
|  | &mov	($Zlh,&DWP(12,$Htbl,$Zll)); | 
|  | &mov	($Zll,&DWP(8,$Htbl,$Zll)); | 
|  | &xor	($rem,$rem);	# avoid partial register stalls on PIII | 
|  |  | 
|  | # shrd practically kills P4, 2.5x deterioration, but P4 has | 
|  | # MMX code-path to execute. shrd runs tad faster [than twice | 
|  | # the shifts, move's and or's] on pre-MMX Pentium (as well as | 
|  | # PIII and Core2), *but* minimizes code size, spares register | 
|  | # and thus allows to fold the loop... | 
|  | if (!$unroll) { | 
|  | my $cnt = $inp; | 
|  | &mov	($cnt,15); | 
|  | &jmp	(&label("x86_loop")); | 
|  | &set_label("x86_loop",16); | 
|  | for($i=1;$i<=2;$i++) { | 
|  | &mov	(&LB($rem),&LB($Zll)); | 
|  | &shrd	($Zll,$Zlh,4); | 
|  | &and	(&LB($rem),0xf); | 
|  | &shrd	($Zlh,$Zhl,4); | 
|  | &shrd	($Zhl,$Zhh,4); | 
|  | &shr	($Zhh,4); | 
|  | &xor	($Zhh,&DWP($off+16,"esp",$rem,4)); | 
|  |  | 
|  | &mov	(&LB($rem),&BP($off,"esp",$cnt)); | 
|  | if ($i&1) { | 
|  | &and	(&LB($rem),0xf0); | 
|  | } else { | 
|  | &shl	(&LB($rem),4); | 
|  | } | 
|  |  | 
|  | &xor	($Zll,&DWP(8,$Htbl,$rem)); | 
|  | &xor	($Zlh,&DWP(12,$Htbl,$rem)); | 
|  | &xor	($Zhl,&DWP(0,$Htbl,$rem)); | 
|  | &xor	($Zhh,&DWP(4,$Htbl,$rem)); | 
|  |  | 
|  | if ($i&1) { | 
|  | &dec	($cnt); | 
|  | &js	(&label("x86_break")); | 
|  | } else { | 
|  | &jmp	(&label("x86_loop")); | 
|  | } | 
|  | } | 
|  | &set_label("x86_break",16); | 
|  | } else { | 
|  | for($i=1;$i<32;$i++) { | 
|  | &comment($i); | 
|  | &mov	(&LB($rem),&LB($Zll)); | 
|  | &shrd	($Zll,$Zlh,4); | 
|  | &and	(&LB($rem),0xf); | 
|  | &shrd	($Zlh,$Zhl,4); | 
|  | &shrd	($Zhl,$Zhh,4); | 
|  | &shr	($Zhh,4); | 
|  | &xor	($Zhh,&DWP($off+16,"esp",$rem,4)); | 
|  |  | 
|  | if ($i&1) { | 
|  | &mov	(&LB($rem),&BP($off+15-($i>>1),"esp")); | 
|  | &and	(&LB($rem),0xf0); | 
|  | } else { | 
|  | &mov	(&LB($rem),&BP($off+15-($i>>1),"esp")); | 
|  | &shl	(&LB($rem),4); | 
|  | } | 
|  |  | 
|  | &xor	($Zll,&DWP(8,$Htbl,$rem)); | 
|  | &xor	($Zlh,&DWP(12,$Htbl,$rem)); | 
|  | &xor	($Zhl,&DWP(0,$Htbl,$rem)); | 
|  | &xor	($Zhh,&DWP(4,$Htbl,$rem)); | 
|  | } | 
|  | } | 
|  | &bswap	($Zll); | 
|  | &bswap	($Zlh); | 
|  | &bswap	($Zhl); | 
|  | if (!$x86only) { | 
|  | &bswap	($Zhh); | 
|  | } else { | 
|  | &mov	("eax",$Zhh); | 
|  | &bswap	("eax"); | 
|  | &mov	($Zhh,"eax"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ($unroll) { | 
|  | &function_begin_B("_x86_gmult_4bit_inner"); | 
|  | &x86_loop(4); | 
|  | &ret	(); | 
|  | &function_end_B("_x86_gmult_4bit_inner"); | 
|  | } | 
|  |  | 
|  | sub deposit_rem_4bit { | 
|  | my $bias = shift; | 
|  |  | 
|  | &mov	(&DWP($bias+0, "esp"),0x0000<<16); | 
|  | &mov	(&DWP($bias+4, "esp"),0x1C20<<16); | 
|  | &mov	(&DWP($bias+8, "esp"),0x3840<<16); | 
|  | &mov	(&DWP($bias+12,"esp"),0x2460<<16); | 
|  | &mov	(&DWP($bias+16,"esp"),0x7080<<16); | 
|  | &mov	(&DWP($bias+20,"esp"),0x6CA0<<16); | 
|  | &mov	(&DWP($bias+24,"esp"),0x48C0<<16); | 
|  | &mov	(&DWP($bias+28,"esp"),0x54E0<<16); | 
|  | &mov	(&DWP($bias+32,"esp"),0xE100<<16); | 
|  | &mov	(&DWP($bias+36,"esp"),0xFD20<<16); | 
|  | &mov	(&DWP($bias+40,"esp"),0xD940<<16); | 
|  | &mov	(&DWP($bias+44,"esp"),0xC560<<16); | 
|  | &mov	(&DWP($bias+48,"esp"),0x9180<<16); | 
|  | &mov	(&DWP($bias+52,"esp"),0x8DA0<<16); | 
|  | &mov	(&DWP($bias+56,"esp"),0xA9C0<<16); | 
|  | &mov	(&DWP($bias+60,"esp"),0xB5E0<<16); | 
|  | } | 
|  |  | 
|  | if (!$x86only) {{{ | 
|  |  | 
|  | &static_label("rem_4bit"); | 
|  |  | 
|  | if (!$sse2) {{	# pure-MMX "May" version... | 
|  |  | 
|  | # This code was removed since SSE2 is required for BoringSSL. The | 
|  | # outer structure of the code was retained to minimize future merge | 
|  | # conflicts. | 
|  |  | 
|  | }} else {{	# "June" MMX version... | 
|  | # ... has slower "April" gcm_gmult_4bit_mmx with folded | 
|  | # loop. This is done to conserve code size... | 
|  | $S=16;		# shift factor for rem_4bit | 
|  |  | 
|  | sub mmx_loop() { | 
|  | # MMX version performs 2.8 times better on P4 (see comment in non-MMX | 
|  | # routine for further details), 40% better on Opteron and Core2, 50% | 
|  | # better on PIII... In other words effort is considered to be well | 
|  | # spent... | 
|  | my $inp = shift; | 
|  | my $rem_4bit = shift; | 
|  | my $cnt = $Zhh; | 
|  | my $nhi = $Zhl; | 
|  | my $nlo = $Zlh; | 
|  | my $rem = $Zll; | 
|  |  | 
|  | my ($Zlo,$Zhi) = ("mm0","mm1"); | 
|  | my $tmp = "mm2"; | 
|  |  | 
|  | &xor	($nlo,$nlo);	# avoid partial register stalls on PIII | 
|  | &mov	($nhi,$Zll); | 
|  | &mov	(&LB($nlo),&LB($nhi)); | 
|  | &mov	($cnt,14); | 
|  | &shl	(&LB($nlo),4); | 
|  | &and	($nhi,0xf0); | 
|  | &movq	($Zlo,&QWP(8,$Htbl,$nlo)); | 
|  | &movq	($Zhi,&QWP(0,$Htbl,$nlo)); | 
|  | &movd	($rem,$Zlo); | 
|  | &jmp	(&label("mmx_loop")); | 
|  |  | 
|  | &set_label("mmx_loop",16); | 
|  | &psrlq	($Zlo,4); | 
|  | &and	($rem,0xf); | 
|  | &movq	($tmp,$Zhi); | 
|  | &psrlq	($Zhi,4); | 
|  | &pxor	($Zlo,&QWP(8,$Htbl,$nhi)); | 
|  | &mov	(&LB($nlo),&BP(0,$inp,$cnt)); | 
|  | &psllq	($tmp,60); | 
|  | &pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8)); | 
|  | &dec	($cnt); | 
|  | &movd	($rem,$Zlo); | 
|  | &pxor	($Zhi,&QWP(0,$Htbl,$nhi)); | 
|  | &mov	($nhi,$nlo); | 
|  | &pxor	($Zlo,$tmp); | 
|  | &js	(&label("mmx_break")); | 
|  |  | 
|  | &shl	(&LB($nlo),4); | 
|  | &and	($rem,0xf); | 
|  | &psrlq	($Zlo,4); | 
|  | &and	($nhi,0xf0); | 
|  | &movq	($tmp,$Zhi); | 
|  | &psrlq	($Zhi,4); | 
|  | &pxor	($Zlo,&QWP(8,$Htbl,$nlo)); | 
|  | &psllq	($tmp,60); | 
|  | &pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8)); | 
|  | &movd	($rem,$Zlo); | 
|  | &pxor	($Zhi,&QWP(0,$Htbl,$nlo)); | 
|  | &pxor	($Zlo,$tmp); | 
|  | &jmp	(&label("mmx_loop")); | 
|  |  | 
|  | &set_label("mmx_break",16); | 
|  | &shl	(&LB($nlo),4); | 
|  | &and	($rem,0xf); | 
|  | &psrlq	($Zlo,4); | 
|  | &and	($nhi,0xf0); | 
|  | &movq	($tmp,$Zhi); | 
|  | &psrlq	($Zhi,4); | 
|  | &pxor	($Zlo,&QWP(8,$Htbl,$nlo)); | 
|  | &psllq	($tmp,60); | 
|  | &pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8)); | 
|  | &movd	($rem,$Zlo); | 
|  | &pxor	($Zhi,&QWP(0,$Htbl,$nlo)); | 
|  | &pxor	($Zlo,$tmp); | 
|  |  | 
|  | &psrlq	($Zlo,4); | 
|  | &and	($rem,0xf); | 
|  | &movq	($tmp,$Zhi); | 
|  | &psrlq	($Zhi,4); | 
|  | &pxor	($Zlo,&QWP(8,$Htbl,$nhi)); | 
|  | &psllq	($tmp,60); | 
|  | &pxor	($Zhi,&QWP(0,$rem_4bit,$rem,8)); | 
|  | &movd	($rem,$Zlo); | 
|  | &pxor	($Zhi,&QWP(0,$Htbl,$nhi)); | 
|  | &pxor	($Zlo,$tmp); | 
|  |  | 
|  | &psrlq	($Zlo,32);	# lower part of Zlo is already there | 
|  | &movd	($Zhl,$Zhi); | 
|  | &psrlq	($Zhi,32); | 
|  | &movd	($Zlh,$Zlo); | 
|  | &movd	($Zhh,$Zhi); | 
|  |  | 
|  | &bswap	($Zll); | 
|  | &bswap	($Zhl); | 
|  | &bswap	($Zlh); | 
|  | &bswap	($Zhh); | 
|  | } | 
|  |  | 
|  | &function_begin("gcm_gmult_4bit_mmx"); | 
|  | &mov	($inp,&wparam(0));	# load Xi | 
|  | &mov	($Htbl,&wparam(1));	# load Htable | 
|  |  | 
|  | &call	(&label("pic_point")); | 
|  | &set_label("pic_point"); | 
|  | &blindpop("eax"); | 
|  | &lea	("eax",&DWP(&label("rem_4bit")."-".&label("pic_point"),"eax")); | 
|  |  | 
|  | &movz	($Zll,&BP(15,$inp)); | 
|  |  | 
|  | &mmx_loop($inp,"eax"); | 
|  |  | 
|  | &emms	(); | 
|  | &mov	(&DWP(12,$inp),$Zll); | 
|  | &mov	(&DWP(4,$inp),$Zhl); | 
|  | &mov	(&DWP(8,$inp),$Zlh); | 
|  | &mov	(&DWP(0,$inp),$Zhh); | 
|  | &function_end("gcm_gmult_4bit_mmx"); | 
|  |  | 
|  | ###################################################################### | 
|  | # Below subroutine is "528B" variant of "4-bit" GCM GHASH function | 
|  | # (see gcm128.c for details). It provides further 20-40% performance | 
|  | # improvement over above mentioned "May" version. | 
|  |  | 
|  | &static_label("rem_8bit"); | 
|  |  | 
|  | &function_begin("gcm_ghash_4bit_mmx"); | 
|  | { my ($Zlo,$Zhi) = ("mm7","mm6"); | 
|  | my $rem_8bit = "esi"; | 
|  | my $Htbl = "ebx"; | 
|  |  | 
|  | # parameter block | 
|  | &mov	("eax",&wparam(0));		# Xi | 
|  | &mov	("ebx",&wparam(1));		# Htable | 
|  | &mov	("ecx",&wparam(2));		# inp | 
|  | &mov	("edx",&wparam(3));		# len | 
|  | &mov	("ebp","esp");			# original %esp | 
|  | &call	(&label("pic_point")); | 
|  | &set_label	("pic_point"); | 
|  | &blindpop	($rem_8bit); | 
|  | &lea	($rem_8bit,&DWP(&label("rem_8bit")."-".&label("pic_point"),$rem_8bit)); | 
|  |  | 
|  | &sub	("esp",512+16+16);		# allocate stack frame... | 
|  | &and	("esp",-64);			# ...and align it | 
|  | &sub	("esp",16);			# place for (u8)(H[]<<4) | 
|  |  | 
|  | &add	("edx","ecx");			# pointer to the end of input | 
|  | &mov	(&DWP(528+16+0,"esp"),"eax");	# save Xi | 
|  | &mov	(&DWP(528+16+8,"esp"),"edx");	# save inp+len | 
|  | &mov	(&DWP(528+16+12,"esp"),"ebp");	# save original %esp | 
|  |  | 
|  | { my @lo  = ("mm0","mm1","mm2"); | 
|  | my @hi  = ("mm3","mm4","mm5"); | 
|  | my @tmp = ("mm6","mm7"); | 
|  | my ($off1,$off2,$i) = (0,0,); | 
|  |  | 
|  | &add	($Htbl,128);			# optimize for size | 
|  | &lea	("edi",&DWP(16+128,"esp")); | 
|  | &lea	("ebp",&DWP(16+256+128,"esp")); | 
|  |  | 
|  | # decompose Htable (low and high parts are kept separately), | 
|  | # generate Htable[]>>4, (u8)(Htable[]<<4), save to stack... | 
|  | for ($i=0;$i<18;$i++) { | 
|  |  | 
|  | &mov	("edx",&DWP(16*$i+8-128,$Htbl))		if ($i<16); | 
|  | &movq	($lo[0],&QWP(16*$i+8-128,$Htbl))	if ($i<16); | 
|  | &psllq	($tmp[1],60)				if ($i>1); | 
|  | &movq	($hi[0],&QWP(16*$i+0-128,$Htbl))	if ($i<16); | 
|  | &por	($lo[2],$tmp[1])			if ($i>1); | 
|  | &movq	(&QWP($off1-128,"edi"),$lo[1])		if ($i>0 && $i<17); | 
|  | &psrlq	($lo[1],4)				if ($i>0 && $i<17); | 
|  | &movq	(&QWP($off1,"edi"),$hi[1])		if ($i>0 && $i<17); | 
|  | &movq	($tmp[0],$hi[1])			if ($i>0 && $i<17); | 
|  | &movq	(&QWP($off2-128,"ebp"),$lo[2])		if ($i>1); | 
|  | &psrlq	($hi[1],4)				if ($i>0 && $i<17); | 
|  | &movq	(&QWP($off2,"ebp"),$hi[2])		if ($i>1); | 
|  | &shl	("edx",4)				if ($i<16); | 
|  | &mov	(&BP($i,"esp"),&LB("edx"))		if ($i<16); | 
|  |  | 
|  | unshift	(@lo,pop(@lo));			# "rotate" registers | 
|  | unshift	(@hi,pop(@hi)); | 
|  | unshift	(@tmp,pop(@tmp)); | 
|  | $off1 += 8	if ($i>0); | 
|  | $off2 += 8	if ($i>1); | 
|  | } | 
|  | } | 
|  |  | 
|  | &movq	($Zhi,&QWP(0,"eax")); | 
|  | &mov	("ebx",&DWP(8,"eax")); | 
|  | &mov	("edx",&DWP(12,"eax"));		# load Xi | 
|  |  | 
|  | &set_label("outer",16); | 
|  | { my $nlo = "eax"; | 
|  | my $dat = "edx"; | 
|  | my @nhi = ("edi","ebp"); | 
|  | my @rem = ("ebx","ecx"); | 
|  | my @red = ("mm0","mm1","mm2"); | 
|  | my $tmp = "mm3"; | 
|  |  | 
|  | &xor	($dat,&DWP(12,"ecx"));		# merge input data | 
|  | &xor	("ebx",&DWP(8,"ecx")); | 
|  | &pxor	($Zhi,&QWP(0,"ecx")); | 
|  | &lea	("ecx",&DWP(16,"ecx"));		# inp+=16 | 
|  | #&mov	(&DWP(528+12,"esp"),$dat);	# save inp^Xi | 
|  | &mov	(&DWP(528+8,"esp"),"ebx"); | 
|  | &movq	(&QWP(528+0,"esp"),$Zhi); | 
|  | &mov	(&DWP(528+16+4,"esp"),"ecx");	# save inp | 
|  |  | 
|  | &xor	($nlo,$nlo); | 
|  | &rol	($dat,8); | 
|  | &mov	(&LB($nlo),&LB($dat)); | 
|  | &mov	($nhi[1],$nlo); | 
|  | &and	(&LB($nlo),0x0f); | 
|  | &shr	($nhi[1],4); | 
|  | &pxor	($red[0],$red[0]); | 
|  | &rol	($dat,8);			# next byte | 
|  | &pxor	($red[1],$red[1]); | 
|  | &pxor	($red[2],$red[2]); | 
|  |  | 
|  | # Just like in "May" version modulo-schedule for critical path in | 
|  | # 'Z.hi ^= rem_8bit[Z.lo&0xff^((u8)H[nhi]<<4)]<<48'. Final 'pxor' | 
|  | # is scheduled so late that rem_8bit[] has to be shifted *right* | 
|  | # by 16, which is why last argument to pinsrw is 2, which | 
|  | # corresponds to <<32=<<48>>16... | 
|  | for ($j=11,$i=0;$i<15;$i++) { | 
|  |  | 
|  | if ($i>0) { | 
|  | &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo] | 
|  | &rol	($dat,8);				# next byte | 
|  | &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8)); | 
|  |  | 
|  | &pxor	($Zlo,$tmp); | 
|  | &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); | 
|  | &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4) | 
|  | } else { | 
|  | &movq	($Zlo,&QWP(16,"esp",$nlo,8)); | 
|  | &movq	($Zhi,&QWP(16+128,"esp",$nlo,8)); | 
|  | } | 
|  |  | 
|  | &mov	(&LB($nlo),&LB($dat)); | 
|  | &mov	($dat,&DWP(528+$j,"esp"))		if (--$j%4==0); | 
|  |  | 
|  | &movd	($rem[0],$Zlo); | 
|  | &movz	($rem[1],&LB($rem[1]))			if ($i>0); | 
|  | &psrlq	($Zlo,8);				# Z>>=8 | 
|  |  | 
|  | &movq	($tmp,$Zhi); | 
|  | &mov	($nhi[0],$nlo); | 
|  | &psrlq	($Zhi,8); | 
|  |  | 
|  | &pxor	($Zlo,&QWP(16+256+0,"esp",$nhi[1],8));	# Z^=H[nhi]>>4 | 
|  | &and	(&LB($nlo),0x0f); | 
|  | &psllq	($tmp,56); | 
|  |  | 
|  | &pxor	($Zhi,$red[1])				if ($i>1); | 
|  | &shr	($nhi[0],4); | 
|  | &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2)	if ($i>0); | 
|  |  | 
|  | unshift	(@red,pop(@red));			# "rotate" registers | 
|  | unshift	(@rem,pop(@rem)); | 
|  | unshift	(@nhi,pop(@nhi)); | 
|  | } | 
|  |  | 
|  | &pxor	($Zlo,&QWP(16,"esp",$nlo,8));		# Z^=H[nlo] | 
|  | &pxor	($Zhi,&QWP(16+128,"esp",$nlo,8)); | 
|  | &xor	(&LB($rem[1]),&BP(0,"esp",$nhi[0]));	# rem^(H[nhi]<<4) | 
|  |  | 
|  | &pxor	($Zlo,$tmp); | 
|  | &pxor	($Zhi,&QWP(16+256+128,"esp",$nhi[0],8)); | 
|  | &movz	($rem[1],&LB($rem[1])); | 
|  |  | 
|  | &pxor	($red[2],$red[2]);			# clear 2nd word | 
|  | &psllq	($red[1],4); | 
|  |  | 
|  | &movd	($rem[0],$Zlo); | 
|  | &psrlq	($Zlo,4);				# Z>>=4 | 
|  |  | 
|  | &movq	($tmp,$Zhi); | 
|  | &psrlq	($Zhi,4); | 
|  | &shl	($rem[0],4);				# rem<<4 | 
|  |  | 
|  | &pxor	($Zlo,&QWP(16,"esp",$nhi[1],8));	# Z^=H[nhi] | 
|  | &psllq	($tmp,60); | 
|  | &movz	($rem[0],&LB($rem[0])); | 
|  |  | 
|  | &pxor	($Zlo,$tmp); | 
|  | &pxor	($Zhi,&QWP(16+128,"esp",$nhi[1],8)); | 
|  |  | 
|  | &pinsrw	($red[0],&WP(0,$rem_8bit,$rem[1],2),2); | 
|  | &pxor	($Zhi,$red[1]); | 
|  |  | 
|  | &movd	($dat,$Zlo); | 
|  | &pinsrw	($red[2],&WP(0,$rem_8bit,$rem[0],2),3);	# last is <<48 | 
|  |  | 
|  | &psllq	($red[0],12);				# correct by <<16>>4 | 
|  | &pxor	($Zhi,$red[0]); | 
|  | &psrlq	($Zlo,32); | 
|  | &pxor	($Zhi,$red[2]); | 
|  |  | 
|  | &mov	("ecx",&DWP(528+16+4,"esp"));	# restore inp | 
|  | &movd	("ebx",$Zlo); | 
|  | &movq	($tmp,$Zhi);			# 01234567 | 
|  | &psllw	($Zhi,8);			# 1.3.5.7. | 
|  | &psrlw	($tmp,8);			# .0.2.4.6 | 
|  | &por	($Zhi,$tmp);			# 10325476 | 
|  | &bswap	($dat); | 
|  | &pshufw	($Zhi,$Zhi,0b00011011);		# 76543210 | 
|  | &bswap	("ebx"); | 
|  |  | 
|  | &cmp	("ecx",&DWP(528+16+8,"esp"));	# are we done? | 
|  | &jne	(&label("outer")); | 
|  | } | 
|  |  | 
|  | &mov	("eax",&DWP(528+16+0,"esp"));	# restore Xi | 
|  | &mov	(&DWP(12,"eax"),"edx"); | 
|  | &mov	(&DWP(8,"eax"),"ebx"); | 
|  | &movq	(&QWP(0,"eax"),$Zhi); | 
|  |  | 
|  | &mov	("esp",&DWP(528+16+12,"esp"));	# restore original %esp | 
|  | &emms	(); | 
|  | } | 
|  | &function_end("gcm_ghash_4bit_mmx"); | 
|  | }} | 
|  |  | 
|  | if ($sse2) {{ | 
|  | ###################################################################### | 
|  | # PCLMULQDQ version. | 
|  |  | 
|  | $Xip="eax"; | 
|  | $Htbl="edx"; | 
|  | $const="ecx"; | 
|  | $inp="esi"; | 
|  | $len="ebx"; | 
|  |  | 
|  | ($Xi,$Xhi)=("xmm0","xmm1");	$Hkey="xmm2"; | 
|  | ($T1,$T2,$T3)=("xmm3","xmm4","xmm5"); | 
|  | ($Xn,$Xhn)=("xmm6","xmm7"); | 
|  |  | 
|  | &static_label("bswap"); | 
|  |  | 
|  | sub clmul64x64_T2 {	# minimal "register" pressure | 
|  | my ($Xhi,$Xi,$Hkey,$HK)=@_; | 
|  |  | 
|  | &movdqa		($Xhi,$Xi);		# | 
|  | &pshufd		($T1,$Xi,0b01001110); | 
|  | &pshufd		($T2,$Hkey,0b01001110)	if (!defined($HK)); | 
|  | &pxor		($T1,$Xi);		# | 
|  | &pxor		($T2,$Hkey)		if (!defined($HK)); | 
|  | $HK=$T2			if (!defined($HK)); | 
|  |  | 
|  | &pclmulqdq	($Xi,$Hkey,0x00);	####### | 
|  | &pclmulqdq	($Xhi,$Hkey,0x11);	####### | 
|  | &pclmulqdq	($T1,$HK,0x00);		####### | 
|  | &xorps		($T1,$Xi);		# | 
|  | &xorps		($T1,$Xhi);		# | 
|  |  | 
|  | &movdqa		($T2,$T1);		# | 
|  | &psrldq		($T1,8); | 
|  | &pslldq		($T2,8);		# | 
|  | &pxor		($Xhi,$T1); | 
|  | &pxor		($Xi,$T2);		# | 
|  | } | 
|  |  | 
|  | sub clmul64x64_T3 { | 
|  | # Even though this subroutine offers visually better ILP, it | 
|  | # was empirically found to be a tad slower than above version. | 
|  | # At least in gcm_ghash_clmul context. But it's just as well, | 
|  | # because loop modulo-scheduling is possible only thanks to | 
|  | # minimized "register" pressure... | 
|  | my ($Xhi,$Xi,$Hkey)=@_; | 
|  |  | 
|  | &movdqa		($T1,$Xi);		# | 
|  | &movdqa		($Xhi,$Xi); | 
|  | &pclmulqdq	($Xi,$Hkey,0x00);	####### | 
|  | &pclmulqdq	($Xhi,$Hkey,0x11);	####### | 
|  | &pshufd		($T2,$T1,0b01001110);	# | 
|  | &pshufd		($T3,$Hkey,0b01001110); | 
|  | &pxor		($T2,$T1);		# | 
|  | &pxor		($T3,$Hkey); | 
|  | &pclmulqdq	($T2,$T3,0x00);		####### | 
|  | &pxor		($T2,$Xi);		# | 
|  | &pxor		($T2,$Xhi);		# | 
|  |  | 
|  | &movdqa		($T3,$T2);		# | 
|  | &psrldq		($T2,8); | 
|  | &pslldq		($T3,8);		# | 
|  | &pxor		($Xhi,$T2); | 
|  | &pxor		($Xi,$T3);		# | 
|  | } | 
|  |  | 
|  | if (1) {		# Algorithm 9 with <<1 twist. | 
|  | # Reduction is shorter and uses only two | 
|  | # temporary registers, which makes it better | 
|  | # candidate for interleaving with 64x64 | 
|  | # multiplication. Pre-modulo-scheduled loop | 
|  | # was found to be ~20% faster than Algorithm 5 | 
|  | # below. Algorithm 9 was therefore chosen for | 
|  | # further optimization... | 
|  |  | 
|  | sub reduction_alg9 {	# 17/11 times faster than Intel version | 
|  | my ($Xhi,$Xi) = @_; | 
|  |  | 
|  | # 1st phase | 
|  | &movdqa		($T2,$Xi);		# | 
|  | &movdqa		($T1,$Xi); | 
|  | &psllq		($Xi,5); | 
|  | &pxor		($T1,$Xi);		# | 
|  | &psllq		($Xi,1); | 
|  | &pxor		($Xi,$T1);		# | 
|  | &psllq		($Xi,57);		# | 
|  | &movdqa		($T1,$Xi);		# | 
|  | &pslldq		($Xi,8); | 
|  | &psrldq		($T1,8);		# | 
|  | &pxor		($Xi,$T2); | 
|  | &pxor		($Xhi,$T1);		# | 
|  |  | 
|  | # 2nd phase | 
|  | &movdqa		($T2,$Xi); | 
|  | &psrlq		($Xi,1); | 
|  | &pxor		($Xhi,$T2);		# | 
|  | &pxor		($T2,$Xi); | 
|  | &psrlq		($Xi,5); | 
|  | &pxor		($Xi,$T2);		# | 
|  | &psrlq		($Xi,1);		# | 
|  | &pxor		($Xi,$Xhi)		# | 
|  | } | 
|  |  | 
|  | &function_begin_B("gcm_init_clmul"); | 
|  | &mov		($Htbl,&wparam(0)); | 
|  | &mov		($Xip,&wparam(1)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Hkey,&QWP(0,$Xip)); | 
|  | &pshufd		($Hkey,$Hkey,0b01001110);# dword swap | 
|  |  | 
|  | # <<1 twist | 
|  | &pshufd		($T2,$Hkey,0b11111111);	# broadcast uppermost dword | 
|  | &movdqa		($T1,$Hkey); | 
|  | &psllq		($Hkey,1); | 
|  | &pxor		($T3,$T3);		# | 
|  | &psrlq		($T1,63); | 
|  | &pcmpgtd	($T3,$T2);		# broadcast carry bit | 
|  | &pslldq		($T1,8); | 
|  | &por		($Hkey,$T1);		# H<<=1 | 
|  |  | 
|  | # magic reduction | 
|  | &pand		($T3,&QWP(16,$const));	# 0x1c2_polynomial | 
|  | &pxor		($Hkey,$T3);		# if(carry) H^=0x1c2_polynomial | 
|  |  | 
|  | # calculate H^2 | 
|  | &movdqa		($Xi,$Hkey); | 
|  | &clmul64x64_T2	($Xhi,$Xi,$Hkey); | 
|  | &reduction_alg9	($Xhi,$Xi); | 
|  |  | 
|  | &pshufd		($T1,$Hkey,0b01001110); | 
|  | &pshufd		($T2,$Xi,0b01001110); | 
|  | &pxor		($T1,$Hkey);		# Karatsuba pre-processing | 
|  | &movdqu		(&QWP(0,$Htbl),$Hkey);	# save H | 
|  | &pxor		($T2,$Xi);		# Karatsuba pre-processing | 
|  | &movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2 | 
|  | &palignr	($T2,$T1,8);		# low part is H.lo^H.hi | 
|  | &movdqu		(&QWP(32,$Htbl),$T2);	# save Karatsuba "salt" | 
|  |  | 
|  | &ret		(); | 
|  | &function_end_B("gcm_init_clmul"); | 
|  |  | 
|  | &function_begin_B("gcm_gmult_clmul"); | 
|  | &mov		($Xip,&wparam(0)); | 
|  | &mov		($Htbl,&wparam(1)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Xi,&QWP(0,$Xip)); | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &movups		($Hkey,&QWP(0,$Htbl)); | 
|  | &pshufb		($Xi,$T3); | 
|  | &movups		($T2,&QWP(32,$Htbl)); | 
|  |  | 
|  | &clmul64x64_T2	($Xhi,$Xi,$Hkey,$T2); | 
|  | &reduction_alg9	($Xhi,$Xi); | 
|  |  | 
|  | &pshufb		($Xi,$T3); | 
|  | &movdqu		(&QWP(0,$Xip),$Xi); | 
|  |  | 
|  | &ret	(); | 
|  | &function_end_B("gcm_gmult_clmul"); | 
|  |  | 
|  | &function_begin("gcm_ghash_clmul"); | 
|  | &mov		($Xip,&wparam(0)); | 
|  | &mov		($Htbl,&wparam(1)); | 
|  | &mov		($inp,&wparam(2)); | 
|  | &mov		($len,&wparam(3)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Xi,&QWP(0,$Xip)); | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &movdqu		($Hkey,&QWP(0,$Htbl)); | 
|  | &pshufb		($Xi,$T3); | 
|  |  | 
|  | &sub		($len,0x10); | 
|  | &jz		(&label("odd_tail")); | 
|  |  | 
|  | ####### | 
|  | # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = | 
|  | #	[(H*Ii+1) + (H*Xi+1)] mod P = | 
|  | #	[(H*Ii+1) + H^2*(Ii+Xi)] mod P | 
|  | # | 
|  | &movdqu		($T1,&QWP(0,$inp));	# Ii | 
|  | &movdqu		($Xn,&QWP(16,$inp));	# Ii+1 | 
|  | &pshufb		($T1,$T3); | 
|  | &pshufb		($Xn,$T3); | 
|  | &movdqu		($T3,&QWP(32,$Htbl)); | 
|  | &pxor		($Xi,$T1);		# Ii+Xi | 
|  |  | 
|  | &pshufd		($T1,$Xn,0b01001110);	# H*Ii+1 | 
|  | &movdqa		($Xhn,$Xn); | 
|  | &pxor		($T1,$Xn);		# | 
|  | &lea		($inp,&DWP(32,$inp));	# i+=2 | 
|  |  | 
|  | &pclmulqdq	($Xn,$Hkey,0x00);	####### | 
|  | &pclmulqdq	($Xhn,$Hkey,0x11);	####### | 
|  | &pclmulqdq	($T1,$T3,0x00);		####### | 
|  | &movups		($Hkey,&QWP(16,$Htbl));	# load H^2 | 
|  | &nop		(); | 
|  |  | 
|  | &sub		($len,0x20); | 
|  | &jbe		(&label("even_tail")); | 
|  | &jmp		(&label("mod_loop")); | 
|  |  | 
|  | &set_label("mod_loop",32); | 
|  | &pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi) | 
|  | &movdqa		($Xhi,$Xi); | 
|  | &pxor		($T2,$Xi);		# | 
|  | &nop		(); | 
|  |  | 
|  | &pclmulqdq	($Xi,$Hkey,0x00);	####### | 
|  | &pclmulqdq	($Xhi,$Hkey,0x11);	####### | 
|  | &pclmulqdq	($T2,$T3,0x10);		####### | 
|  | &movups		($Hkey,&QWP(0,$Htbl));	# load H | 
|  |  | 
|  | &xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi) | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &xorps		($Xhi,$Xhn); | 
|  | &movdqu	($Xhn,&QWP(0,$inp));	# Ii | 
|  | &pxor		($T1,$Xi);		# aggregated Karatsuba post-processing | 
|  | &movdqu	($Xn,&QWP(16,$inp));	# Ii+1 | 
|  | &pxor		($T1,$Xhi);		# | 
|  |  | 
|  | &pshufb	($Xhn,$T3); | 
|  | &pxor		($T2,$T1);		# | 
|  |  | 
|  | &movdqa		($T1,$T2);		# | 
|  | &psrldq		($T2,8); | 
|  | &pslldq		($T1,8);		# | 
|  | &pxor		($Xhi,$T2); | 
|  | &pxor		($Xi,$T1);		# | 
|  | &pshufb	($Xn,$T3); | 
|  | &pxor		($Xhi,$Xhn);		# "Ii+Xi", consume early | 
|  |  | 
|  | &movdqa		($Xhn,$Xn);		#&clmul64x64_TX	($Xhn,$Xn,$Hkey); H*Ii+1 | 
|  | &movdqa	($T2,$Xi);		#&reduction_alg9($Xhi,$Xi); 1st phase | 
|  | &movdqa	($T1,$Xi); | 
|  | &psllq	($Xi,5); | 
|  | &pxor		($T1,$Xi);		# | 
|  | &psllq	($Xi,1); | 
|  | &pxor		($Xi,$T1);		# | 
|  | &pclmulqdq	($Xn,$Hkey,0x00);	####### | 
|  | &movups		($T3,&QWP(32,$Htbl)); | 
|  | &psllq	($Xi,57);		# | 
|  | &movdqa	($T1,$Xi);		# | 
|  | &pslldq	($Xi,8); | 
|  | &psrldq	($T1,8);		# | 
|  | &pxor		($Xi,$T2); | 
|  | &pxor		($Xhi,$T1);		# | 
|  | &pshufd		($T1,$Xhn,0b01001110); | 
|  | &movdqa	($T2,$Xi);		# 2nd phase | 
|  | &psrlq	($Xi,1); | 
|  | &pxor		($T1,$Xhn); | 
|  | &pxor		($Xhi,$T2);		# | 
|  | &pclmulqdq	($Xhn,$Hkey,0x11);	####### | 
|  | &movups		($Hkey,&QWP(16,$Htbl));	# load H^2 | 
|  | &pxor		($T2,$Xi); | 
|  | &psrlq	($Xi,5); | 
|  | &pxor		($Xi,$T2);		# | 
|  | &psrlq	($Xi,1);		# | 
|  | &pxor		($Xi,$Xhi)		# | 
|  | &pclmulqdq	($T1,$T3,0x00);		####### | 
|  |  | 
|  | &lea		($inp,&DWP(32,$inp)); | 
|  | &sub		($len,0x20); | 
|  | &ja		(&label("mod_loop")); | 
|  |  | 
|  | &set_label("even_tail"); | 
|  | &pshufd		($T2,$Xi,0b01001110);	# H^2*(Ii+Xi) | 
|  | &movdqa		($Xhi,$Xi); | 
|  | &pxor		($T2,$Xi);		# | 
|  |  | 
|  | &pclmulqdq	($Xi,$Hkey,0x00);	####### | 
|  | &pclmulqdq	($Xhi,$Hkey,0x11);	####### | 
|  | &pclmulqdq	($T2,$T3,0x10);		####### | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  |  | 
|  | &xorps		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi) | 
|  | &xorps		($Xhi,$Xhn); | 
|  | &pxor		($T1,$Xi);		# aggregated Karatsuba post-processing | 
|  | &pxor		($T1,$Xhi);		# | 
|  |  | 
|  | &pxor		($T2,$T1);		# | 
|  |  | 
|  | &movdqa		($T1,$T2);		# | 
|  | &psrldq		($T2,8); | 
|  | &pslldq		($T1,8);		# | 
|  | &pxor		($Xhi,$T2); | 
|  | &pxor		($Xi,$T1);		# | 
|  |  | 
|  | &reduction_alg9	($Xhi,$Xi); | 
|  |  | 
|  | &test		($len,$len); | 
|  | &jnz		(&label("done")); | 
|  |  | 
|  | &movups		($Hkey,&QWP(0,$Htbl));	# load H | 
|  | &set_label("odd_tail"); | 
|  | &movdqu		($T1,&QWP(0,$inp));	# Ii | 
|  | &pshufb		($T1,$T3); | 
|  | &pxor		($Xi,$T1);		# Ii+Xi | 
|  |  | 
|  | &clmul64x64_T2	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi) | 
|  | &reduction_alg9	($Xhi,$Xi); | 
|  |  | 
|  | &set_label("done"); | 
|  | &pshufb		($Xi,$T3); | 
|  | &movdqu		(&QWP(0,$Xip),$Xi); | 
|  | &function_end("gcm_ghash_clmul"); | 
|  |  | 
|  | } else {		# Algorithm 5. Kept for reference purposes. | 
|  |  | 
|  | sub reduction_alg5 {	# 19/16 times faster than Intel version | 
|  | my ($Xhi,$Xi)=@_; | 
|  |  | 
|  | # <<1 | 
|  | &movdqa		($T1,$Xi);		# | 
|  | &movdqa		($T2,$Xhi); | 
|  | &pslld		($Xi,1); | 
|  | &pslld		($Xhi,1);		# | 
|  | &psrld		($T1,31); | 
|  | &psrld		($T2,31);		# | 
|  | &movdqa		($T3,$T1); | 
|  | &pslldq		($T1,4); | 
|  | &psrldq		($T3,12);		# | 
|  | &pslldq		($T2,4); | 
|  | &por		($Xhi,$T3);		# | 
|  | &por		($Xi,$T1); | 
|  | &por		($Xhi,$T2);		# | 
|  |  | 
|  | # 1st phase | 
|  | &movdqa		($T1,$Xi); | 
|  | &movdqa		($T2,$Xi); | 
|  | &movdqa		($T3,$Xi);		# | 
|  | &pslld		($T1,31); | 
|  | &pslld		($T2,30); | 
|  | &pslld		($Xi,25);		# | 
|  | &pxor		($T1,$T2); | 
|  | &pxor		($T1,$Xi);		# | 
|  | &movdqa		($T2,$T1);		# | 
|  | &pslldq		($T1,12); | 
|  | &psrldq		($T2,4);		# | 
|  | &pxor		($T3,$T1); | 
|  |  | 
|  | # 2nd phase | 
|  | &pxor		($Xhi,$T3);		# | 
|  | &movdqa		($Xi,$T3); | 
|  | &movdqa		($T1,$T3); | 
|  | &psrld		($Xi,1);		# | 
|  | &psrld		($T1,2); | 
|  | &psrld		($T3,7);		# | 
|  | &pxor		($Xi,$T1); | 
|  | &pxor		($Xhi,$T2); | 
|  | &pxor		($Xi,$T3);		# | 
|  | &pxor		($Xi,$Xhi);		# | 
|  | } | 
|  |  | 
|  | &function_begin_B("gcm_init_clmul"); | 
|  | &mov		($Htbl,&wparam(0)); | 
|  | &mov		($Xip,&wparam(1)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Hkey,&QWP(0,$Xip)); | 
|  | &pshufd		($Hkey,$Hkey,0b01001110);# dword swap | 
|  |  | 
|  | # calculate H^2 | 
|  | &movdqa		($Xi,$Hkey); | 
|  | &clmul64x64_T3	($Xhi,$Xi,$Hkey); | 
|  | &reduction_alg5	($Xhi,$Xi); | 
|  |  | 
|  | &movdqu		(&QWP(0,$Htbl),$Hkey);	# save H | 
|  | &movdqu		(&QWP(16,$Htbl),$Xi);	# save H^2 | 
|  |  | 
|  | &ret		(); | 
|  | &function_end_B("gcm_init_clmul"); | 
|  |  | 
|  | &function_begin_B("gcm_gmult_clmul"); | 
|  | &mov		($Xip,&wparam(0)); | 
|  | &mov		($Htbl,&wparam(1)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Xi,&QWP(0,$Xip)); | 
|  | &movdqa		($Xn,&QWP(0,$const)); | 
|  | &movdqu		($Hkey,&QWP(0,$Htbl)); | 
|  | &pshufb		($Xi,$Xn); | 
|  |  | 
|  | &clmul64x64_T3	($Xhi,$Xi,$Hkey); | 
|  | &reduction_alg5	($Xhi,$Xi); | 
|  |  | 
|  | &pshufb		($Xi,$Xn); | 
|  | &movdqu		(&QWP(0,$Xip),$Xi); | 
|  |  | 
|  | &ret	(); | 
|  | &function_end_B("gcm_gmult_clmul"); | 
|  |  | 
|  | &function_begin("gcm_ghash_clmul"); | 
|  | &mov		($Xip,&wparam(0)); | 
|  | &mov		($Htbl,&wparam(1)); | 
|  | &mov		($inp,&wparam(2)); | 
|  | &mov		($len,&wparam(3)); | 
|  |  | 
|  | &call		(&label("pic")); | 
|  | &set_label("pic"); | 
|  | &blindpop	($const); | 
|  | &lea		($const,&DWP(&label("bswap")."-".&label("pic"),$const)); | 
|  |  | 
|  | &movdqu		($Xi,&QWP(0,$Xip)); | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &movdqu		($Hkey,&QWP(0,$Htbl)); | 
|  | &pshufb		($Xi,$T3); | 
|  |  | 
|  | &sub		($len,0x10); | 
|  | &jz		(&label("odd_tail")); | 
|  |  | 
|  | ####### | 
|  | # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = | 
|  | #	[(H*Ii+1) + (H*Xi+1)] mod P = | 
|  | #	[(H*Ii+1) + H^2*(Ii+Xi)] mod P | 
|  | # | 
|  | &movdqu		($T1,&QWP(0,$inp));	# Ii | 
|  | &movdqu		($Xn,&QWP(16,$inp));	# Ii+1 | 
|  | &pshufb		($T1,$T3); | 
|  | &pshufb		($Xn,$T3); | 
|  | &pxor		($Xi,$T1);		# Ii+Xi | 
|  |  | 
|  | &clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1 | 
|  | &movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2 | 
|  |  | 
|  | &sub		($len,0x20); | 
|  | &lea		($inp,&DWP(32,$inp));	# i+=2 | 
|  | &jbe		(&label("even_tail")); | 
|  |  | 
|  | &set_label("mod_loop"); | 
|  | &clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi) | 
|  | &movdqu		($Hkey,&QWP(0,$Htbl));	# load H | 
|  |  | 
|  | &pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi) | 
|  | &pxor		($Xhi,$Xhn); | 
|  |  | 
|  | &reduction_alg5	($Xhi,$Xi); | 
|  |  | 
|  | ####### | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &movdqu		($T1,&QWP(0,$inp));	# Ii | 
|  | &movdqu		($Xn,&QWP(16,$inp));	# Ii+1 | 
|  | &pshufb		($T1,$T3); | 
|  | &pshufb		($Xn,$T3); | 
|  | &pxor		($Xi,$T1);		# Ii+Xi | 
|  |  | 
|  | &clmul64x64_T3	($Xhn,$Xn,$Hkey);	# H*Ii+1 | 
|  | &movdqu		($Hkey,&QWP(16,$Htbl));	# load H^2 | 
|  |  | 
|  | &sub		($len,0x20); | 
|  | &lea		($inp,&DWP(32,$inp)); | 
|  | &ja		(&label("mod_loop")); | 
|  |  | 
|  | &set_label("even_tail"); | 
|  | &clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H^2*(Ii+Xi) | 
|  |  | 
|  | &pxor		($Xi,$Xn);		# (H*Ii+1) + H^2*(Ii+Xi) | 
|  | &pxor		($Xhi,$Xhn); | 
|  |  | 
|  | &reduction_alg5	($Xhi,$Xi); | 
|  |  | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &test		($len,$len); | 
|  | &jnz		(&label("done")); | 
|  |  | 
|  | &movdqu		($Hkey,&QWP(0,$Htbl));	# load H | 
|  | &set_label("odd_tail"); | 
|  | &movdqu		($T1,&QWP(0,$inp));	# Ii | 
|  | &pshufb		($T1,$T3); | 
|  | &pxor		($Xi,$T1);		# Ii+Xi | 
|  |  | 
|  | &clmul64x64_T3	($Xhi,$Xi,$Hkey);	# H*(Ii+Xi) | 
|  | &reduction_alg5	($Xhi,$Xi); | 
|  |  | 
|  | &movdqa		($T3,&QWP(0,$const)); | 
|  | &set_label("done"); | 
|  | &pshufb		($Xi,$T3); | 
|  | &movdqu		(&QWP(0,$Xip),$Xi); | 
|  | &function_end("gcm_ghash_clmul"); | 
|  |  | 
|  | } | 
|  |  | 
|  | &set_label("bswap",64); | 
|  | &data_byte(15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0); | 
|  | &data_byte(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2);	# 0x1c2_polynomial | 
|  | &set_label("rem_8bit",64); | 
|  | &data_short(0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E); | 
|  | &data_short(0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E); | 
|  | &data_short(0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E); | 
|  | &data_short(0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E); | 
|  | &data_short(0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E); | 
|  | &data_short(0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E); | 
|  | &data_short(0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E); | 
|  | &data_short(0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E); | 
|  | &data_short(0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE); | 
|  | &data_short(0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE); | 
|  | &data_short(0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE); | 
|  | &data_short(0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE); | 
|  | &data_short(0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E); | 
|  | &data_short(0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E); | 
|  | &data_short(0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE); | 
|  | &data_short(0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE); | 
|  | &data_short(0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E); | 
|  | &data_short(0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E); | 
|  | &data_short(0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E); | 
|  | &data_short(0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E); | 
|  | &data_short(0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E); | 
|  | &data_short(0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E); | 
|  | &data_short(0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E); | 
|  | &data_short(0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E); | 
|  | &data_short(0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE); | 
|  | &data_short(0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE); | 
|  | &data_short(0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE); | 
|  | &data_short(0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE); | 
|  | &data_short(0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E); | 
|  | &data_short(0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E); | 
|  | &data_short(0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE); | 
|  | &data_short(0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE); | 
|  | }}	# $sse2 | 
|  |  | 
|  | &set_label("rem_4bit",64); | 
|  | &data_word(0,0x0000<<$S,0,0x1C20<<$S,0,0x3840<<$S,0,0x2460<<$S); | 
|  | &data_word(0,0x7080<<$S,0,0x6CA0<<$S,0,0x48C0<<$S,0,0x54E0<<$S); | 
|  | &data_word(0,0xE100<<$S,0,0xFD20<<$S,0,0xD940<<$S,0,0xC560<<$S); | 
|  | &data_word(0,0x9180<<$S,0,0x8DA0<<$S,0,0xA9C0<<$S,0,0xB5E0<<$S); | 
|  | }}}	# !$x86only | 
|  |  | 
|  | &asciz("GHASH for x86, CRYPTOGAMS by <appro\@openssl.org>"); | 
|  | &asm_finish(); | 
|  |  | 
|  | close STDOUT or die "error closing STDOUT"; | 
|  |  | 
|  | # A question was risen about choice of vanilla MMX. Or rather why wasn't | 
|  | # SSE2 chosen instead? In addition to the fact that MMX runs on legacy | 
|  | # CPUs such as PIII, "4-bit" MMX version was observed to provide better | 
|  | # performance than *corresponding* SSE2 one even on contemporary CPUs. | 
|  | # SSE2 results were provided by Peter-Michael Hager. He maintains SSE2 | 
|  | # implementation featuring full range of lookup-table sizes, but with | 
|  | # per-invocation lookup table setup. Latter means that table size is | 
|  | # chosen depending on how much data is to be hashed in every given call, | 
|  | # more data - larger table. Best reported result for Core2 is ~4 cycles | 
|  | # per processed byte out of 64KB block. This number accounts even for | 
|  | # 64KB table setup overhead. As discussed in gcm128.c we choose to be | 
|  | # more conservative in respect to lookup table sizes, but how do the | 
|  | # results compare? Minimalistic "256B" MMX version delivers ~11 cycles | 
|  | # on same platform. As also discussed in gcm128.c, next in line "8-bit | 
|  | # Shoup's" or "4KB" method should deliver twice the performance of | 
|  | # "256B" one, in other words not worse than ~6 cycles per byte. It | 
|  | # should be also be noted that in SSE2 case improvement can be "super- | 
|  | # linear," i.e. more than twice, mostly because >>8 maps to single | 
|  | # instruction on SSE2 register. This is unlike "4-bit" case when >>4 | 
|  | # maps to same amount of instructions in both MMX and SSE2 cases. | 
|  | # Bottom line is that switch to SSE2 is considered to be justifiable | 
|  | # only in case we choose to implement "8-bit" method... |